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The roundworm Caenorhabditis elegans exhibits robust escape
behavior in response to rapidly rising temperature. The behav-
ior lasts for a few seconds, shows history dependence, involves
both sensory and motor systems, and is too complicated to model
mechanistically using currently available knowledge. Instead we
model the process phenomenologically, and we use the Sir Isaac
dynamical inference platform to infer the model in a fully auto-
mated fashion directly from experimental data. The inferred
model requires incorporation of an unobserved dynamical vari-
able and is biologically interpretable. The model makes accurate
predictions about the dynamics of the worm behavior, and it
can be used to characterize the functional logic of the dynami-
cal system underlying the escape response. This work illustrates
the power of modern artificial intelligence to aid in discovery of
accurate and interpretable models of complex natural systems.

dynamical systems | nociception | machine learning |
phenomenological models

he quantitative biology revolution of recent decades has

resulted in an unprecedented ability to measure dynamics
of complex biological systems in response to perturbations with
the accuracy previously reserved for inanimate, physical sys-
tems. For example, the entire escape behavior of a roundworm
Caenorhabditis elegans in response to a noxious temperature
stimulus can be measured for many seconds in hundreds of
worms (1, 2). At the same time, theoretical understanding of
such living dynamical systems has lagged behind, largely because,
in the absence of symmetries, averaging, and small parameters
to guide our intuition, building mathematical models of such
complex biological processes has remained a very delicate art.
Recent years have shown the emergence of automated model-
ing approaches, which use modern machine-learning methods
to automatically infer the dynamical laws underlying a stud-
ied experimental system and predict its future dynamics (3-14).
However, arguably, these methods have not yet been applied to
any real experimental data with dynamics of a priori unknown
structure to produce interpretable dynamical representations
of the system. Thus, their ability to build not just statistical
but physical models of data (15) which are interpretable by
humans, answer interesting scientific questions, and guide future
discovery remains unclear.

Here we apply the Sir Isaac platform for automated inference
of dynamical equations underlying time series data to infer a
model of the C. elegans escape response, averaged over a pop-
ulation of worms. We show that Sir Isaac is able not only to fit
the observed data, but also to make predictions about the worm
dynamics that extend beyond the data used for training. The
inferred optimal model has an easily interpretable form, with the
identified interactions and the inferred latent dynamical variable
connecting naturally to known mechanisms of C. elegans sen-
sorimotor control. And by analyzing the dynamical structure of
the model—number of dynamic variables, number of attractors
(distinct behaviors), etc.—we can generalize these results across
many biophysical systems.

www.pnas.org/cgi/doi/10.1073/pnas.1816531116

Results

Automated Dynamical Inference. Sir Isaac (7, 8) is one of the
new generation of machine-learning algorithms able to infer a
dynamical model of time series data, with the model expressed
in terms of a system of differential equations. Compared with
other approaches, Sir Isaac is able to infer dynamics (at least
for synthetic test systems) that are (i) relatively low dimensional,
(i) have unobserved (hidden or latent) variables, (iii) have arbi-
trary nonlinearities, (iv) rely only on noisy measurements of the
system’s state variables and not of the rate of change of these
variables, and (v) are expressed in terms of an interpretable sys-
tem of coupled differential equations. Briefly, the algorithm sets
up a complete and nested hierarchy of nonlinear dynamical mod-
els. Nestedness means that each next model in the hierarchy is
more complex (in the sense of having a larger explanatory power)
(16-18) than the previous one and includes it as a special case.
Completeness means that any sufficiently general dynamics can
be approximated arbitrarily well by some model within the hier-
archy. That is, the only restriction on the dynamics is that they are
continuous and do not have infinite rates of change. Two such
hierarchies have been developed, one based on S systems (19)
and the other on sigmoidal networks (20). Both progressively add
hidden dynamical variables to the model and then couple them to
the previously introduced variables using nonlinear interactions
of specific forms. Sir Isaac then uses a semianalytical formulation
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Fig. 1. The escape response behavior is fitted and predicted well by the inferred model. (A) Colored lines and shaded bands represent the empirical mean
and the SD of the mean, respectively, of the escape response velocity for five groups of worms stimulated with laser currents in different ranges (38, 42, 39,
41, and 41 subjects in each group). Dashed lines and bands of the corresponding color show means and SDs of the mean (Materials and Methods) of fits
to these empirical data by the chosen model. Only the velocity in the range of time [—1, 2.25] s relative to the time of the onset of the laser stimulus was
used for fitting. (B and C) While most worms are still moving backward during this range of time, the inferred model predicts, without any additional free
parameters, the time at which a worm'’s speed again becomes positive both as a function of (B) applied laser current and (C) peak observed worm reverse
speed. These predictions (red curves) agree with the binned averages (orange circles) of individual worms' behavior (blue circles). Bins correspond to eight

quantiles each with 25 or 26 trials, and error bars are the SEM.

