
The geometry of abstraction in hippocampus and pre-
frontal cortex
Silvia Bernardi∗2,3,8, Marcus K. Benna∗1,4,5, Mattia Rigotti∗7, Jérôme Munuera∗1,9, Stefano Fusi†1,4,5,6
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Abstraction can be defined as a cognitive process that finds a common feature - an abstract
variable, or concept - shared by a number of examples. Knowledge of an abstract variable
enables generalization, which in turn allows one to apply inference to new examples based
upon old ones. Neuronal ensembles could represent abstract variables by discarding all in-
formation about specific examples, but this allows for representation of only one variable.
Here we show how to construct neural representations that encode multiple abstract vari-
ables simultaneously, and we characterize their geometry. Representations conforming to
this geometry were observed in dorsolateral pre-frontal cortex, anterior cingulate cortex,
and the hippocampus in monkeys performing a serial reversal-learning task. These neural
representations allow for generalization, a signature of abstraction, and similar representa-
tions are observed in a simulated multi-layer neural network trained with back-propagation.
These findings provide a novel framework for characterizing how different brain areas repre-
sent abstract variables, which is critical for flexible conceptual generalization and deductive
reasoning.

High-level cognitive processing relies on the ability of the brain to represent information
about abstract variables, such as concepts, contexts, and rules. Knowledge of these types of ab-
stract variables enables one to use inference to generalize and immediately arrive at the value of
an abstract variable characterizing a new example1. New examples often can be linked to multi-
ple abstract variables; for example, a bottle of rare aged burgundy can be linked to the concept
of ”valuable” and to the concept of ”drinkable”. The capacity to generalize across multiple ab-
stract variables enhances cognitive and emotional flexibility, enabling one to adjust behavior in a
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more efficient and adaptive manner. However, a conceptual framework and corresponding data for
understanding how the brain represents simultaneously multiple variables in an abstract format -
i.e., how the brain can link a single example to multiple concepts simultaneously - has been elusive.

One possibility is that in representing an abstract variable in a population of neurons, all in-
formation about the specific examples is discarded while retaining only the combination of features
essential to the abstract variable. For example, the only information retained in an abstract format
could be the feature that all the instances belonging to a conceptual set have in common. However,
in this case, generalization applied to a new instance can only occur with respect to this encoded
abstract variable. The capacity to link a new example to multiple abstract variables simultaneously
promotes flexibility, but it would require neural populations to retain multiple pieces of informa-
tion in an abstract format. To investigate whether and how variables are represented in an abstract
format within a neural population, we targeted neurophysiological recordings to the hippocam-
pus, dorsolateral pre-frontal cortex (DLPFC) and anterior cingulate cortex (ACC) while monkeys
performed a serial reversal-learning task. In this task, monkeys utilized multiple task-relevant
variables to guide their operant behavior and reinforcement expectation. The task involved switch-
ing back and forth between two contexts, where the sets of stimulus-response-outcome mappings
(or contingencies) differed in each context. Knowledge of the variable context could be acquired
by using the temporal statistics of events (the sequences of trial types within each context). We
targeted the hippocampus because it has long been implicated in generating episodic associative
memories 2–4 that could play a central role in creating and maintaining representations of variables
in an abstract format. Indeed, studies in humans have suggested a role for the hippocampus in the
process of abstraction 5. We also targeted two parts of PFC due to its established role in encoding
rules and other cognitive information 6–10. Although signals representing abstract cognitive vari-
ables have been described in PFC 7, 9–11, prior studies have not tested explicitly whether multiple
variables are represented in an abstract format within a population of neurons.

Neurophysiological recordings showed that multiple task-relevant variables, including con-
text, operant response, and reinforcement outcome, were represented simultaneously in an abstract
format in hippocampus, DLPFC, and ACC. This abstract format was revealed by an analysis of
the geometry of the representations, which is characterized by the arrangement of the points rep-
resenting different experimental conditions in the firing rate space for all recorded neurons. In this
firing rate space, the parallelism of the coding directions for multiple variables was significantly
enhanced compared to a random unstructured geometry in which abstraction does not occur. The
observed geometry also enables generalization across conditions within the recorded neural popu-
lations in all three brain areas, a signature of abstraction. A multi-layered neural network trained
with back-propagation revealed a similar capacity for generalization that was related to the emer-
gence of parallel coding directions in the geometry of the representations. These results provide a
conceptual and mechanistic framework for understanding how the brain can relate a single example
to multiple abstract variables simultaneously within a population of neurons.

Monkeys demonstrate utilization of inference to adjust their behavior We designed a serial-
reversal learning task in which switches in context involve un-cued and simultaneous changes
in operant and reinforcement contingencies for each of four images. In other words, two dis-
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Figure 1: Task design and behavior. a. Sequence of events within a trial. A monkey holds down a press
button, then fixates, and then views a fractal image (discriminative stimulus). A delay interval follows image
viewing during which the operant response (hold or release the press button, respectively indicated as H or
R) must be performed. A liquid reward is then delivered for correct responses to 2 of the 4 images. b.
Task scheme. In each of the 2 contexts, correct responses result in reward for 2 of the images, and no
reward for the other 2 images (plus or minus). Operant and reinforcement contingencies are unrelated, so
neither operant action is linked to reward per se. Monkeys switch back-and-forth between contexts many
times in each experiment. A different colored frame (red or blue) for each context appears on the edges of
the monitor on 10 percent of the trials and only on specific image types (image C for context 1 and image
D for context 2) although never in the first five trials following a contextual switch. c. Monkeys utilize
inference to adjust their behavior. Average percent correct is plotted for the first presentation of the last
image presented before a context switch (”Last”) and for the first instance of each image after the context
switch (1-4). Binomial parameter estimate, bars are 95% Clopper-Pearson confidence intervals d. Average
percent correct performance plotted as a function of trial number when aligning the data to the first correct
trial where the monkey utilized inference (circled in red). Performance remains at asymptotic levels once
evidence of inference is demonstrated.
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tinct sets of stimulus-response-outcome mappings exist implicitly, one for each context. Correct
performance for two of the stimuli in each context requires releasing a button after stimulus dis-
appearance; for the other two stimuli, the correct operant response (action) is to continue to hold
the button (Figure 1a,b). For half of the trials, correct performance results in reward delivery; for
the other half of the trials, correct performance avoids having to repeat the trial but does not result
in reward receipt (Figure 1b). Neither operant response is associated with reward, as the reward
contingencies of the trials are orthogonal to the operant contingencies. Without warning, randomly
after 50-70 trials, the operant and reinforcement contingencies switch to the other context; contexts
switch many times within an experiment.

On average, the monkeys’ performance drops to significantly below chance immediately af-
ter a context switch, as the change in contingencies is un-cued (see image number 1 in Fig. 1c). In
principle, monkeys could simply re-learn the correct stimulus-action associations for each image
independently after every context switch. Behavioral evidence indicates that this is not the case
because the monkeys perform inference. After a context switch, as soon as they have experienced
the changed contingencies for one or more stimuli, on average they infer that the contingencies
have changed for the stimuli not yet experienced in the new context, as reflected by performance
significantly above chance for these stimulus conditions where inference could be applied (see im-
age numbers 2-4 in Fig. 1c). As soon as monkeys exhibited evidence of inference by performing
correctly on a trial’s first appearance after a context switch, the monkeys’ performance was sus-
tained at asymptotic levels for the remainder of the trials in a context (Fig. 1d).

The observation that monkeys can perform inference suggests that the different stimulus-
action-outcome associations of the same context are somehow linked together. The observed be-
havior can be explained in at least two ways. First, monkeys could simply remember the stimulus-
action-outcome of the previous trial and then use this information to select the action in response
to the stimulus of the current trial. This strategy essentially uses memories of the sequences of tri-
als that occur within the experiment, and it could explain all the aspects of the behavior described
above, including inference. However, this strategy is not the most efficient in terms of memory
resources, as it requires learning and storing 32 different trial sequences (4 stimuli multiplied by
the 8 possible stimulus-action-outcome combinations of the previous trial). The second possibility
entails that monkeys create a new abstract variable that pools together all the stimulus-response-
outcome combinations (instances) that are present within each context, to create representations of
the two contexts. This process of abstraction results in dimensionality reduction, as it reduces the
number of entities to be remembered from 32 (in the first strategy) to 8 (4 stimuli that could be
presented on the current trial multiplied by two contexts).

