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Pyramidal cells in the rodent hippocampus often exhibit clear spatial tun-
ing in navigation. Although it has been long suggested that pyramidal
cell activity may underlie a topological code rather than a topographic
code, it remains unclear whether an abstract spatial topology can be en-
coded in the ensemble spiking activity of hippocampal place cells. Using
a statistical approach developed previously, we investigate this question
and related issues in greater detail. We recorded ensembles of hippocam-
pal neurons as rodents freely foraged in one- and two-dimensional spa-
tial environments and used a “decode-to-uncover” strategy to examine
the temporally structured patterns embedded in the ensemble spiking
activity in the absence of observed spatial correlates during periods of
rodent navigation or awake immobility. Specifically, the spatial environ-
ment was represented by a finite discrete state space. Trajectories across
spatial locations (“states”) were associated with consistent hippocampal
ensemble spiking patterns, which were characterized by a state transi-
tion matrix. From this state transition matrix, we inferred a topology
graph that defined the connectivity in the state space. In both one- and
two-dimensional environments, the extracted behavior patterns from the
rodent hippocampal population codes were compared against randomly
shuffled spike data. In contrast to a topographic code, our results support
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the efficiency of topological coding in the presence of sparse sample
size and fuzzy space mapping. This computational approach allows us to
quantify the variability of ensemble spiking activity, examine hippocam-
pal population codes during off-line states, and quantify the topological
complexity of the environment.

1 Introduction

Population codes derived from simultaneous recordings of ensembles of
neurons have been studied in the representation of sensory or motor stimuli
and in their relationship to behavior (Georgopoulos, Schwartz, & Kettner,
1986; Schwartz, 1994; Nirenberg & Latham, 1998; Sanger, 2003; Broome,
Jayaraman, & Laurent, 2006). Uncovering the internal representation of
such codes remains a fundamental task in systems neuroscience (Quian
Quiroga & Panzeri, 2009). The rodent hippocampus plays a key role in
episodic memory, spatial navigation, and memory consolidation (O’Keefe &
Dostrovsky, 1971; O’Keefe & Nadel, 1978; Wilson & McNaughton, 1993,
1994; Buzsáki, 2006). Pyramidal cells in the CA1 area of the rodent hip-
pocampus have localized receptive fields (RFs) that are tuned to the (mea-
sured) animal’s spatial location during navigation in one-dimensional (1D)
or two-dimensional (2D) environments. These cells are referred to as place
cells, and their RFs are referred to as place fields (O’Keefe & Dostrovsky,
1971). However, the concept of place fields was invented by human ob-
servers for the purpose of understanding the tuning of place cells. It re-
mains unclear how neurons downstream of the hippocampus can infer
representations of space from hippocampal activity without place field in-
formation a priori. Two types of maps, topographical and topological, may
be used for spatial representation. A topographical map contains metric
information (such as distance and orientation) between two locations in
the map, whereas a topological map contains only relative ordering or
connectivity information between locations and is invariant to orientation
(see the appendix for mathematical definitions). Since topological features
are preserved despite deformation, twisting, and stretching of the space,
a topological map would be an appealing candidate for abstract spatial
representation. Uncovering the internal spatial representation of rodent
hippocampal ensemble activity will not only help reveal the coding mecha-
nism of the hippocampus, but will also provide a way to interpret ensemble
spike data during off-line states.

It has been suggested that an inner physiological space could emerge
from the population spiking activity of hippocampal neurons (O’Keefe &
Nadel, 1978). A few groups have recently examined the issue of topological
coding of space in the rat hippocampus (Curto & Itskov, 2008; Dabaghian,
Cohn, & Frank, 2011; Dabaghian, Memoli, Frank, & Carlsson, 2012), but
all reported studies were limited to computer simulations or theoretic
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conceptualization. The essential question of interest is how the output of
rodent hippocampal place cells (without the explicit construction of place
fields) might be used by downstream structures in order to reconstruct both
the animal’s position and the topology of the environment. From a data anal-
ysis point of view, the question is this: How do we transform the temporal
patterns of spiking activity in the form of multiple time series into a spatial
pattern of place fields? To investigate these questions in greater detail, here
we use a computational and data-driven approach (Chen, Kloosterman,
Brown, & Wilson, 2012) to investigate the neural representation of spatial
topology embedded in rodent hippocampal population codes. The new con-
tributions beyond our previous work are threefold. First, to our knowledge,
this is the first systematic investigation on this topic. We explore this issue
across different species (rat versus mouse), environments (1D versus 2D),
and behaviors (locomotion versus quiet wakefulness). Second, we extract
quantitative statistics (such as the topological complexity) from topological
codes and topological graphs. Third, we systematically investigate the rep-
resentation efficiency between topological and topographic codes in a 2D
environment. We hope that the investigations and findings presented here,
while still empirical, will add insight into well-studied rodent hippocampal
population codes.