of Bayesian model selection (8, 18, 21, 22) to choose the model
in the hierarchy that best balances the quality of fit vs. overfitting
and is, therefore, expected to produce the best generalization.
The sigmoidal network hierarchy is especially well suited to
modeling biological systems, where rates of change of variables
usually saturate over some scale, and it is the sole focus of our
study.

Experimental Model System. Nociception evokes a rapid escape
behavior designed to protect the animal from potential harm (23,
24). C. elegans, a small nematode with a simple nervous system,
is a classic model organism used in the study of nociception. A
variety of studies have used C. elegans to elucidate genes and
neurons mediating nociception to a variety of aversive stimuli
including high osmolarity and mechanical, chemical, and thermal
stimuli (25-28). However, a complete dynamic understanding
of the escape response at the neuronal, as well as the molecu-
lar, level is not fully known. Recent studies have quantified the
behavioral escape response of the worm when thermally stimu-

t=0.25s

lated with laser heating (1, 2), and these data are the focus of our
study. The response is dynamic: When the stimulus is applied
to the animal’s head, it quickly withdraws, briefly accelerating
backward, and eventually returns to forward motion, usually in a
different direction. Various features of this response change with
the level of laser heating, such as the length of time moving in the
reverse direction and the maximum speed attained.

Fits and Predictions. We use the worm center-of-mass speed, v,
as the variable whose dynamics need to be explained in response
to the laser heating pulse. We define v > 0 as the worm crawl-
ing forward and v <0 as the worm retreating backward. The
input to the model is the underlying temperature, h(¢), which
can be approximated as h(t) = Iho(t), where I is the experimen-
tally controlled laser current, and kg is the temperature template,
described in Materials and Methods. Based on trajectories of 201
worms in response to laser currents ranging between 9.6 mA and
177.4 mA, we let Sir Isaac determine the most likely dynami-
cal system explaining these data within the sigmoidal networks
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Fig. 2. Phase-space structure of the inferred model. With one hidden variable x;, the model dynamics can be visualized in the 2D phase space. As the
instantaneous heat input h returns to zero after a brief pulse (red curve in Insets), a single fixed point in the 2D (v, x;) dynamics moves from negative speed
(escape) to positive (forward motion). As the velocity of the worm trails the fixed point, this produces first a fast escape and then a slow return to forward
motion (speed trajectory in orange in Insets and in the phase portrait plots). Blue arrows indicate flow lines, circles indicate stable fixed points, and green
lines indicate nullclines (dark green where dv/dt =0 and light green where dx, /dt = 0).
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https://www.pnas.org/cgi/doi/10.1073/pnas.1816531116

L T

/

D\

v
ar

SR
Forward
Recovery,
Wi
- J

w ‘-— '
Forward
Drive,
Wiz
- J

Backward

Drive, V1
Laser,

h()

Integration,
V2

Fig. 3. Network diagram of the inferred model. Variables, interactions,
parameter values, and biological mechanisms are described in the main text.

model class (8) (see Materials and Methods for a detailed descrip-
tion of the modeling and inference). The inferred model has a
latent (unobserved) dynamical variable, hereafter referred to as
22, in addition to the speed. v and z» are coupled by nonlinear
interactions. However, some of these nonlinear interactions may
be insignificant and may be present simply because the nested
hierarchy introduces them before some other interaction terms
that are necessary to explain the data. Thus, we reduce the model
by setting parameters that are small to zero one by one and in
various combinations, refitting such reduced models, and using
Bayesian model selection to choose between the reduced model
and the original Sir Isaac inferred model. The resulting model is

dv v Wi W12

— =——+4+ V1h(t 1
G- T POt et W
d:CQ X2

e _ = Vo h(t t= =0. 2
i - + Vah(t), z(t=0)=0 [2]