Decoding context and other task-relevant variables from neural activity Examination of the
observed behavior itself is not sufficient to understand how the brain enables monkeys to perform
this task, because, as we just discussed, the behavior is consistent with at least two strategies. To
understand the neural mechanisms underlying the observed behavior, we first sought to determine
which task-relevant variables were represented in the neuronal populations recorded. We measured
the activity of 1378 individual neurons in the PFC and hippocampus in two monkeys while they
performed our task. Of these, 629 cells were recorded in hippocampus (HPC, 407 and 222 from
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Figure 2: Population level encoding of task related variables. a-e. Performance of a linear decoder plotted
a function of time relative to image onset for classifying a task-relevant variable. a. Context on the current
trial. b. Reinforcement outcome on current (left) and prior (right) trials. c. Operant action on current (left)
and prior (right) trials. The decoding performance was computed in a 500-ms sliding window stepped every
50 ms across the trial for the three brain areas separately (blue, HPC; red, ACC; green, DLPFC). Dashed
lines around chance level indicate 97.5 percent confidence intervals obtained by shuffling trials 1000 times
(bootstrap). The image is displayed on the screen from time 0 to 0.5 sec. Analyses were run only on correct
trials at least 5 trials after a context switch.
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Figure 3: Abstraction by clustering. a) Schematic multi-dimensional scaling plot (MDS dimensionality re-
duction) of artificially generated data in which the mean firing rates corresponding to the eight experimental
conditions are clustered according to context. The two contexts are indicated by the colors red and blue,
while the eight conditions are labeled by the stimulus identity (A,B,C or D), the value of the stimulus in
the present context (plus or minus), and the required operant action (R or H, for release or hold). Due to
the clustering, the average within-context distance is shorter than the mean between-context distance. b)
Abstraction index for the context dichotomy (ratio of average between-context distance to average within-
context distance using a simple Euclidean metric) for the z-scored neural firing rates recorded from HPC,
DLPFC and ACC, averaged over a time window of -800ms to 100ms relative to stimulus onset. The error
bars are plus/minus two standard deviations around chance level (unit abstraction index), obtained from a
shuffle of the data.

each of the two monkeys, respectively), 335 cells were recorded in ACC (238 and 97 from each of
the two monkeys), and 414 cells were recorded in the DLFPC (226 and 188 from the two monkeys).
We used a linear decoder applied to the populations of neurons recorded from each area separately
to assess the degree to which task-relevant variables were represented (see Methods). Information
about context was decoded with high accuracy in all three brain areas (Fig. 2a). In particular,
context could be decoded in the time interval preceding the stimulus presentation, indicating that
information about context was available as soon as an image appeared, which is when it is needed
to make a decision about the operant action to perform and the reinforcement to expect. In the same
time interval, it was also possible to decode the action and the value of the previous trial (Fig. 2b,c
right panels), indicating that not only context is encoded, but also the specific instances of response
and outcome from the last trial. Information about context is sustained in the representations
throughout the current trial as well, but the representations of operant action and expected outcome
for the current trial do not emerge until shortly after image onset (Fig. 2b,c left panels).

Clustering abstraction The capacity to decode context from a neuronal population does not im-
ply that the representation is in an abstract format. For example, consider the first strategy we
described, in which monkeys rely on what happened in the previous trial to decide their action.
In this strategy, the neural activity in the interval preceding the visual stimulus must represent the
sequence of events of the previous trial for which there were 8 possible combinations of stimulus,
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action and reinforcement outcomes. There are many situations in which a simple linear decoder
can decode context from the activity of a neuronal population. For example, when the 8 conditions
correspond to 8 random patterns, it is very likely that for a sufficient number of neurons, the 4
conditions corresponding to one context are separable from the 4 conditions of the other context.
This is true also in the case in which there is a cloud of points for each condition 12. Hence, a
simple linear decoder can extract the information about context from neural activity. Nevertheless,
random representations are obviously not abstract, and they would not permit generalization across
conditions.

To understand which features of the neural representations can enable generalization, it is
instructive to consider the geometry of the firing rate space (see Fig. 3a for an example of simu-
lated data). In this space, each coordinate axis is the firing rate of one neuron, and hence, the total
number of axes is as large as the number of recorded neurons. To visualize this space, we will use
a standard dimensionality reduction technique (multi-dimensional scaling, MDS). For each of the
8 conditions, we plot the simulated average firing rate in a 900 ms interval that starts 800ms before
the visual stimulus, and determine the coordinates of the corresponding point. The geometry of
the representation is defined by the arrangement of these points in the firing rate space. One simple
way to achieve abstraction of context is to retain only the information about the context and dis-
card the information about the specific instances that correspond to the particular combinations of
stimulus, action and reinforcement outcome of the previous trial. In this case, the 4 points corre-
sponding to context 1 would coincide in the firing rate space, or more realistically, in the presence
of noise they would cluster around a single point. The other 4 points, for trials occurring in context
2, would constitute a different cluster (blue indicates context 1 and red context 2). As we will see
later, this is not the only possible geometric format that can allow for abstraction, but it provides a
representation that is disassociated from specific instances, since patterns of firing rates are similar
for all the conditions within a context, despite the fact that these conditions differ for other vari-
ables (e.g. operant action or reinforcement outcome). Importantly, clustering leads to a geometric
arrangement that permits generalization. Indeed, a readout trained to decode context from a small
subset of clustered points will generalize right away to all the other points, if the noise is not too
large. This is a fundamental property of abstraction that has already been discussed in 11 and that
we will study in detail below.

The degree of clustering in a neural representation can be characterized by comparing the
distances of points within a cluster to the distances of points across clusters for the points in the
firing rate space that correspond to the 8 conditions. This method has been suggested in 5, where
abstraction was studied in an fMRI experiment. The authors reported that in an experiment similar
to this one, the intra-context distance was significantly shorter than the inter-context distance in
the hippocampus (our ”contexts” are analogous to their ”communities”). We performed the same
analysis on our data, focusing on the 900 ms interval that starts 800ms before image onset, and
found that the difference between inter-context distances and intra-context distances is larger in the
HPC than in DLPFC or ACC (Fig. 3b). In DLPFC and ACC the degree of clustering is only barely
different from that predicted by a non-abstract random model, i.e., a situation in which the 8 points
corresponding to the 8 conditions are at random locations in the firing rate space (see Methods
for an exact definition). However, this analysis can be misleading. As we will show below, it is
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possible to construct abstract representations in which the intra-context distances are comparable
to the inter-context distances. Furthermore, some geometric arrangements offer the computational
advantage that they can encode multiple abstract variables simultaneously. To illustrate this, we
will first visualize the recorded representations using MDS and then, taking inspiration from these
visualizations, we will construct neural representations that encode multiple abstract variables. Fi-
nally, we will show that the geometry of these representations conforms to the geometry of the
observed neural representations.

Visualizing the geometry of recorded representations Neural activity was recorded from hun-
dreds of neurons, and we visualized the firing rate space by using MDS to reduce the dimen-
sionality of the data to three (see Methods for more details). Like other dimensionality reduction
methods, MDS is a useful visualization tool, but it provides only an approximate depiction of the
original high-dimensional data. In Figure 4 we show the MDS plots for all three brain areas, using
the same notation as in Figure 3a. In the hippocampus (HPC) the red and the blue points, which
represent the two contexts, are well separated, as expected from the clustering analysis. However,
it is clear that also in this case the intra-context distances are not negligible and that the points
within the clusters are nicely organized (e.g. the rewarded and non-rewarded conditions are well
separated – this organization is particularly evident in the movies in the Supplementary Material,
in which these plots can be viewed from many different angles). This type of structure is even
more prominent in the DLPFC and ACC, where the intra-context distances are comparable to the
inter-context distances. Moreover, the movies in the Supplementary Material suggest that the four
points of each context are contained in a low-dimensional subspace, almost a plane. The planes
corresponding to the two contexts are approximately parallel. These plots suggest that there might
be a different geometry that underlies abstraction and is not captured by clustering. Taking in-
spiration from the plots of Figure 4, we now construct a simple geometry in which an abstract
variable can be encoded without clustering and hence without sacrificing the possibility of encod-
ing other variables. This construction can be extended to the case of multiple variables encoded in
an abstract format.

Beyond clustering: constructing neural representations that encode multiple abstract vari-
ables To construct neural representations that encode multiple abstract variables, it is useful to
start from the simple example that we illustrate in Figure 5. These plots depict the geometry of a
representation in the original firing rate space (not the MDS projection) where the neuronal pop-
ulation includes only three neurons, with each axis representing the activity of one neuron. In
Figure 5a we constructed a geometry in which the firing rate f3 of the third neuron in the interval
preceding image onset depends only on context and not the stimulus identity, operant action or
value of the previous trial. This explains why the points of the two contexts lie on two parallel
planes that are orthogonal to the 3rd axis. The other two neurons encode the other task-relevant
variables as strongly as the third neuron encodes context. As a result, intra-context distances are
comparable to inter-context distances. Nevertheless, an abstract representation of context is clearly
embedded in this geometry because the third neuron encodes only context and throws out all other
information.
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Figure 4: The geometry of neural representations. Multi-dimensional scaling plots (using Euclidean dis-
tances on z-scored spike count data in the 900 ms time window that starts 800ms before stimulus onset)
showing the dimensionality-reduced firing rates for different experimental conditions in three brain areas
we recorded from: HPC, DLPFC and ACC. The labels are as in Fig. 3a, with value (+/-) and operant action
(R/H) corresponding to the previous trial. While there is a fairly clean separation between the two context
sub-spaces, clearly other variables are encoded as well and the representations are not strongly clustered.
Note that the context sub-spaces appear to be approximately two-dimensional (i.e., of lower dimensionality
than expected for four points in random positions).