2 Inferring Rodent Hippocampal Population Codes

2.1 Probabilistic Modeling. We used a hidden Markov model (HMM)
to model the population spiking activity from simultaneously recorded C
rodent hippocampal neurons. We assumed that the animal’s spatial location
during locomotion, being modeled as a latent state process, followed a first-
order discrete-state Markov chain {S(t)} ∈ {1, . . . , m} (where m denotes the
size of the discrete state space). We also assumed that conditional on the
hidden state S(t) at time t, the spike counts of individual hippocampal
neurons followed a Poisson probability with their own tuning curves. Stated
mathematically, we used the following probabilistic mapping (Chen et al.,
2012),

S(t − 1) → S(t)∼ PSt−1St
, (2.1)

yc(t)|S(t) = j ∼ Poisson(yc(t); λc( j)), (2.1)

where P = {Pi j} denotes an m-by-m state transition probability matrix, with
the element Pij representing the transition probability from state i to state j;
yc(t) denotes the number of spike counts within the tth temporal bin from
the cth neuron, which has the tuning curve λc with respect to the state space.
Given the multiple time series of spike counts y = {y(1), . . . , y(T )} (where
y(t) = [y1(t), . . . , yC(t)] is a C-dimensional population vector), our goal is
to infer the mostly likely hidden state sequence S = {S(1), . . . , S(T )} and
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the unknown parameters θ = {π, P,�}, where π denotes the initial state
probability vector and � = {λc( j)} denotes a C-by-m tuning curve matrix
that can be interpreted as the virtual place fields or state fields of all hip-
pocampal neurons. Given the animal’s locomotion behavior as well as the
spatial topology of the environment, the ground truth transition probability
matrix P captures important information related to the spatial environment.
The computational task is to infer the transition probability matrix P from
the ensemble spike data alone (without assuming any knowledge of the
animal’s behavior).

In this probabilistic modeling framework, we represented a continuous
topographic space S by a finite discrete alphabet A using a code book: S =
f (A). The consistency of this representation requires a one-to-one mapping
between S and A. First, any element in S is not simultaneously represented
by Ai and Aj (i �= j, Ai ∈ A, Aj ∈ A). Second, the same Ai does not represent
two or more distinct regions in S (except for neighboring regions that can
be merged). Of note, Ai and Aj may encode two regions, each with different
spatial coverage.

2.2 Bayesian Inference. We applied a variational Bayes (VB) algo-
rithm to estimate the unknown hidden state S and unknown parameters
θ = {π, P,�} (Chen et al., 2012). For Bayesian inference, we imposed infor-
mative conjugate priors for θ, specified by p(π, P,�). Specifically, we used
a Dirichlet prior for the multinomial likelihood (vector π and row vectors of
P) and a gamma prior for {λc( j)}. The goal of VB inference was to maximize
the lower bound of the marginal log-likelihood log p(y), also known as the
free energy:

log p(y)

= log
∫

dπ

∫
dP

∫
d�

∑
S

q(π, P,�, S)
p(π, P,�)p(y, S|π, P,�)

q(π, P,�, S)

≥
∫

dπ

∫
dP

∫
d�

∑
S

q(π, P,�, S) log
p(π, P,�)p(y, S|π, P,�)

q(π, P,�, S)

= 〈log p(y, S,π, P,�)〉q + Hq(π, P,�, S) ≡ F (q), (2.3)

where p(y, S|π, P,�) defines the complete data likelihood and q(π, P,�, S)

≈ q(π)q(P)q(�)q(S) represents the factorial variational posterior that ap-
proximates the joint posterior of the hidden state and parameter p(π, P,

�, S|y). The term Hq represents the Shannon entropy of the distribution q.
The best approximation in q to the joint posterior yields the tightest lower
bound on log p(y).