The form of each term is set a priori by the choice of the sig-
moidal model class, and we choose v; as a relevant velocity scale.
Everything else about the model is inferred from the data using
the Bayesian model selection procedure, including the number of
terms, the number of hidden dynamical variables, and values of
all other constants [see Materials and Methods for inferred values
of 11,01, V1, Va, W11, Wiz, and v(t = 0); the model uses default
values for 72 = 1.0 s and 22 (¢ = 0) = 0]. Interestingly, the inferred
model reveals that the latent dynamical variable z» is a linear
low-pass filtered (integrated) version of the heat signal.

The fits produced by this model are compared with data in
Fig. 14, showing an excellent agreement (see Materials and Meth-
ods for quantification of the quality of fits). Surprisingly, the
quality of the fit for this automatically generated model, with very
little human input, is better than that of a state-of-the-art man-
ually constructed probabilistic, nondynamical model (2): Only
about 10% of explainable variance in the data remains unex-
plained by the model for times between 100 ms and 2 s after
the stimulus, compared with about 20% for the manual model
(Materials and Methods).

However, the quality of the fit may not be surprising in itself
since the Sir Isaac model hierarchy can fit any dynamics using
sufficient data. A utility of a mathematical model is in its abil-
ity to make predictions about data that were not used in fitting.
Thus, we use the inferred model to predict when the worm will
return to forward motion. This usually happens at times well
after t =2.25 s, and only data for smaller times were used for
fitting. Fig. 1 B and C compares these predictions with experi-
ments, showing very good predictions. Such ability to extrapolate
beyond the training range is usually an indication that the model
captures the underlying physics and is not purely statistical (15),
giving us confidence in using the model for inferences about the
worm.

Daniels et al.

Model Analysis. The algorithm has chosen to include a single
latent dynamical variable, which is a linear leaky integrator of
the experienced temperature. Having access to both the instan-
taneous stimulus and its integral over the immediate past allows
the worm to estimate the rate of change in the stimulus. This
agrees with the observation (1) that both the current temperature
and the rate of its increase are noxious for the worm. From this,
one could have guessed, perhaps, that at least one latent variable
(temperature derivative or temperature at some previous time)
is required to properly model the escape response. However, the
fact that Sir Isaac inferred this from time series data alone and
was able to model the data with exactly one hidden variable is
surprising.

Fig. 2 shows the phase portraits of the inferred dynamical
model, Egs. 1 and 2, as well as the dynamics of the speed and
the heat stimulus A. Crucially, we see that there is only one fixed
point in the phase space at any instant of time, and the position
of this fixed point is affected by the current laser stimulus value.
This suggests that, at least at the level of the population-averaged
response, the behavior does not involve switching among alter-
native behaviors defined dynamically as multiple fixed points
or limit cycles (e.g., forward and backward motion) with the
switching probability influenced by the stimulus (29), but rather
the stimulus controls the direction and the speed of the single
dominant crawling state.

The network diagram of the model in Egs. 1 and 2 is shown in
Fig. 3, where we omit the linear degradation terms for v and ;.
With the maximum-likelihood parameter values (see Table 3),
the model can be interpreted as follows. The hidden variable z,
is a linear leaky integrator of the heat signal, storing the average
recent value of the stimulus over about 1 s. While we do not know
which exact neuron can be identified with z», the thermosen-
sory neurons AFD and FLP located in the head of the worm
are strong candidates (30, 31). The thermosensory neurons AFD
respond to changes in temperature and are the primary sensors
responsible for thermotaxis (30). The sensory neuron FLP also
is thermosensitive and has a role in the thermal sensory escape
response (31). When z, is near zero, the Wi» term is large,
and, together with the linear relaxation of the speed, —v/7i, it
establishes a constant positive forward motion. We identify this
term with the forward drive command interneurons AVB and
PVC (32). After the temperature increases, z2 grows. It rapidly
increases the denominator in the Wiz term and hence shuts
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Fig. 4. Monitoring goodness of fit in the process of model inference. Sir
Isaac adds data gradually to aid in parameter fitting. As data are added, the
selected model includes more detail (number of model parameters in black)
until it saturates to the 10-parameter model we use. The goodness of fit (x>
per degree of freedom, in yellow) is measured using all data, including time
points not used in model fitting.
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Table 1. Parameters used for input data, model inference, and
dynamics of sensory input