The simple example depicted in Fig. 5a does not reflect the geometry observed in our dataset,
because the third neuron is assumed to encode context only, and we rarely observe that a neuron
is so highly specialized (see Supplementary Information S1). However, we can preserve all the
generalization properties of the representation of Figure 5a even when we rotate it (see Figure 5b).
This means that context is still an abstract variable, even though all neurons may now respond to
multiple task-relevant variables.

To construct a representation that encodes multiple abstract variables, we start from a rep-
resentation similar to the one of Figure 5a in which neurons 1 and 2 are also specialized. For
example, neuron 1 could respond only to the outcome and neuron 2 only to the action of the previ-
ous trial. Now consider the case in which this representation is rotated; now all neurons respond to
more than one task-relevant variable, and, more specifically, they exhibit linear mixed selectivity
13, 14 to context, operant action and reward value. Moreover, both action and value are also abstract,
as illustrated in Figure 5c, where we show the exact same geometry of Figure 5b, but highlight
how it encodes also the value of the previous trial in an abstract format. Indeed, all the points
corresponding to the rewarded conditions are contained in the yellow plane, and the non-rewarded
points are in the gray plane. These two planes are parallel to each other, just like the ones for the
different contexts in Figure 5b. Using a similar construction, it is possible to represent as many ab-
stract variables as the number of neurons in a population that can be read out. However, additional
limitations would arise from the amount of noise that might corrupt these representations.

We will now show that the recorded neural representations are likely implementing an en-
coding strategy very similar to the one we have just illustrated. In order to demonstrate this, we
revert to the original high-dimensional representations and show that the observed geometry in that
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Figure 5: A neural code for multiple abstract variables. a. Schematic of the firing rate space of three
neurons, of which one is specialized for encoding context (f3 axis). The other neurons encode different
variables. The points of each context are in one of the two low-dimensional manifolds (planes in this
case) that are parallel. Neurons that are highly specialized to encode only context are rarely observed in
the data (see Suppl. Info. S1). b. The same neural representation geometry as in a, but rotated in firing
rate space, leads to linear mixed selectivity. Even though there are no longer any neurons specialized to
encode only context, in terms of decoding as well as generalization using linear classifiers, this case is
equivalent to that shown in panel a. c. The same neural geometry as b, but with planes depicted that
highlight the encoding of reward value. Data points corresponding to the same value fall within a plane,
just as data points corresponding to the same context fall within a plane in the previous panel. d. Schematic
explanation of cross-condition generalization (CCG) in the simple case of only four experimental conditions,
labeled according to context (red versus blue) and value of the stimulus (a yellow ring indicates a rewarded
condition). We can train a linear classifier to discriminate context on only two of the conditions (one from
each context, in the case shown the rewarded conditions), and then test its generalization performance on the
remaining conditions not used for training (here the unrewarded conditions). The resulting test performance
will depend on the choice of training conditions, and we refer to its average over all possible (in this case
four) ways of choosing them as the cross-condition generalization performance (CCGP). A CCGP that
is above chance level would indicate that the neural representation of a given variable is in an abstract
format because it enables generalization. e. Schematic explanation of the parallelism score (PS). Training
a linear classifier on the two rewarded conditions leads to the gray separating hyperplane which is defined
by a weight vector orthogonal to it. Similarly, training on the unrewarded conditions leads to the black
hyperplane and weight vector. If these two weight vectors are close to parallel, the corresponding classifiers
are more likely to generalize to the other conditions not used for training. In the case of isotropic noise
around the two training conditions, these weight vectors will be proportional to the (context) coding vectors
connecting the mean neural activities of the training conditions across the context divide. Therefore, instead
of training classifiers we can look directly at the angle between these coding vectors, and define a parallelism
score as the cosine of the angle between the coding vectors (maximized over all possible ways of pairing up
the conditions; see Methods for details and generalization to eight conditions).
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Figure 6: Neural representations of multiple abstract variables simultaneously. Data from all three brain
areas reveal that the cross-condition generalization performance (CCGP) for a variable reflects the paral-
lelism score (PS) that describes the geometry of neural representations. a. CCGP for the context, value and
action of the previous trial for all three brain areas from which we recorded. Note that CCGP does not only
rely on the rarely observed specialized neurons that encode only one variable (see Fig. S2). b. PS for the
same variables. Note that according to both of these measures context and value are abstractly represented
in all three brain areas, but action is abstract only in prefrontal cortex. c. Decoding performance of the three
variables using maximum margin linear classifiers on the average firing rates in the same time interval. Even
though the operant action is not abstractly represented in the hippocampus, it can still be decoded with a
cross-validated performance significantly above chance level by a simple linear classifier. All data presented
were obtained from correct trials in a -800ms to 100ms time window relative to stimulus onset. See Methods
for details of the selection criteria for trials used and for neurons retained for these analyses. All error bars
are ± two standard deviations around chance level as obtained from a geometric random model (panel a) or
from a shuffle of the data (panels b and c).

space provides a means of representing multiple abstract variables simultaneously.

Cross-condition generalization as a signature of abstraction and the parallelism score Fig-
ure 5d provides an example for how the geometry of neural representations can be related to the
ability of a linear readout to easily generalize for multiple variables simultaneously (context and
value), which is a fundamental property of abstraction. To illustrate how a linear readout can gen-
eralize, consider for simplicity only a subset of four of the eight conditions in our experiments,
where two trial types come from each of contexts 1 and 2, and only one of the trial types in each
context is rewarded. We can train a decoder to classify context only on the conditions in which
the monkey received a reward in the previous trial. Thanks to the arrangement of the four points,
the resulting hyperplane (gray line in Figure 5d) successfully classifies context when testing on the
other two conditions, in which the monkey did not receive reward. This corresponds to general-
ization, and it is a signature of abstraction. In other words, if a decoder is trained on a subset of
conditions, and it immediately generalizes to other conditions, without any need for retraining, we
conclude that a variable is represented in an abstract format (one that enables generalization). In
order to determine whether the data exhibits the geometry of Figure 5, which supports generaliza-
tion and therefore abstraction, we can directly test the ability to generalize by following the same
procedure illustrated in Figure 5d: we can train a decoder on a subset of conditions and test it on
the other conditions. We define the performance of the decoder on these other conditions as the
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cross-condition generalization performance (CCGP).
We hypothesized that a specific aspect of the geometry of neural representations may ac-

count for generalization performance: the degree to which the coding directions determined when
training a decoder are parallel for different sets of training conditions. Consider the case depicted
in Figure 5e. Here we draw the two hyperplanes (which are lines in this case) obtained when a
decoder is trained on the two points on the left (the rewarded conditions, gray) or on the two points
on the right (unrewarded conditions, black). The two lines representing the hyperplanes are almost
parallel, indicating that this geometry will allow good generalization regardless of which pair of
points we train on.

One way to estimate to what extent these hyperplanes are aligned is to examine the coding
directions (the arrows in the figure), which are orthogonal to the them. For good generalization,
these coding directions should be as close to parallel as possible. This is the main idea behind
the parallelism score (PS), a measure described in detail in the Methods. A large PS indicates a
geometry likely to permit generalization and therefore the corresponding variable would be repre-
sented in an abstract format. When multiple abstract variables are simultaneously represented, the
PS should be large for all variables, constraining the points to approximately define a geometry
of the type described in Figure 5a,b. As the PS focuses on parallelism between coding directions,
it can detect the existence of abstract variables even when the neurons are not specialized, or, in
other words, when the coding directions are not parallel to the coordinate axes.

In Figure 6 we report both the CCGP and PS measured in the three areas during the 900
ms time interval that starts 800 ms before the presentation of the visual stimulus (see Methods
for more details). The CCGP analysis reveals that context is abstract in all three areas, and the
level of abstraction is more comparable across brain areas than suggested by the analysis shown
in Figure 3b, where the abstraction index for DLPFC and ACC was more similar to values com-
puted from a random model. In fact, all three variables are represented in an abstract format in
all three areas, except the action of the previous trial in the hippocampus. Interestingly, the action
can be decoded in HPC (see Figure 6c), even if it is not abstract. Remarkably, the PS exhibits a
pattern very similar to the CCGP, indicating a direct correspondence between the geometry of rep-
resentations and generalization. In conclusion, this analysis shows that multiple abstract variables
are encoded in the populations of neurons recorded from each of the brain areas that we recorded
from. Moreover, the geometry of these representations is similar to the one that we described in
the previous section.