We applied an iterative expectation-maximization (EM) type algorithm
to optimize the free energy F until it reached a local maximum. In the
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VB-E step, we estimated the sufficient statistics using a standard forward-
backward algorithm. In the VB-M step, we estimated the variational pos-
teriors qθ(θ) and the posterior mean θ̃ statistics. (Details of the method are
in Chen et al., 2012.) During the testing mode, given the posterior mean
statistics of the estimated parameters and the ensemble spiking activity
from the same hippocampal neurons, we ran a modified version of the EM
algorithm to obtain the maximum a posteriori (MAP) estimate of the state
sequence as well as the free energy score of the tested ensemble spike data.

2.3 Model Selection and Assessment. We used the Bayesian deviance
information criterion (DIC) as a guiding principle for selecting the state
dimensionality m. The DIC is defined as the sum of the expected deviance
and the model complexity measure pD (McGrory & Titterington, 2009):

DIC = Ep(θ|y)[−2 log p(y|θ)] + pD

≈ −2 log p(y|θ̃) − 2
∫

qθ(θ) log
qθ(θ)

p(θ)
dθ + 2 log

qθ(θ̃)

p(θ̃)
, (2.4)

where θ̃ denotes the posterior mean computed with respect to qθ(θ) and
p(y|θ̃) can be computed from the forward-backward algorithm (Chen et al.,
2012). Unless stated otherwise, the model with the smallest DIC value
would be selected.

In our analysis of spike data during periods of locomotion, we used
a state-space map to visualize the accuracy of the estimation. The map
was used to check the consistency of the one-to-one mapping between the
discrete state ID and the animal’s spatial position. Visualized as a matrix, the
element of the state-space map represents the counting number of mapping
between the state and the specific spatial position. Ideally, the state-space
map would consist of segmented nonoverlapping narrow “stripes,” where
the width of the stripes would reflect the uncertainty of the reconstructed
position.

2.4 Visualization of Spatial Topology Graph. On the completion of
Bayesian inference, we obtained the estimated state trajectory S as well as
the posterior mean of the parameters θ̃. To visualize the spatial topology by
an undirected graph, we represented the states with m distinct nodes. The
presence of the edges between the nodes indicated that two nodes were con-
nected in space, and the strength of the edge between two nodes (shown in
terms of the darkness of the color) was proportional to the transition proba-
bility value between two states. The estimated transition probability matrix
was fed to a custom graph-drawing force-based algorithm to produce a 2D
topology graph (Battista, Eades, Tamassia, & Tollis, 1998; Chen et al., 2012).
To reduce the impact of noise (i.e., estimation bias), we often thresholded
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the estimated transition probability matrix with a typical threshold value
varying between 0.1 and 0.2. From the same transition matrix, the exact
shape of the derived topology graphs might appear differently due to ran-
domly initialized conditions of the force-based algorithm, but the underly-
ing topology spaces were homeomorphic.

2.5 Hypothesis Testing and Statistical Significance Test. The estima-
ted state transition matrix was inferred from the observed population spike
trains based on our statistical model (see equations 2.1 and 2.2). Due to lim-
ited sampling, the estimate would be subject to statistical bias and variance.
To test the statistical significance of the extracted structure of the population
spike data, we created randomly shuffled data and compared their statis-
tics. The null hypothesis was that the population codes were observed by
chance and therefore could not be captured by our statistical model due to
the lack of structure. To test against the null hypothesis, we randomly shuf-
fled the population spike count matrix in both row (unit identity shuffle)
and column (time shuffle). The time shuffle was done by randomly jittering
the temporal bins uniformly between 1 and 5 seconds. In each Monte Carlo
shuffle trial, the row and column shuffles were conducted 1000 times. We
performed 100 Monte Carlo shuffle trials. We then compared the distribu-
tions of the converged free energy value derived from the raw and shuf-
fled data based on the same Poisson population firing model. The Monte
Carlo P-value was reported using a two-sample Kolmogorov-Smirnov (KS)
test.