Parameter Value
Input data
Equilibration time 10s
Inference
Complexity step size 1
Maxiter 100
Avegtol 102
StopfittingN 5
Type order “Last"”
Tested ensemble members 10
Ensemble temperature 100
Ensemble generation steps 1,000
Connection order “Node”
Prior o 100
Sensory input
Ton 0.1s
Tdecay 0.25s

Inference parameters control the Sir Isaac algorithm: “Complexity step
size” sets which models in the hierarchy are tested, with 1 indicating that
no models are skipped as parameters are added; “Ensemble” refers to the
parameter ensemble used to avoid local minima during fitting; “Avegtol”
and “Maxiter” adjust the local minimization phase of parameter fitting;
“StopfittingN"” sets the number of higher-complexity models with poorer
performance tested before selecting a given model; “Connection order” and
"Type order” set the order of models in the hierarchy (7); and “Prior o” is
the SD of Gaussian priors on all parameters.

down the forward drive. This is again consistent with the litera-
ture indicating that the worms pause with even reasonably small
temperature perturbations (1). An additional effect of the stim-
ulus is to directly inject a negative drive — V1 h into the dynamics
of the velocity. When the stimulus is large, the Vi term is suffi-
ciently negative to result in the velocity overshooting the pause
into the negative, escape range. We identify the Vi term with
the reverse command interneurons AVA, AVD, and AVE, acti-
vated by the thermosensory neurons AFD and FLP (32). When
v > —01 =~ —42 pixels/s (px/s), the W11 term is suppressed. How-
ever, during fast escapes this suppression is lifted, activating the
positive drive W11, which leads to faster recovery of the for-
ward velocity. We identify the Wi, term with internal recovery
dynamics of the reverse command interneurons whose molecu-
lar mechanisms of activity are only partially understood (33). The
velocity does not just relax to zero over some characteristic time,
but crosses back into the forward crawl once z; has decreased
sufficiently to reactivate the Wiz term. Overall, the model sug-
gests a number of neuronal correlates for its features. And where
there is no direct match between known worm biology and the
model, the model guides us to look for specific predicted fea-
tures, such as the neural and molecular mechanisms for sensing
both the heat stimulus and its recent average.

Another notable feature of the network diagram is that it is
similar to other well-known sensory networks, namely chemo-
taxis (and the related thermotaxis) in Escherichia coli (34, 35)
and chemotaxis in Dictyostelium discoideum (36, 37). In all these
cases, the current value of the stimulus is sensed in parallel to the
stimulus integrated over the recent time. They are later brought
together in a negative feedback loop (E. coli) or an incoherent
feedforward loop (D. discoideum), resulting in various adaptive
behaviors. In contrast, the worm’s behavior is more complicated:
The ambient temperature participates in a negative feedback
loop on the speed through W11, which results in adaptation. At
the same time, the integrated temperature (through Wiz) and
the current temperature add coherently to cause the escape in
response to both the temperature and its rate of change. This

40f6 | www.pnas.org/cgi/doi/10.1073/pnas.1816531116

illustrates the difference between sensing, when an organism
needs to respond to stimulus changes only, and escape, where
more complicated dynamics are needed.

Discussion

In this article, we have used modern machine learning to learn
the dynamics underlying the temperature escape behavior in
C. elegans. The resulting automatically inferred model is more
accurate than the model curated by hand. It uses the dynam-
ics within what is normally considered as discrete behavioral
states to make extremely precise verifiable (and verified) pre-
dictions about the behavior of the worm beyond the range of
time used for training. The model is fully interpretable, with
many of its features having direct biological, mechanistic equiva-
lents. Where such biological equivalents are unknown, the model
makes strong predictions of what they should be and suggests
what future experiments need to search for.