Abstraction in multi-layer neural networks trained with back-propagation Next we asked
whether a simple neural network model trained with back-propagation would exhibit the same
geometry as observed in the experiments. Back-propagation algorithms are popular in machine
learning and have proven successful in many real world applications. We trained a two layer net-
work (see Figure 7a) using back-propagation to read an input representing a handwritten digit
between 1 and 8 (MNIST dataset) and to output whether the input digit is odd or even, and, at
the same time, whether the input digit is large (> 4) or small (< 5) (Figure 7b). We wanted to
test whether the learning process would lead to abstract representations of two concepts: parity
and magnitude (i.e., large or small). This abstraction process is similar to the one studied in the
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experiment in the sense that it involves combining together inputs that are visually very dissimilar
(e.g. the digits ‘1’ and ‘3’, or ‘2’ and ‘4’). Analogously, in the experiment, very different sequences
of events (visual stimulus, operant action and value) are combined together into what we defined
as contexts.

After training the network, we presented inputs that were not used for training, and we
‘recorded’ the activity of the two hidden layers. The multidimensional scaling plots, similar to
those of Figure 4 for the real data (but reduced to two dimensions), are shown in Figure 7c for
the input layer and for the two hidden layers of the simulated network. Each digit in these plots
represents a different input. They are colored according to the parity/magnitude task illustrated in
Figure 7b. While it is difficult to detect any structure in the input layer (the slight bias towards red
on the left side is mostly due to the similarity between ‘1’s and ‘7’s), in the second hidden layer we
observe the type of geometry that would be predicted for a neural representation that encodes two
abstract variables, namely parity (even digits on the left, odd digits on the right), and magnitude
(large at the top, small at the bottom). The digits tend to cluster at the four vertices of a square,
which is the expected arrangement.

Just as in the experiments, we computed both the CCGP and the PS. We analyzed these two
quantities for all possible dichotomies of the eight digits, not just for the dichotomies correspond-
ing to magnitude and parity. This corresponds to all possible ways of dividing the digits in two
equal size groups. In Figure 7d,e we ranked these dichotomies according to their CCGP and their
PS, respectively. The largest CCGP and PS correspond to the parity dichotomy, and the second
largest values correspond to the magnitude dichotomy (circles marked by crosses in Figure 7d,e).
For these two dichotomies, both the CCGP and the PS are significantly different from those of
the random models. There are other PS values that are significant. However, they correspond to
dichotomies whose labels are correlated with one or both of the two trained dichotomies. If one re-
stricts the analysis only to the dichotomies orthogonal to both of them (filled circles in Figure 7d,e),
none are significantly above chance level. This analysis shows that the geometry of the neural rep-
resentations in the simulated network is similar to that observed in the experiment. Furthermore,
the CCGP and the PS can identify the dichotomies that correspond to abstract variables even when
one has no prior knowledge about these variables. Indeed, it is sufficient to compute the CCGP and
the PS for all possible dichotomies to discover that parity and magnitude are the abstract variables
in these simulations.

Discussion The cognitive process that finds a common feature - an abstract variable - shared by a
number of examples or instances is called abstraction. Abstraction enables one to utilize inference
and deduce the value of an abstract variable when encountering a new example. Here we devel-
oped a general method for determining when a variable is represented in an abstract format. We
constructed neural representations that allowed multiple variables to be represented in an abstract
format simultaneously. These representations are characterized by a specific geometry within the
firing rate space. This geometry can be recognized by measuring either one of two quantities: the
cross-condition generalization performance, which is directly related to the ability of a linear read-
out to generalize, and the parallelism score, which considers the angles between coding directions
for any given variable.
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In our experiments, monkeys performed a serial reversal learning task in which they switch
back and forth between two contexts. Both cross-condition generalization and the parallelism
score revealed that the task-relevant variable “context” is represented in an abstract format in HPC,
DLPFC and ACC. Moreover, multiple abstract variables were represented simultaneously, as our
measures of abstraction revealed that all the recorded brain areas actually represent at least two
abstract variables (context, action and reward value of the previous trial in DLPFC and ACC, and
context and value of the previous trial in HPC). We then showed that simple neural network models
trained with back-propagation or with reinforcement learning algorithms exhibit the same neural
geometry that we observed in the data, suggesting that this geometry may be a general feature
underlying how abstract variables are represented in the brain.

During the performance of the serial reversal learning task, the provision of a neural repre-
sentation of context when a stimulus appears enables monkeys to know which operant action to
perform. The value and action of the previous trial are also represented in all three brain areas, but
they are actually not needed for the next trial if the animal did not make a mistake. However, at
the context switch, the reward received on the previous trial is the only feedback from the external
world that indicates that the context has changed. Therefore, reward value is essential when adjust-
ments in behavior are required. Moreover, monkeys occasionally make mistakes that are not due
to a context change. To discriminate between these occasional errors and those due to a context
change, information about value is not sufficient and information about the previously performed
action could be essential for deciding the motor response on the next trial. Thus there is a clear
benefit in retaining information about the value and action of the previous trial, and we find that

Figure 7 (following page): Simulations of a multi-layer neural network reveal that the geometry of the ob-
served neural representations can be obtained with a simple model. a. Diagram of the network architecture.
The input layer receives gray-scale images of MNIST handwritten digits with 784 pixels. The two hidden
layers have 100 units each, and in the final layer there are two pairs of output units corresponding to two
binary variables represented by a concatenation of two one-hot vectors. b. Schematic of the two discrimina-
tion tasks. The network is trained using back-propagation to simultaneously classify inputs (we only use the
images of digits 1-8) according to whether they depict even/odd and large/small digits. The colors indicate
the parity and the shading the magnitude of the digits (darker for smaller ones). c. Two-dimensional MDS
plots of the representations of a subset of images in the input (pixel) space, as well as in the first and second
hidden layers. While in the input layer there is no structure apart from the accidental similarities between the
pixel images of certain digits (e.g. ones and sevens), in the first and even more so in the second layer a clear
separation between digits of different parities and magnitudes emerges in a geometry with consistent and
approximately orthogonal coding directions for the two variables, which suggests a simultaneously abstract
representation for both variables. d. Cross-condition generalization performance (CCGP, green) for the
variables corresponding to all possible balanced dichotomies when the second hidden layer is read out. The
dichotomies are ranked according to the strength of their CCGP. Only the two dichotomies corresponding
to parity and magnitude are significantly different from a geometric random model (chance level is 0.5 and
the two solid black lines indicate plus/minus two standard deviations). The decoding performance (purple)
is high for all dichotomies, and hence inadequate to identify the abstract variables. e. Same as panel d, but
for the parallelism score (PS), with error bars obtained from a shuffle of the data. Both the CCGP and PS
allow us to identify the correct abstract variables.
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this information can also be represented in abstract format. Conceivably, these abstract representa-
tions may also afford the animal more flexibility in learning and performing other tasks. Consistent
with this, previous work has shown that recent history is represented whether it is task-relevant or
not (see e.g. 15, 16), even when it can degrade the performance of the animal 17. This degradation
may affect the specific task studied in the experiment, but the memory trace causing it might be
beneficial in other scenarios that are closer to real-world tasks.

Our analysis showed that DLPFC and ACC represent more variables in an abstract format
than hippocampus, as the action of the previous trial is in an abstract format only in DLPFC and
ACC. This may reflect the prominent role of pre-frontal areas in supporting working memory (see
e.g. 18–20). Moreover, the fact that the hippocampus represents fewer variables in an abstract format
as characterized by the parallelism score and cross-condition generalization explains why if one
only considers clustering as a signature of abstraction, context is strongly identified as being in an
abstract format only in the hippocampus (see Figure 3). However, our novel methods reveal that
pre-frontal cortex also represents context in abstract format. In general, detecting abstract vari-
ables becomes more difficult as their number grows, since this increases the dimensionality of the
sub-spaces encoding different values of each abstract variable. In this case, one therefore requires
more samples in order to generalize, which affects the statistics of the cross-condition generaliza-
tion performance.

Context, action and value of the previous trial can all be represented in an abstract format
in the recorded areas, but context is particularly interesting because it is not explicitly represented
in the sensory input, nor in the motor response, and hence it requires a process of abstraction
(learning) based on the temporal statistics of sequences of stimulus-response-outcome associa-
tions. However, it is important to stress that learning may also be required for creating abstract
representations of more concrete variables, such as action, which corresponds to a recent motor
response, or value, which encodes a sensory experience, namely recent reward delivery.

Abstraction in Reinforcement Learning Techniques based on abstraction are an important ac-
tive area of research in Reinforcement Learning (RL), and fertile ground for solution strategies
to cope with the notorious “curse of dimensionality”, i.e., the exponential growth of the solution
space of a problem with the size of the encoding of its states 21. Most abstraction techniques in RL
can be divided in two main categories: temporal abstraction and state abstraction.