2.6 Neural Encoding and Decoding with Topographic Maps. For ex-
perimental comparison (see section 4), we also implemented a topographic
coding method. In the encoding phase, we estimated the place fields of hip-
pocampal pyramidal neurons using a simple nonparametric model based
on the Poisson assumption. Specifically, we discretized the spatial environ-
ment and estimated the individual neuronal firing rate based on the spiking
activity during the running epochs. In the decoding phase, we used a max-
imum likelihood estimator (or empirical Bayesian estimator with uniform
priors) (Zhang, Ginzburg, McNaughton, & Sejnowski, 1998). Note that our
strategy of using such a simple encoding-decoding method was for illus-
trating the topographic code instead of searching for optimal decoding
performance, although improved decoding accuracy would be expected by
employing more sophisticated neural encoding-decoding methods (Brown,
Frank, Tang, Quirk, & Wilson, 1998; Barbieri et al., 2004).

3 Results on Neural Topological Representations

3.1 Experimental Data. The experimental data were collected under
several different protocols, in which animals freely foraged in different
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Figure 1: Examples of spatial environments used in the analysis. (A) linear
track. (B) T-maze. (C) H-maze. (D) Open field. In panel A, the animal’s linearized
run trajectory is shown, and in panels C and D, the animal’s actual spatial
trajectories are shown. Note that among three one-dimensional environments
(A–C), the linear track has two end points and no junction, the T-maze has
three end points and one junction, and the H-maze has four end points and two
junctions.

spatial environments (see Figure 1) (Barbieri et al., 2004; Yamamoto &
Wilson, 2008; Davidson, Kloosterman, & Wilson, 2009). All experiments
were conducted under the supervision of the MIT Committee on Animal
Care and followed the guidelines of the U.S. National Institutes of Health.
Details of experimental protocols and recordings are shown in the appendix.
Data from 10 animals (8 rats and 2 mice) were collected and analyzed. Due
to limitations of space, only eight data sets (see Table 1) were presented in
our experimental data analysis. For each data set, we binned the spiking
activity of rodent hippocampal putative pyramidal neurons with a 250 ms
bin size to obtain the raw spike count statistics for the locomotion period.

We analyzed the hippocampal population spike data from both rats and
mice during periods of locomotion. In the 1D environment, hippocampal
place cell activity depends on both location and the direction of navigation
(Markus et al., 1995); the same spatial location was represented by two dif-
ferent states depending on navigation direction (inbound versus outbound).
In contrast, in the 2D open field environment, hippocampal pyramidal cells
exhibit place-specific firing that is statistically independent of the direction
of traversal through the place field; therefore, navigation direction was not
incorporated into the open field analysis.
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Table 1: Summary of Experimental Data.

Data set Number of (Used) Units Total (RUN) epoch Environment

R1 (rat A) 74 (30) 30.5 (4.7) min Linear track (3.0 m)
R2 (mouse) 107 (51) 39.6 (4.0) min Linear track (1.5 m)
R3 (rat B) 23 (20) 34.0 (0.9) min Linear track (2.1 m)
R4 (rat B) 22 (18) 31.5 (2.5) min Linear track (2.1 m)
R5 (rat C) 39 (25) 16.0 (4.0) min T-maze (2.05 m)
R6 (rat D) 27 (27) 63.7 (13.2) min H-maze (5.3 m)
R7 (rat E) 49 (47) 24.3 (4.9) min Open field

(radius ∼0.5 m)
R8 (rat F) 37 (36) 22.9 (7.5) min Open field

(radius ∼0.5 m)

3.2 Spatial Topology of One-dimensional Tracks During Navigation.
In the 1D linear track data sets from rats and mice, we observed qualitatively
similar ensemble spiking patterns on a single lap basis (see Figure 2A)
despite the behavioral variability (e.g., run velocity) and differences in the
size of the environment (track length). Provided the data are binned and
viewed in space (rather than in time), each panel in Figure 2A can be treated
as single-lap place fields for all hippocampal units. The similarities among
those ensemble spike patterns can be characterized by a cross-correlation
matrix (below Figure 2A).