One can question whether describing the C. elegans nocicep-
tive behavior, which typically is viewed as stochastic (1, 2) and
switching between discrete states, with the deterministic dynam-
ics approach of Sir Isaac is appropriate. The quality of the fits
and predictions is an indication that it is. This is likely because
the dynamics of the mean behavior, which are modeled by Sir
Isaac, are deterministic even for a stochastic system. Further-
more, as the stimulus intensity increases, the entire escape, and
not just its mean, becomes more and more deterministic (1). In
this regime, the discretized behavior states (forward, backward,
pause, ...) have their own pronounced internal dynamics with
different time-dependent velocities. These dynamical changes
are comparable to differences between the states. That is, the
range of forward speeds is similar to the difference between
the mean forward and the mean backward speeds. Unlike most
probabilistic methods, Sir Isaac correctly models these dynamical
changes within and across the states.

Crucially, the model discovers that, at least in the context of
stimuli that are scalar multiples of the same single-pulse time
course, the behavior of an average worm is not a simple one-to-
one mapping of the input signal: The instantaneous stimulus and
its temporally integrated history (one latent variable) are both
important for driving the behavior. The behavior is driven by one
fixed point in the velocity-memory phase space, and the worm
changes its speed while chasing this fixed point, which in turn
changes in response to the stimulus. This is in contrast to other
possibilities, such as the worm being able to exhibit both the for-
ward and the backward motion at any stimulus value, and the
stimulus and its history merely affect the probability of engag-
ing in either of these two behaviors. In this initial study, we
have focused on explaining the first few seconds of the worm’s
response to a single heat pulse. Future experimental analysis
will reveal whether the same dynamical model also explains the
response to more complex temporal stimulus profiles, which
might include habituation and other longer-term phenomena.

We emphasize that our automatic phenomenological infer-
ence of dynamics of complex biological systems relies very little
on help from constraints imposed by knowledge of the underly-
ing biology. Indeed, the choice of the sigmoidal model hierar-
chy assumes only continuous dynamics without infinite rates of
change. The emphasis on interpretable, physical models allows
extrapolation well beyond the data used for training, which is dif-
ficult for purely statistical methods. The automation allows for a
comprehensive search through the model space, so that the auto-
matically inferred model is better than the human-assembled
one, especially when, as even for the best-studied biological
systems, we do not have the necessary set of measurements
to model them from the ground up. Our work illustrates the
power of a phenomenological modeling approach, which allows
for top—down modeling, adding interpretable constraints to our
understanding of the system.

Daniels et al.
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Table 2. Maximum-likelihood parameters for the model inferred
by Sir Isaac

Parameter Value

n 1335

2 —2.30 px/(s®>-mA)
Wi 81.0 px/s?
Wa -0.1s57"
v(t=0) 12.6 px/s
01 42.1 px/s
Vs, 1.7 (s mA)~!
Wi, 44.1 px/s?
Ws, 5.5 571
Xx2(t=0) 1.6

We do not calculate parameter covariances since posteriors are sloppy
(39) and non-Gaussian around the maximum likelihood. Instead we estimate
the SD of the fits themselves (Fig. 1A). Parameter values are reported to an
accuracy of about one digit beyond the least statistically significant one.

Materials and Methods

Data Collection. A detailed description of the experiments has been pre-
viously published (2). We raised wild-type, N2 C. elegans using standard
methods, incubated at 20 °C with food. Worms were washed to remove
traces of food and placed on the surface of an agar plate for 30 min at
20 °C to acclimatize. Worms were then transferred to an agar assay plate
seeded with bacteria (food) and left to acclimatize for 30 more minutes.
The worms were then stimulated with an infrared laser (2-mm beam diam-
eter) focused (100-mm focal length) to a diffraction-limited spot (~ 90 pm)
directed at the “nose” of the worm. The intensity of the stimulus was ran-
domized by selecting a laser current between 0 mA and 200 mA, with a
duration of 0.1 s. The laser pulses caused nearly instantaneous temperature
increases up to a maximum of 2 °C for our current range. Each worm was
stimulated only once and then discarded. A video of each worm's response
was recorded at 60 Hz and processed offline using custom LabVIEW and
MATLAB scripts.

Input Data. Data used for the inference are as described in ref. 2. Speed data
for 201 worms were extracted from video frames at 60 Hz and smoothed
using a Gaussian kernel of width 74.5 ms (SI Appendix). We use data
between 0.5 s before and 2.25 s after the start of the laser stimulus. Align-
ing the data by laser start time, the stimulus happens at the same time in
each trial. Naively used, this can produce models that simply encode a short
delay followed by an escape, without requiring the stimulus. To ensure that
instead the stimulus causes the response in the model, for each trial we add
a random delay between 0's and 1 s to the time data.