Temporal abstraction is the workhorse of Hierarchical Reinforcement Learning 22–24 and is
based on the notion of temporally extended actions (or options): the idea of enriching the reper-
toire of actions available to the agent with “macro-actions” composed of conditional sequences of
atomic actions built to achieve useful sub-goals in the environment. Temporal abstraction can be
thought of as an attempt to reduce the dimensionality of the space of action sequences: instead of
having to compose policies in terms of long sequences of actions, the agent can select options that
automatically extend for several time steps.

State abstraction methods rely on the idea of simplifying the representation of the domain ex-
posed to the agent by hiding or removing information about the environment that is non-critical to
maximize the reward function. Typical techniques involve information hiding, clustering of states,
and other forms of domain aggregation and reduction 25. Recently, the use of neural networks as
function approximators to represent value functions and policies has come to the fore as a versatile
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and powerful state abstraction method to mitigate the curse of dimensionality in high-dimensional
domains.

A particularly well-known example is the deep Q-network of 26, which employed a deep neu-
ral network representation of the Q-function of an agent trained using a combination of temporal-
difference learning and back-propagation. The deep Q-network architecture was successfully
trained to play 49 different Atari games, merely based on the set of pixels on the screen and the
game score. The success of this type of techniques relies on the capability of deep neural networks
trained with back-propagation to efficiently reduce the dimensionality of their inputs and implicitly
identify the relevant features providing a useful description of the states of the environment.

Dimensionality of abstract neural representations Dimensionality reduction is widely em-
ployed in many machine learning applications and data analyses because, as we have seen, it leads
to better generalization. In our theoretical framework, we constructed representations of abstract
variables that are indeed relatively low-dimensional, as the individual neurons exhibit linear mixed
selectivity 13, 14. In fact, these constructed representations have a dimensionality that is equal to the
number of abstract variables that are simultaneously encoded. Consistent with this, the neural rep-
resentations recorded in the time interval preceding the presentation of the stimulus are relatively
low-dimensional, as expected (Supplementary S2). A previous analysis of prefrontal cortex record-
ings in a different experiment 13 showed that in DLPFC neural representations can exhibit maximal
dimensionality. A more recent analysis of neural data from rodents also showed that the dimen-
sionality of the neural representations is high 27. However, dimensionality is not a static property
of neural representations; in different epochs of a trial, dimensionality can vary significantly. Di-
mensionality has been observed to be maximal in a time interval in which all the task-relevant
variables had to be mixed non-linearly to support task performance 13. Here we analyzed a time
interval in which the variables that are encoded do not need to be mixed. In this time interval,
the most relevant variable is context, and encoding it in an abstract format can enhance flexibility
and support inference. However, during the presentation of the stimulus, the dimensionality of the
neural representations increases significantly (Supplementary S2), indicating that the context and
the current stimulus are mixed non-linearly later in the trial, similar to prior observations 13, 14, 27, 28.
Finally, we should emphasize that the data presented here might reflect intermediate regimes in
which the coding directions are not perfectly parallel. Distortions of the idealized geometry can
significantly increase dimensionality, providing representations that preserve some ability to gen-
eralize, but at the same time providing representations that can support operations requiring higher
dimensional representations (see Supplementary Information S4).

Characterizing brain areas by analyzing the geometry of neural representations Histori-
cally, brain areas have been characterized by describing what task-relevant variables are encoded,
and by relating the encoding of these variables to behavior either by correlating neural activity
with behavioral measures or by perturbing neural activity to assess the necessity or sufficiency
of the signals provided by the brain area. Here we provide a method that goes beyond variable
encoding and instead emphasizes the importance of examining the geometry of neural representa-
tions to determine if a representation reflects a process of abstraction. As we discussed, random
representations can encode all task-relevant variables, but they do not encode a variable in an ab-
stract format, and they do not facilitate generalization. The ability to decode a variable does not
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put strong constraints on the nature of the neural representation. The analysis of the geometry
of neural representations promises to reveal important functional differences between brain areas,
differences that may not be evident from a decoding analysis alone or from an analysis of single
neuron response properties. For example, the analysis that we describe can discriminate between
neural representations that require some form of learning to represent a variable in an abstract for-
mat from representations that derive from randomly connecting inputs to neurons within a brain
structure.

The generation of neural representations of variables in an abstract format is central to many
different sensory, cognitive and emotional functions. For example, in vision, the creation of neural
representations of objects that are invariant with respect to their position, size and orientation in
the visual field is a typical abstraction process that has been studied in machine learning applica-
tions (see e.g. 29, 30) and in the brain areas involved in representing visual stimuli (see e.g. 31, 32).
This form of abstraction may underlie fundamental aspects of perceptual learning. Here we have
focused on a form of abstraction that we believe is essential to higher cognitive functions, such
as context-dependent decision-making, using conceptual reasoning to learn from experience, and
making inferences. The types of abstraction that underlie these processes almost certainly rely on
reinforcement learning and memory, as well as the ability to forge conceptual links across cate-
gory boundaries. The analysis tools developed here can be applied to electrophysiological, fMRI
and calcium imagining data and may prove valuable for understanding how different brain areas
contribute to various forms of abstraction that underlie a broad range of mental functions. Future
studies must focus on the specific neural mechanisms that lead to the formation of abstract repre-
sentations, which is fundamentally important for any form of learning, for executive functioning,
and for cognitive and emotional flexibility.
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Methods

M1 Task and Behavior

Two rhesus monkeys (Macaca mulatta; two males respectively, 8 and 13 kg) were used in these ex-
periments. All experimental procedures were in accordance with the National Institutes of Health
guide for the care and use of laboratory animals and the Animal Care and Use Committees at New
York State Psychiatric Institute and Columbia University. Monkeys performed a serial-reversal
learning task in which they were presented one of four visual stimuli (fractal patterns). Each trial
began with the animal holding down a button and fixating for 400 ms (Fig. 1a). If those conditions
were satisfied, one of the four images was displayed on a screen for 500 +/- 75 ms. In each context,
correct performance for two of the visual stimuli required releasing the button within 900 ms of
stimulus disappearance; for the other two visual stimuli, the correct operant action was to continue
to hold the button down. For half of the trials, correct performance resulted in reward delivery; for
the other half of the trials, correct performance avoided having to repeat the trial but did not result
in reward. If the monkey performed the correct action, a trace interval of 500 ms ensued followed
by a liquid reward or by a new trial in case of a correct, non-rewarded trial. If the monkey made a
mistake, a 500 ms time out was followed by the repetition of the same trial type. Monkeys had to
perform the correct action in order for a new trial type to occur on the next trial. After a random
number of trials between 50 and 70, the context switched without warning and with it the operant
and reinforcement contingencies changed. Operant contingencies switched for all images, but for
two visual stimuli the reinforcement contingencies did not change, in order to ensure orthogonality
between operant and reinforcement contingencies. A contextual cue consisting of a colored frame
at the periphery of the screen (Context 1, red; Context 2, blue) appeared from visual stimulus onset
until the end of the trace epoch on 10 percent of trials randomly selected. Trials with a contextual
frame never occurred within the first 5 trials after a block switch, and all trials with a contextual
frame were excluded from all analyses presented.

M2 Electrophysiological Recordings

Recordings began only after the monkeys were fully proficient in the task and performance was
stable. Recordings were conducted with multi-contact vertical arrays electrodes (v-probes, Plexon
Inc., Dallas, TX) with 16 contacts spaced at 100 µm intervals in ACC and DLPFC, and 24 contacts
in HPC, using the Omniplex system (Plexon Inc.). In each session, we individually advanced
the arrays into the three brain areas using a motorized multi-electrode drive (NAN Instruments).
Analog signals were amplified, band-pass filtered (250 Hz - 8 kHz), and digitized (40 kHz) using a
Plexon MAP system (Plexon, Inc.). Single units were isolated offline using Plexon Offline Sorter.
To address the possibility that overlapping neural activity was recorded on adjacent contacts, or
that two different clusters visible on PCA belonged to the same neuron, we compared the zero-
shift cross-correlation in the spike trains with a 0.2 ms bin width of each neuron identified in the
same area in the same session. If 10 percent of spikes co-occurred, the clusters were considered
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duplicated and one was eliminated. If 1-10 percent of spikes co-occurred, the cluster was flagged
and isolation was checked for a possible third contaminant cell. Recording sites in DLPFC were
located in Brodmann areas 8, 9 and 46. Recording sites in ACC were in the ventral bank of the
ACC sulcus (area 24c). HPC recordings were largely in the anterior third, spanning across CA1-
CA2-CA3 and DG.

M3 Selection of trials/neurons, and the decoding analysis:

The decoding algorithm was based on a population decoder trained on pseudo-simultaneous pop-
ulation response vectors 13.