3.2.1 Selection of the Number of Hidden States. Our probabilistic modeling
required us to select a priori the number of hidden states m for the HMM. It is
important to select an appropriate model size for fitting a small data sample.
Selecting a model size that is too small or too large results in underfitting
or overfitting of the spike data. In our experimental observations, when the
selected m was too small, we often found nonunique mappings between
the state and the animal’s position in the state-space map (e.g., one state
representing more than two positions in the space; see Figure 3A), indicating
that the state dimensionality was insufficient. When the selected m was too
large, we often found redundant states, which meant that some states had
not been used for mapping the space (result not shown; but simulation
results were shown in Chen et al., 2012).

To carry out model selection, we used the Bayesian DIC (see equation 2.4).
Under each selected model size, we ran a number of Monte Carlo exper-
iments and obtained the mean and SD of the DIC values (see Figure 3E).
In one 1D linear track example (R1 data set), we found that among the
evaluated models, the optimal model size was around 60. In this case, we
obtained the state-space map, the state transition probability matrix, and
the spatial topology map (see Figures 3A–3D). We also recovered the tun-
ing curves for all units in the state space (result not shown; see an example
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Figure 2: (A) Variability of rodent hippocampal population neuronal responses
(in the form of spike count matrix) in a lap-by-lap comparison (Left: rat, linear
track R1 data set; right: mouse, linear track R2 data set). All six laps consisted of
one cycle of an outbound-inbound trajectory that contained varying number of
time bins. Each panel can be viewed as single-lap place fields for all hippocampal
units. The grayscale bar represents the spike count. The similarities between six-
lap ensemble spike patterns are quantified by a cross-correlation matrix shown
below. The average running velocities for the rat during the six laps were 42.8,
40.7, 38.8, 42.8, 42.0, and 44.3 cm/s, respectively; the average running velocities
for the mouse during the six laps were 22.2, 27.9, 31.6, 33.3, 30.8, and 36.4 cm/s,
respectively. (B) Quantifying the variability of the ensemble spike data show
above. In each box plot, the normalized free energy score was computed from
each single lap based on the inferred model parameters. The statistics were
obtained from 50 independent Monte Carlo trials.



10 Z. Chen, S. Gomperts, J. Yamamoto, and M. Wilson

Decoded State ID

P
os

 (c
m

)

State space map

10 20 30 40 50 60

50

100

150

200

250

300

0

5

State
S

ta
te

Transition matrix

20 40 60

10

20

30

40

50

60

0

0.5

1

−40 −20 0 20 40
−50

0

50
Topology map

a.u.

a.
u.

−40 −20 0 20 40
−40

−20

0

20

40
Topology map

a.u.

a.
u.

45 50 55 60 65 70
1.2

1.3

1.4

1.5

1.6

1.7

1.8
x 10

Model size

B
ay

es
ia

n 
D

IC

−4 −3 −2 −1
x 10

0

1

2

3

x 10

Free energy
P

ro
b

raw
shuffled

A B C

D E F

Figure 3: Linear track (R1 data set) result. (A) State-space map (m = 60 from
model selection). Grayscale bar represents the repeated frequency of mapping
between the state and position. (B) One example of the estimated state transi-
tion probability matrix. (C) Inferred spatial topology graph from the transition
matrix. Dark-colored edges imply that two nodes are strongly connected or two
states are linked by high transition probability values. Note that the axes of the
topology map are in arbitrary unit (au). (D) Inferred topology graph derived
from a thresholded transition matrix (threshold 0.2). Despite the deformation of
the orientation and width of the graph, the ring topology structure remains the
same due to topological invariance. (E) Model selection based on the Bayesian
deviance information criterion (DIC). Error bar statistics were computed from
the results of 50 independent Monte Carlo trials. (F) Distributions of the derived
free energy value from the raw (solid curve) and shuffled (dashed curve) spike
count data for the same R1 data set (m = 60). In each condition, probability
distributions were estimated from the derived free energy values based on 100
independent Monte Carlo trials. The median free energy obtained from the raw
spike data was significantly greater than that obtained from the shuffled data
(Mann-Whitney test, P < 0.001), and these two empirical distributions were
also significantly different (two-sample KS test, P < 0.001).

shown in Chen et al., 2012). In this example, the spatial topology had a ring
structure, reflecting the linear track topology. There were also a few light
gray color-coded shortcuts inside the ring structure (see Figure 3C), which
reflected the animal turning before the ends of the track (see Figure 1A;
three turning points were around 75 cm, 200 cm, and 250 cm). However,
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the edges of these shortcuts had relatively small strengths because of their
infrequency. Provided that we thresholded the state transition probability
matrix by 0.2, these two shortcuts disappeared in the final topology graph
(see Figure 3D).