Additionally, we are not interested in capturing any dynamics in the
prelaser free-crawling state. If we use only the small amount of prelaser
data measured in this experiment, the inference procedure is free to include
models with complicated transient behavior before the stimulus. For this
reason, we include a copy of prelaser data at a fictitious “equilibration
time"” long before the stimulus time (10 s), artificially forcing the model to
develop a prestimulus steady state of forward motion. Finally, we weight
the prelaser data such that they appear with equal frequency as postlaser
data in fitting, so that the inference algorithm is not biased toward captur-
ing postlaser behavior more accurately than the prelaser one. Data used
in the work are available from figshare (https:/figshare.com/articles/Data_
and_Code_Archive_for_Automated_predictive_and_interpretable_inference_of_
C_elegans_escape_dynamics_/7806602).

Estimating Explainable Variance. The observed variance in worm speed can
be partitioned into that caused by the input (changes in laser current)
and that caused by other factors (individual variability, experimental noise,
etc.). As in ref. 2, we focus on our model’s ability to capture the former,
“explainable” variance. We treat the latter variance as “unexplainable” by
our model, and it is this variance that we use to define uncertainties on
data points for use in the inference procedure. We estimate these variances
by splitting the data into trials with similar laser current /,, (five bins), pro-
ducing variances ofL(t) that depend on the laser current bin and on the time
relative to laser start. For simplicity, we use a constant uncertainty for all
data points that is an average over laser current bins and times relative to
the stimulus onset, which is equal to o = 14.2 px/s. We use this uncertainty
when calculating the x? that defines the model's goodness of fit,

Daniels et al.

Np model _ ydata 2
o= (%) , 3]

i= g

where the index i enumerates data points used for the evaluation, Np is the
number of points, and © is the vector of all parameters.

An analogous goodness-of-fit measure can be calculated for the predic-
tions in Fig. 1 B and C, where we use bins corresponding to the displayed
orange circles. For predicting the duration of backward motion as a function
of laser current (Fig. 1B), Xz/dof: 1.12, and as a function of peak reverse
speed (Fig. 1C), x?/dof = 1.14.

Sir Isaac Inference Algorithm. We use the Sir Isaac dynamical inference algo-
rithm (8) to find a set of ordinary differential equations (ODEs) that best
describes the data without overfitting. Based on previous studies of sim-
ulated biological systems, we use the continuous-time sigmoidal network
model class, which produces a set of J ODEs of the form

J
% =—xi/7i + Vih(®) + > W £0x; + 0)), (4]
j=1
where £(y) = 1/(1 4+ exp(y)) and h(t) is the sensory input defined in Eq. 7.
The algorithm infers both the number of parameters (controlled by the
total number of dynamical variables J) and the parameter values themselves
(the timescales 7;, interaction strengths V; and Wj;, and biases 6;). Note that
the algorithm has the freedom to make use of linear or nonlinear parts
of the sigmoid function. The first dynamical variable x; is taken to be the
signed speed v of the worm's center of mass, measured in pixels per sec-
ond, with negative values corresponding to backward motion. The choice
of units for v defines a relevant scale v; = 1 px/s, which does not affect the
form of the equations, but which we include where necessary for a correct
interpretation of units. Further dynamical variables x; with i > 1 correspond
to latent (unmeasured) dynamical variables.

The fitting procedure starts by using one data point (one random time)
from each of a few trials and then gradually adds trials and eventually
multiple data points per trial, refitting model parameters at each step
(see Table 1 for algorithm parameters). The resulting model fits are scored
based on their performance in predicting the entire time series (see Fig. 4
for the fit quality). When the performance and model complexity of the
winning model saturate, we use the resulting model as our description
of the system. In this way, parameters are fitted using only a small sub-
set of the available data—we find that using ~2 randomly chosen time
points per trial (of the total 165) is sufficient (Fig. 4). This approach signif-
icantly reduces computational effort (which scales linearly in the number
of data points used) and minimizes the effects of correlations between
data points that are close to one another in time. Finally, it prevents
the optimization from getting stuck at local minima and saddles, which
change as new data points are added or data are randomized. These
reasons are similar to the reasons behind stochastic gradient descent ap-
proaches (38). The developed software is available from https:/github.com/
EmoryUniversityTheoreticalBiophysics/Sirlsaac.