The trials used in the decoding analysis are only those in which the animal responded cor-
rectly (both for the current trial and the directly preceding one), in which no context frame was
shown (neither during the current nor the preceding trial), and which occurred at least five trials
after the most recent context switch. We retain all neurons for which we have recorded at least 15
trials satisfying these requirements for each of the eight experimental conditions (combinations of
context, value and action). From among these trials we randomly split off five trials per condition
to serve as our test set, and use the remaining trials (at least ten per condition) in our training set.

Given these pre-processed data sets, we either train maximum margin (SVM) linear clas-
sifiers on the mean neural activities for the eight conditions in the training set, or we train such
classifiers on the noisy training data including trial-to-trial variability. In the latter case, in order to
obtain a number of trials that is large compared to the number of neurons, we re-sample the noise
by randomly picking noisy firing rates from among all the training trials of a given experimental
condition for each neuron independently. In this manner, we re-sample 10,000 trials per condition
from the training set. While this destroys correlations between different neurons of the fluctuations
around the cluster centers for each condition, we have little information about these correlations in
the first place, since only relatively small numbers of neurons are recorded simultaneously. Regard-
less of whether we train on cluster centers only or on re-sampled data, the decoding performance
is measured on the noisy data from the test set using re-sampling to increase the number of test
trials.

In Fig. 2 we show the cross-validated decoding performance as a function of time throughout
the trial (for a sliding 500 ms time window) for maximum margin classifiers trained only on the
mean neural activities for each condition, while Fig. 6c shows similar results for linear classifiers
trained on the mean firing rates in the neural data within a time window from -800 ms to 100 ms
relative to stimulus onset.

For all analyses, data were combined across monkeys, because all key features of the data
set were consistent across the two monkeys.
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M4 The abstraction index:

A simple way to achieve an abstract neural representation would be to cluster together the activity
patterns corresponding to the conditions on either side of a certain dichotomy (defining a binary
variable). For example, if the spike count patterns in a certain brain area were equal for all four
stimuli in context one, and similarly coincided (at a different value) for context two, this area
would exhibit an abstract representation of context, at the expense of not encoding any information
about stimulus identity, operant action or reward value. We can assess the degree of clustering by
comparing the average distance between the mean neural activity patterns corresponding to the
conditions on the same side of a dichotomy (within or intra-group) to the average distance between
those on opposite sides of the dichotomy (between or inter-group). For balanced (four versus four)
dichotomies of the eight experimental conditions (context, value and action of the previous trial),
there are 16 inter-group distances, and 12 intra-group distances (six on each side of the dichotomy)
that contribute. We define the ratio of the average between group distance to the average within
group distance as the abstraction index, which measures the degree of clustering of a set of neural
representations associated with a certain dichotomy. In the absence of any particular geometric
structure (such as clustering), we would expect these two average distances to be equal, resulting
in an abstraction index of one, while clustering would lead to values larger than one.

Fig. 3 shows the abstraction index for the context variable computed from the measured
neural activity patterns. As above for decoding, we retain only correct trials without a contextual
frame that didn’t occur within 5 trials of a context switch for this analysis. We z-score the overall
activity distribution of each neuron before computing the mean activity pattern of each condition,
and use a simple Euclidean distance metric (employing a Mahalanobis distance metric instead
yields similar results).

M5 The cross-condition generalization performance (CCGP):

The hallmark feature of abstract neural representations is their ability to support generalization.
When several abstract (in our case binary) variables are encoded simultaneously, generalization
must be possible for all the abstract variables. We quantify a powerful form of generalization us-
ing a measure we call the cross-condition generalization performance (in fact we can view this
measure as a quantitative definition of the degree of abstraction of a set of neural representations).
It is analogous to the cross-validated decoding performance commonly employed, except that in-
stead of splitting up the data randomly, such that trials from all conditions will be present in both
the training and test sets, we instead perform the split according to the condition labels, such that
the training set consists entirely of trials from one group of conditions, while the test set consists
only of trials from a disjoint group of conditions. We train (on the former) a linear classifier for
a certain dichotomy that discriminates the conditions in the training set according to some label
(one of the abstract variables), and then ask whether this discrimination generalizes to the test set
by measuring the classification performance on the data from entirely different conditions, which
were never seen during training.
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This means that in order to achieve a large cross-conditions generalization performance, it
is not sufficient to merely generalize over the noise associated with trial-to-trial fluctuations of
the neural activity around the mean firing rates corresponding to individual conditions. Instead,
the classifier has to generalize also across different conditions on the same side of an (abstract)
dichotomy, i.e., across those conditions that belong to the same category according to the abstract
variable under consideration.

Given our experimental design with eight different conditions (distinguished by context,
value and action of the previous trial), we can investigate different balanced (four versus four
condition) dichotomies, and choose one, two or three conditions from each side of a dichotomy
to form our training set. We use the remaining conditions (three, two or one from either side,
respectively) for testing, with larger training sets typically leading to better generalization perfor-
mance. For different choices of training conditions we will in general obtain different values of the
classification performance on the test conditions, and we define the cross-condition generalization
performance (CCGP) as its average over all possible sets of training conditions (of a given size).
In Fig. 6a we show the CCGP (on the held out fourth condition) when training on three conditions
from either side of the context, value or action dichotomies.

The selection of trials used is the same as for the decoding analysis, except that here we re-
tain all neurons that have at least ten trials for each experimental condition that meet our selection
criteria (since the split into training and test sets is determined by the labels of the eight conditions
themselves, so that for a training condition we don’t need to hold out additional test trials). We
pre-process the data by z-scoring each neuron’s spike count distribution separately. Again, we can
either train a maximum margin linear classifier only on the cluster centers, or on the full training
set with trial-to-trial fluctuations (noise), in which case we re-sample 10,000 trials per condition,
with Fig. 6a showing results using the latter method.

M6 The parallelism score (PS):

The abstraction index defined above is a simple geometric measure that can quantify the degree of
abstraction for a single variable. We can generalize this quantity to the case of multiple abstract
variables, but we found it more fruitful to instead focus on another geometric measure based on
angles rather than distances. When training a linear classifier on a pair of conditions (one from
each side of a dichotomy) that differ only in one label (but agree on all others), the weight vector
defining the resulting separating hyperplane will be aligned with the vector connecting the cluster
centers corresponding to the neural representations of the two training conditions if we assume
isotropic noise around both of them. This corresponds to the coding direction for the potentially
abstract variable under consideration, given this choice of training set. Other coding directions
for the same variable can be obtained by choosing a different pair of training conditions (defined
by different, but equal values for the other variables corresponding to orthogonal dichotomies).
The separating hyperplane associated with one such pair of training conditions is more likely to
correctly generalize to another pair of conditions if the associated coding directions are parallel
(as illustrated in Fig. 5d,e). Therefore, we introduce a measure to quantify the alignment of the
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different coding directions, which we call the parallelism score (PS).
If we had only four conditions (and hence at most two abstract variables) as shown in Fig. 5d,

there would be only two coding directions for a given variable (from the two pairs of training con-
ditions), and we would simply consider the cosine of the angle between them (i.e., the normalized
overlap of the two weight vectors). In our experiments, there were eight conditions (leading to
at most three perfectly abstract variables), and thus pairing them across the separating hyperplane
will lead to four normalized coding vectors ~vi for i = 1, 2, 3, 4 (corresponding to four pairs of
training conditions). In this case, we consider the cosines of the angles between two of them
cos(θij) = ~vi.~vj , and we average over all six of these angles (corresponding to all possible choices
of two different coding vectors). Note that these coding directions are simply the unit vectors
pointing from one cluster center to another, and we don’t train any classifiers for this analysis.

In general there are multiple ways of pairing up conditions across the separating hyperplane
of a dichotomy under consideration. Because we don’t want to assume a priori that we know the
correct way of pairing up conditions (which would depend on the labels of the other abstract vari-
ables), we instead consider all possible ways of matching up the conditions on the two sides of
the dichotomy one-to-one, and then define the PS as the maximum across all possible pairings of
the average cosine. There are two such pairings in the case of four condition, and 24 pairings for
eight condition (in general there are (m/2)! for m conditions, so there would be a combinatorial
explosion if m was large). Therefore, the parallelism score (for eight conditions) is defined as

Parallelism Score = max
pairings of conditions

4∑
i=1

4∑
j>i

cos(θij)/6 . (M1)

The parallelism scores of the context, value and action dichotomies of our data are plot-
ted in Fig. 6b. The selection of trials used in this analysis is the same as for the decoding and
cross-condition generalization analyses, retaining all neurons that have at least ten trials for each
experimental condition that meet our selection criteria, and z-scoring each neuron’s spike count
distribution individually.