The overfitting problem was not an issue in our data analysis. To test
the generalization, we also tried using the first half of the data to estimate
the unknown parameters θ and then used that to decode the unknown state
sequence from the second half of the data. In this testing setup, we always
succeeded in recovering consistent state trajectories (result not shown). The
inferred spatial topology reflects the internal representation of hippocampal
ensemble spike activity.

3.2.2 Sensitivity to the Number of Place Cells, Threshold, and Bin Size. The
outcome of derived neural representations certainly depends on the number
of neurons and the coverage of their place fields. However, as far as there are
sufficient numbers of place cells with receptive fields that cover the spatial
environment, the ensemble representation shall remain similar (see more
discussion in section 5.1). In the linear track example, we randomly selected
a subset of neurons (25%–80%) and observed slightly degraded estimate in
the transition matrix, but the derived topology graph was qualitatively
similar (for more results, see section 4.2).

The exact shape of the derived topology graph also depends on the
threshold. Thresholding is considering a necessary denoising step prior to
data visualization. The purpose of thresholding is to discard the small state
transition probability values (rare events) that may not be essential in the
topology. In practice, a heuristic guideline for threshold selection is to exam-
ine the distribution (or histogram) of the state transition probability values.
Typically that will be a bi- or multimodal distribution, and we often discard
the long tails with small probability values. However, in the presence of
small or noisy samples (e.g., irregular animal behavior, insufficient place
field coverage of the environment), such a heuristic procedure may not be
sufficient. (See section 4 for further discussion.)

We also note that the neural representation of spatial topology is rather
robust with respect to varying temporal bin sizes (between 150 and 300 ms;
results not shown). When the bin size is too small to capture the timescale
of the run behavior, the correlation structure between place cells may be
difficult to detect, and therefore the derived neural representation may
be poor.

3.2.3 Comparison with Randomly Shuffled Spike Data. Based on the ob-
served hippocampal neuronal population spiking activity, we recovered
the embedded spatial topology and underlying state transition matrix that
were imposed by both the spatial environment and the animal’s behavior.
This showed that our probabilistic model was capable of capturing the un-
derlying structure of population codes. Presumably if the structure of the
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population spiking activity was destroyed, either temporally or spatially or
both, the consistent temporal firing patterns would be lost, and the inferred
spatial topology would be misidentified.

To pursue the hypothesis testing, we randomly shuffled the popula-
tion spike data and reran the analysis previously applied to the recorded
spike data. Because different random initializations led to quantitatively
and qualitatively different results, we repeated the procedure 100 times
with independent Monte Carlo simulations. In the end, we obtained the
empirical statistics from all Monte Carlo trials for both raw and shuffled
spike data. We compared the results by examining their empirical free en-
ergy distributions (see Figure 3F). The distributions of free energy derived
from the raw and shuffled data were significantly different (two-sample KS
test, P < 0.001), and the median free energy value derived from the raw
spike data was significantly greater than the one derived from the shuffled
spike data (Mann-Whitney test, P < 0.001). Therefore, our model-based
computational analysis paradigm provided an effective approach to assess
the significance of the embedded data structure.

3.2.4 Illustration on the Mouse Data. For the 1D linear track experiment,
we extended the same analysis to the population spiking activity recorded
from mice. Generally place fields from the mouse hippocampus were more
variable and nonlocalized (i.e., nonsparse) compared with those from the
rat hippocampus (see Figure 2A). In other words, the mouse hippocampal
neuronal activity was less sparse on the track. Even with a large number
of recorded mouse hippocampal units (R2 data set), we found that the
reconstructed state-space map was more ambiguous and had a sigmoidal
shape at the ends of the track (see Figure 4A1). Increasing or decreasing the
model size did not improve the result. This phenomenon was consistently
observed in other mouse data sets (data not shown). Consequently, the
inferred state transition matrix contained more errors in off-diagonal Pij
(where |i − j| > 2) entries (see Figure 4A2). After properly thresholding
small Pij values (“denoising”), the inferred topology graph reflected the
topological nature of the 1D linear track: a ring structure with two shortcut
loops (see Figure 4A3).