Inferred models. The inference procedure produces the following differen-
tial equations:

dv v Wi Wi,
— =——+ Vi h(t ) 5
gt o ©+ 1+ exp(0r +v/ve) 1+ exp(xr) 51
dXZ X2 W21 sz
— =——+ VWV, h(t . 6
dt ) +V2ho+ 1+ exp(61 +v/vs) + 1+ exp(xz) t6l

The model includes one latent dynamical variable x,. The maximum-
likelihood fit parameters are shown in Table 2. (Note that the selected model

Table 3. Maximum-likelihood parameters for the reduced model

Parameter Value

™ 1335

Vi —2.30 px/(s®>-mA)
Wi 76.0 px/s?
v(t=0) 12.1 px/s

01 42.1 px/s

Vs 1.5 (s mA)~!
Wi 19.7 px/s?
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did not include variables 7, and 6,, so they are set to their default values:
7 =1sand 6, =0.)

We note that some of the inferred parameters are close to zero, and so
we check whether the model can be simplified by setting each of them to
zero one at a time and in combinations and then measuring the approxi-
mate Bayesian model selection posterior-likelihood score (8) for the original
Sir Isaac inferred model and for each of the reduced models. The origi-
nal model has log-likelihood —197.2, and the best model, Egs. 1 and 2,
has the highest Bayesian log-likelihood of —192.9. This becomes our cho-
sen model, maximum-likelihood parameters for which can be found in
Table 3.

Bayesian Model of Uncertainty. To quantify uncertainty in model struc-
ture and parameters, we take a Bayesian approach and sample from the
posterior distribution over parameters. Assuming independent Gaussian
fluctuations in the data used in fits, the posterior is simply exp(—xz(@)),
with x2(©) from Eq. 3. We use a standard Metropolis Monte Carlo sam-
pler, as implemented in SloppyCell (40), to take 100 samples (each sep-
arated by 1,000 Monte Carlo steps) used to quantify uncertainty in the
fit (Fig 1A).

Model of Sensory Input. Each experimental trial begins with a forward-
moving worm, which is stimulated with a laser pulse of duration 7o, =0.1s
starting at time t =0. The worm’s nose experiences a quick local tempera-
ture increase h(t), which we model as a linear increase during the pulse, with
slope proportional to the laser current /. The timescale of the temperature
decay of the heated area to the ambient temperature due to heat diffusion
is 0.15 s (41). However, the stimulation area is broad (220 um, FWHM), and
as the worm retreats, its head with the sensory neurons first moves deeper
into the heated area, before the temperature eventually decreases. Thus,
the dynamics of the sensory input are complex and multiscale. However,
since each individual behaves differently, and we do not measure individ-
ual head temperatures, we model the average sensory stimulus past the
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heating period as a single exponential decay with the longer timescale of
Tdecay = 0.25 st

0 t<0,
It/Ton 0<t< 7on, [71
lexp [—(t - Ton)/'rdecay] t> Ton-

h(t)/a=

Here « has units of temperature per unit of laser current. For convenience
and without loss of generality, we set =1 and absorb its definition into
the V; parameters that multiply h in Egs. 5 and 6, giving V; units of the time
derivative of x; per unit current.

Comparison to the Model of Ref. 2. A quantitative model of C. elegans noci-
ceptive response was constructed by hand in ref. 2. Contrasting with our
automated inference, the model was not fitted by optimizing parameters,
but rather includes the entire measured escape behavior as a templated,
stereotyped response. It was based on careful study of the data, which
revealed that the mean response of worms is nearly stereotypical, with the
response amplitude depending nonlinearly on the stimulus intensity. Of the
variability in the response that is explainable by the stimulus, the model of
ref. 2 could not account for ~20% in the range from a few hundred millisec-
onds to about 2 s poststimulation. Using Sir Isaac, with very little human
input, our selected model captures more of the data variance. It achieves
this using a model of a very different form (a set of coupled ODEs), leaving
only ~10% of the explainable variance unexplained over much of the same
time range, and it also captures the approximate stereotypy in the response
to the same accuracy as is present in the data (S/ Appendix, Fig. S1).
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