Note that a high parallelism score for one variable/dichotomy doesn’t necessarily imply per-
fect generalization across other variables. Even if the coding vectors for a given variable are
approximately parallel, the test conditions might be much closer together than the training condi-
tions. In this case generalization would likely be poor and the orthogonal dichotomy would have
a low parallelism score. (Moving the cluster centers in neural representation space affects the par-
allelism scores of at least some dichotomies, and despite being based on angles the set of all such
scores depends implicitly on pairwise distances, except on the overall scale of the whole geom-
etry). Even high parallelism scores for multiple variables don’t guarantee good generalization of
one dichotomy across another one. When training a linear classifier on noisy data, the shape of the
noise clouds could skew the weight vector of a maximum margin classifier away from the vector
connecting the cluster centers of the training conditions. In addition, even if this is not the case
and the noise is isotropic, generalization might still fail because of a lack of orthogonality of the
coding directions for different variables (the eight conditions might be arranged at the corners of
a parallelepiped instead of a cuboid). In summary, while the parallelism score is not equivalent
to the cross-condition generalization performance, high scores for a number of dichotomies with
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orthogonal labels characterize a family of (approximately factorizable) geometries that can lead to
good generalization properties if the noise is sufficiently well behaved (consider e.g. the case of the
principal axes of the noise distributions being aligned with the coding vectors), and specifically for
the simple case of isotropic noise, if the coding directions for different variables are approximately
orthogonal to each other.

M7 Random models:

In order to assess the statistical significance of the above analyses we need to compare our results
(for the decoding performance, abstraction index, cross-condition generalization performance, and
parallelism score, which we collectively refer to as scores here) to the distribution of values ex-
pected from an appropriately defined random control model. There are various sensible choices for
such random models, each corresponding to a somewhat different null hypothesis we might want
to reject. The simplest case we consider is a shuffle of the data, in which assign a new, random
condition label to each trial for each neuron independently (in a manner that preserves the total
number of trials for each condition). When re-sampling artificial, noisy trials, we shuffle first, and
then re-sample in a manner that respects the new, random condition labels. This procedure de-
stroys almost all structure in the data, except the marginal distributions of firing rates of individual
neurons. The error bars around chance level for the decoding performance in Figs. 2 and 6, and for
the parallelism score in Figs. 6 and 7, are based on this shuffle control (plus/minus two standard
deviations).

A different kind of structure is retained in a class of geometric random models, which we
construct in order to rule out another type of null hypothesis. For the analyses that depend only on
the cluster centers of the eight conditions, we can construct a random geometry by sampling new
cluster centers from an isotropic Gaussian distribution (and rescaling it to keep the total signal vari-
ance the same as in the data). Such a random arrangement of the mean firing rates (cluster centers)
is a very useful control to compare against, since such geometries do not constitute abstract neural
representations, but nevertheless typically allow relevant variables to be decoded. For analyses
that depend also on the structure of the noise (in particular, decoding and CCGP with re-sampled
trials), our random model in addition requires some assumptions about the noise distributions. We
could simply choose identical isotropic noise distributions around each cluster center, but training
a linear classifier on trials sampled from such a model would essentially be equivalent to training
a maximum margin classifier on the cluster centers only. Instead, we choose to preserve some of
the noise structure of the data by moving the (re-sampled) noise clouds to the new random position
of the corresponding cluster and performing a discrete rotation around it by permuting the axes
(for each condition independently). If our scores are significantly different from those obtained
using this random model, we can reject the null hypothesis that the data was generated by a ran-
dom isotropic geometry with the same total signal variance and similarly shaped noise clouds as
in the data. The error bars around chance level for the CCGP in Figs. 6 and 7 are derived from this
geometric random control model.

We can also consider the distribution of scores across the 35 different balanced dichotomies
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we can form using the eight conditions in our data set. Since there are clearly correlations between
the scores of different dichotomies (e.g. because the labels may be partially overlapping, i.e., not
orthogonal), we do not think of this distribution as a random model to assess the probability of
obtaining certain scores from unstructured data. However, it does allow us to make statements
about the relative magnitude of the scores compared to those of other variables that may also be
decodable from the data and possibly abstract.

M8 Simulations of the multi-layer network:

The two hidden layer network depicted in Figure 7 contains 768 neurons in the input layer, 100
in each hidden layer and four neurons in the output layer. We used eight digits (1-8) of the full
MNIST data set to match the number of conditions we considered in the analysis of the experiment.
The training set contained 48128 images and the test set contained 8011 digits. The network was
trained to output the parity and the magnitude of each digit and to report it using four output units:
one for odd, one for even, one for small (i.e. a digit smaller than 5) and one for large (a digit larger
than 4). We trained the network using the back-propagation algorithm ‘train’ of matlab (with the
neural networks package). We used a tan-sigmoidal transfer function (‘tansig’ in matlab), the
mean squared normalized error (‘mse’) as the cost function, and the maximum number of training
epochs was set to 400. After training, we performed the analysis of the neural representations using
the same analytical tools that we used for the experimental data, except that we did not z-score the
neural activities since they were simultaneously observed in the simulations.

Supplementary Information

S1 The recorded neurons are not highly specialized

An ensemble of neurons could in principle encode multiple abstract variables simply by assigning
each neuron to be tuned to precisely one of these variables. In this case, the ensemble can be
divided into a number of subpopulations each of which exhibits pure selectivity for one of the ab-
stract variables. Geometrically, this situation is similar to the one depicted in Fig. 5a. The situation
in which neurons exhibit mixed selectivity can be obtained by rotating this geometry, as shown in
Fig. 5b. This rotated representation would show the same generalization properties. In the data,
we do not observe many pure selectivity neurons. If neurons were highly specialized for particu-
lar variables, training a linear classifier to decode that variable should lead to very large readout
weights from the associated specialized subpopulation, but very small readout weights from other
neurons (which might specialize on encoding other variables). Therefore, in a scatter plot of the
(absolute values) of the readout weights for different classifiers we would expect specialized neu-
rons to fall close to the axes (with large weights for the preferred variable, but small ones for any
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others). If this situation occurred for a large number of neurons, we might expect a negative cor-
relation between the absolute values of the decoding weights for different variables. However, in
fact the weights do not cluster close to the axes, as shown in Fig. S1. The correlation coefficients
of their absolute values are positive. We conclude that highly specialized neurons are not partic-
ularly common in the neural ensembles we recorded, i.e. pure selectivity appears to be no more
likely than coding properties corresponding to a random linear combination of the task-relevant
variables.

For each neuron we can consider the three-dimensional space of the readout weights for the
three variables (components of three different unit-norm weight vectors in the space of neural ac-
tivities). Clearly neurons with large readout weights for the linear classifier trained to read out a
particular variable are important for decoding that variable. Some neurons have larger total read-
out weights than others (e.g. we can consider the sum of squares of the three weight components,
corresponding to the squared radius in the three-dimensional space) and are therefore more useful
for decoding overall than others which have only small readout weights.

We can also rank neurons according to the angle of their readout weight vector from the axis
associated with one of the variables in the three-dimensional space. This quantifies the degree of
specialization of the neuron for the chosen variable. We call the absolute value of the cosine of
this angle the pure selectivity index. We can now ask whether neurons with a large pure selectivity
index are particularly important for generalization, as quantified by the cross-condition generaliza-
tion performance (CCGP). This can be tested by successively removing neurons with the largest
pure selectivity indices from the data and performing the CCGP analysis on the remaining popu-
lation of (increasingly) mixed selectivity neurons. The results of this ablation analysis are shown
in Fig. S2, in which we plot the decay of the CCGP with the number of neurons removed. It
demonstrates that while pure selectivity neurons are important for generalization (as expected in a
pseudo-simultaneous population of neurons with re-sampled trial-to-trial variability, in which the
principal axes of the noise clouds are aligned with the neural axes), they are not more important
than neurons with overall large decoding weights which typically have mixed selectivity.

S2 Dimensionality of the neural representations

We utilize a technique developed in 35 to estimate a lower bound of the dimensionality of the neural
response vectors in a specific time bin during a task. Specifically, similarly to what we do for other
analyses, for all recorded neurons we build average firing rate patterns by averaging spike counts
sorted according to task conditions indexing the trial where the activity is recorded (current trial)
or the previous trial. The spike counts are z-scored and averaged in 500 ms time bins displaced
by 50 ms throughout the trial. We then apply the method presented in 35 on the obtained average
firing rate activity patterns independently within each 500 ms time bin. This procedure allows us
to bound the number of linear components of the average firing rate patterns that are due to finite
sampling of the noise, therefore providing an estimate of their dimensionality. Figure S3 shows the
result of this analysis for all neurons recorded in HPC, DLPFC and ACC for which we had at least
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Figure S1: Two-dimensional scatter plots of the absolute values of the (normalized) decoding weights for
the three task-relevant variables. The three columns (from left to right) correspond to HPC, DLPFC, and
ACC. The three rows show the magnitudes of the weights for pairs of variables plotted against each other:
context vs. value (top), value vs. action (middle), and action vs. context (bottom). The inset in each scatter
plot shows a histogram of the weight counts as a function of the angle from the vertical axis (in radians).
These distributions are approximately uniform, and therefore pure selectivity neurons (whose weights would
fall close to one of the axes in the scatter plots) are not prevalent. Similar distributions have been observed
in the rodent hippocampus 33.