3.2.5 Quantifying the Variability of Hippocampal Population Codes in Single-
Lap Analysis. The variability of animal foraging behavior would be ex-
pected to lead to variability in the ensemble spiking activity on a lap-by-lap
basis. Therefore, it is important to quantify the variability of population
codes with single-lap analyses. We applied our approach to compute the
free energy score of the ensemble spike data from each single lap given the
learned statistical model. To account for behavioral variability, we normal-
ized the free energy score by the total number of temporal bins. As an illus-
tration using the ensemble spike data from the linear track (see Figure 2A),
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Figure 4: (A) Linear track (R2 data set) result. (A1) State-space map (m = 40).
Grayscale bar represents the repeated frequency of mapping between the dis-
crete state and discretized position bin of the linear track, and darker shading
represents high frequency. (A2) One example of the estimated state transition
matrix. (A3) Inferred spatial topology graph from the thresholded transition
matrix. The estimated state-space map and topology graph appeared less satis-
factory, as compared to the ones estimated from the rat data shown in Figures
3A and 3D. (B) T-maze (R5 data set) result. (B1) Ground truth state transi-
tion matrix inferred from the animal’s behavior (m = 86 from linearization of
T-maze shown in Figure 1B). (B2) Inferred spatial topology graph from the
ground truth transition matrix. (B3) State-space map (m = 60 from model se-
lection). Grayscale bar represents the repeated frequency of mapping between
the discrete state and discretized position bin of the T-maze. (B4) One exam-
ple of the estimated state transition probability matrix. (B5) Inferred spatial
topology graph from the thresholded transition matrix. Due to thresholding
of low-transition-probability values, the estimated topology graph appeared
smoother compared to one shown in panel B2.
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from laps 2 to 7, we computed the normalized free energy scores based on
50 independent Monte Carlo trials and computed the box plots and Monte
Carlo median statistics (see Figure 2B). We then used the standard deviation
(SD) statistic of the Monte Carlo median scores at single laps to evaluate the
variability of the population codes. In the rat’s case, the SD of the median
normalized free energy scores from 6 laps was 3.52 (m = 60), whereas in the
mouse’s case, the SD of the median normalized free energy scores from 6
laps was 7.20 (m = 40). In both the rat and mouse data analyzed here, there
was a statistically significant increase (paired Mann-Whitney test, P < 0.01)
in the median normalized free energy scores from the first three laps (laps
2–4) to the consecutive three laps (laps 5–7), suggesting that there might be
a nonspatial component (such as the velocity, acceleration, and novelty fac-
tor) in population codes. Of note, in the rat’s behavior, the average running
velocities during the six laps were 42.8, 40.7, 38.8, 42.8, 42.0, and 44.3 cm/s,
respectively; in the mouse’s behavior, the average running velocities during
the six laps were 22.2, 27.9, 31.6, 33.3, 30.8, and 36.4 cm/s, respectively.

3.2.6 One-Dimensional Environment with Junctions. We also examined the
experimental data recorded from the rat hippocampus while animals nav-
igated in a 1D environment that consisted of one or more junctions in the
track, such as the T-maze and H-maze. The higher behavioral diversity of
navigation in such mazes would be expected to increase connectivity in
their spatial topology graphs. In the context of topological space coding,
the junctions play a similar role to spatial singularities or marked points
(Dabaghian et al., 2011). Consequently, at the state that represents the junc-
tion point, the row of the state transition probability matrix would have two
dominant Pij values (see Figure 4B1, assuming roughly equal behavioral
sampling of choices at the junction point). As expected, the task of recov-
ering the spatial topology of such environments became more challenging.
This was reflected by an increase in the number of local maxima (of the
optimized free energy defined in equation 2.3), the frequency of nonunique
state-space mapping, and the difficulty with graph interpretation.