S-3

(which was not peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint. http://dx.doi.org/10.1101/408633doi: bioRxiv preprint first posted online Sep. 6, 2018; 

http://dx.doi.org/10.1101/408633


0 5 10 15 20 25 30 35 40
Number of ablated neurons

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

C
ro

ss
-c

on
di

tio
n 

ge
ne

ra
liz

at
io

n 
pe

rfo
rm

an
ce

HPC
Context
Value

0 5 10 15 20 25 30 35 40
Number of ablated neurons

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

C
ro

ss
-c

on
di

tio
n 

ge
ne

ra
liz

at
io

n 
pe

rfo
rm

an
ce

DLPFC

Context
Value
Action

0 5 10 15 20 25 30 35 40
Number of ablated neurons

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

C
ro

ss
-c

on
di

tio
n 

ge
ne

ra
liz

at
io

n 
pe

rfo
rm

an
ce

ACC

Context
Value
Action

Figure S2: Cross-condition generalization performance as a function of the number of ablated neurons
for the HPC (left), DLPFC (middle), and ACC (right). The solid lines show the decay of the CCGP if
we successively remove the neurons with the largest pure selectivity indices for context (blue), value (red)
or action (yellow). The dashed lines show the decline of the CCGP for the same three variables if we
instead ablate neurons with the largest sum of squares of their three decoding weights (i.e., those with the
radial position furthest from the origin in their three-dimensional weight space), independently of their pure
selectivity indices. The two sets of curves are rather close to each other, and thus these two sets of ablated
neurons are of similar importance for generalization. (For HPC, the CCGP of the action variable is always
below chance level for both curves; not shown). This is similar to what has been observed in simulations of
deep networks 34.
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Figure S3: Dimensionality of the average firing rate activity patters as a function of time throughout
the trial. The left panel illustrates the result of the analysis developed in 35 on HPC, the central panel
refers to DLPFC, and the right panel to ACC. Continuous lines refer to the analysis carried out on
average firing rate patterns obtained by averaging spike counts according to the task conditions
of the trial that was being recorded (current trial), while for dashed line we do the same but for
conditions defined in the previous trial. The lines indicate the number of principal firing rate
components that are larger than all noise components, averaged over 1000 resamplings of the noise
covariance matrix (see 35). The shadings indicate the 95% confidence intervals estimated using the
method for quantifying uncertainty around the mean of bounded random variables presented in 36.

S-4

(which was not peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint. http://dx.doi.org/10.1101/408633doi: bioRxiv preprint first posted online Sep. 6, 2018; 

http://dx.doi.org/10.1101/408633


15 trials per condition. As we can see, for average firing rate patterns obtained by sorting spike
counts according to the 8 conditions of the current trial (continuous lines), dimensionality peaks
at its maximum possible value shortly after the presentation of the image for all three areas. The
dimensionality for firing rate patterns obtained by sorting the activity according to the condition
of the previous trial remains around 5 throughout the trial, which is close to the value to which
dimensionality in the current trial decays towards the end of the trial.

S3 High dimensionality versus generalization: Flexible computation and abstraction are
not mutually exclusive

The class of neural geometries we propose would require neurons to (at least approximately) ex-
hibit linear mixed selectivity 13, 14, which entails that neural representations have low dimension-
ality. In fact, the dimensionality of such a geometry would be equal to the number of the (in
our case binary) abstract variables involved (not counting the possible offset from the origin of
the neural activity space). This dimensionality is small compared to the maximal dimensionality,
which grows exponentially with the number of variables, and would be equal to the total number of
conditions minus one. In the idealized case in which all abstract variables have a parallelism score
of one, the representations of the different conditions coincide with the vertices of a parallelotope,
and it is therefore easy to recognize that the dimensionality is small compared to the maximal di-
mensionality.

It has been argued 13, 14 that high-dimensional neural representations are often important for
flexible computation, because a downstream area may in principle have to read out an arbitrary
dichotomy of the different conditions (i.e., an arbitrary binary function) to solve different tasks.
This can be achieved using simple linear classifiers (used to model the type of computation that a
readout neuron may be able to implement directly) only if the dimensionality of the neural repre-
sentation is maximal. This desire for flexible computations afforded by high dimensionality seems
to be in direct opposition to the low dimensionality implied by the abstract neural geometries that
allow for cross-condition generalization.

However, in fact there is a large class of geometries that combine close to maximal dimen-
sionality with excellent generalization properties for a number of abstract variables (which form a
preferred subset of all dichotomies). Maximal dimensionality implies decodability by linear clas-
sifiers of almost all dichotomies. We will refer to this classifier-based measure of dimensionality
as the ‘shattering dimensionality’. This quantity is similar to the one introduced in 13, where it was
measured to be maximal in neural representations in monkey pre-frontal cortex. The geometries
with high dimensionality and excellent generalization don’t have unit parallelism scores for the
abstract variables (they are not exactly factorizable). A simple way to construct examples of such
geometries is to start from a simple factorizable case, namely a cuboid, and then distort it to reduce
the parallelism score. We will illustrate this in the case of eight conditions. In this case, there are
at most three completely abstract variables, as in our experimental data. We can generate an arti-
ficial data set with the desired properties by arranging the eight conditions initially at the corners
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of a cube (with coordinates plus/minus one), embedding this cube in a high-dimensional space by
padding their coordinate vectors with zeros (here we use N = 100 dimensions, so we append 97
zeros), and acting on them with a random (100-dimensional) rotation to introduce linear mixed
selectivity. We then distort the cube by moving the cluster center of each condition in a random
direction - chosen independently and isotropically - by a fixed distance, which parameterizes the
magnitude of the distortion. This operation reduces the parallelism score for the three initially
perfectly abstract variables, which correspond to the three principal axes of the original cube, to
values less than one. We sample an artificial data set of 1,000 data points per condition by assum-
ing an isotropic Gaussian noise distribution around each cluster center.

On this data set we can run the same analyses as on our experimental data. In particular, we
compute the parallelism score and the cross-condition generalization performance averaged over
the three preferred (potentially abstract) dichotomies, with the results of these analyses shown in
Fig. S4. In addition to these quantities, we compute across all 35 balanced dichotomies the av-
erage decoding performance (ADP), which is a quantity related to the shattering dimensionality.
For small noise, the mean parallelism score of the abstract variables starts very close to one and
from there decreases monotonically as a function of the magnitude of the distortion. The same
is true for their mean CCGP, but its decline is much more gradual and almost imperceptible for
small distortions. This means that for intermediate values of the displacement magnitude (of order
one), we still see excellent generalization properties, and the three preferred variables are still in
an abstract format.

In contrast, the ADP increases as a function of the magnitude of the distortion, due to the
increased dimensionality of the representation. Balanced dichotomies include the most difficult
(least linearly separable) binary functions of a given set of conditions, and if all of them can be
decoded by linear classifiers the dimensionality of the neural representation will be maximal. For
small values of the displacement magnitude (for which the neural geometry is three-dimensional)
some dichotomies are clearly not linearly separable, and therefore the average decoding perfor-
mance starts out at a value less than one (around 75%), but it steadily increases with the degree
of distortion of the cube. Crucially, it reaches its plateau close to one before the CCGP drops
substantially below one, i.e., there is a parameter regime in which this type of neural geometry
exhibits almost maximal dimensionality enabling flexible computation, but at the same time also
abstraction (in the form of excellent generalization properties) for the three preferred variables.
Therefore, we can conclude that these two favorable properties are not mutually exclusive.

In the case of larger noise, the PS and CCGP start out at values substantially smaller than one
already for zero distortion. The qualitative trends of all the quantities discussed remain the same,
but the tradeoff between the average decoding performance and cross-condition generalization
(i.e., of flexible computation and abstraction) is much more gradual under these circumstances.
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Figure S4: Analysis of an artificial data set generated by randomly embedding a (three-
dimensional) cube in a 100-dimensional space, displacing its corners in independent random direc-
tions by a certain distance (displacement magnitude), and then sampling data points corresponding
to the eight experimental conditions from isotropic Gaussian distributions around the cluster cen-
ters obtained from this distortion procedure. We plot the average decoding performance (ADP)
across all balanced dichotomies, as well as the mean PS and CCGP of the three potentially ab-
stract variables for low (left) and high noise (right), with noise sampled as i.i.d. unit Gaussian
vectors multiplied by overall coefficients 0.2 and 1.0, respectively. For low noise, both the average
decoding performance and the cross-condition generalization performance can be simultaneously
close to one, indicating maximal dimensionality and the presence of three abstract variables for
these representations. In the case of high noise, we observe a smooth tradeoff between the CCGP
(abstraction) and the ADP (dimensionality).
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