In the case of the T-maze data (R5 data set), among a few evaluated
models, we determined the optimal model size as m = 60 based on the
Bayesian DIC. In one illustrative example, the state-space map between
the decoded state and the linearized binned T-maze position (86 bins; see
Figure 1B) showed five disjoint line stripes (states 1–8 for bins 63–74, states
9–30 for bins 1–31, states 31–43 for bins 43–62, states 44–51 for bins 75–86,
and states 52–60 for bins 32–42; the darkness of the shading was linearly
proportional to the count statistic) (see Figure 4B3). Note that there was
also error or inconsistency in state-space mapping (overlapping mapping
for discrete bins 1–20). The estimated state transition probability matrix (see
Figure 4B4) had a few dominant off-diagonal Pij elements that reflected the
presence of one junction and the rat’s behavior, specifically turns in the
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Figure 5: H-maze (R6 data set) result. (A) Linearized position of the H-maze.
(B) State-space map (m = 85 from model selection). Grayscale bar represents
the repeated frequency of mapping between the discrete state and discretized
position bin of the H-maze. (C) One example of the estimated state transition
probability matrix. (D) Inferred spatial topology graph from the thresholded
transition matrix.

middle of the track. Consequently, the inferred topology map exhibited a
ringlike structure with several shortcut edges (see Figure 4B5), bearing a
resemblance to the ground truth topology map estimated from the animal’s
true behavior (see Figure 4B2).

In the case of the H-maze data (R6 data set), we first linearized the
H-maze track (see Figure 5A), and then determined the optimal model size
as m = 85 based on the Bayesian DIC. In one illustrative estimation result,
the state-space map between the decoded state and the linearized and
binned H-maze position showed several disjoint line stripes (see Figure 5B).
Notice that some parts of the track were less frequently navigated and the
corresponding state-space mapping for those regions was more ambiguous.
There was also partial overlapping mapping between the state and position.
The estimated state transition probability matrix had slightly more high-
valued off-diagonal Pij elements (see Figure 5C as compared to Figure 5D)
that reflected the presence of the two junctions, as well as the rat turning in
the middle of the track. By thresholding the small values of Pij, the inferred
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topology map appeared to have a multiple loop structure (see Figure 5D).
Lowering the threshold would make the topology graph appear messier
and thereby difficult to interpret. Therefore, thresholding was used as a
necessary step to “denoise” the transition matrix and “unfold” the basic
structure of the topology graph.

Thus far, we have succeeded in extracting the basic topological structure
of several 1D environments, either without or with junctions. We found
that the topology map of a linear track corresponded to a single ring (see
Figure 3D), the topology map of a T-maze corresponded to a double ring
(see Figure 4B5), and the topology map of a H-maze corresponded to a
triple ring (see Figure 5D). These results were qualitatively consistent with
the cartoon illustration shown in Figure 1 of our previous work (Chen et al.,
2012).

3.3 Spatial Topology in Two-Dimensional Open Field Navigation.
We further analyzed the ensemble spike data of rat hippocampal neurons
while the animals navigated in a 2D open field environment. Within about
24 minutes, the freely foraging rat nearly occupied the whole environment
(see Figure 1D), yet with nonequal spatial occupancy within the arena (see
Figure 6A).

In the 2D environment, there were multiple ways to bin the space, ei-
ther evenly or nonevenly. The bin size determines the number of states for
representing the 2D environment. We used equal spatial bin size varying
between 5 cm and 20 cm, which resulted in different numbers of position
bins. Doubling the spatial resolution would increase the number of spatial
bins by four. In order to seek a good trade-off among the spatial resolu-
tion, model complexity, and available data sample size, we also conducted
a model selection analysis based on the Bayesian DIC (see Figure 6G). In
the case of the R7 data set, although the Bayesian DIC favored the smallest
model size (20 cm bin size), we chose the bin size of 15 cm and the model
size of m = 8 × 9 = 72 in order to have a reasonably sized state space. To
illustrate the typical estimation result, we plotted the state-space map (see
Figure 6C, which showed the median value of the spatial position that each
state represented), the (sorted) state occupancy curve (see Figure 6D), as
well as the estimated animal’s spatial trajectories (see Figures 6E and 6F).
Note that the state-space map and state occupancy curve were constructed
only for the purpose of result assessment. In the illustrated example, the
mean (median) estimation errors across the complete run trajectory in the
x- and y-axes were 11.70 (9.02) cm and 11.71 (8.85) cm, respectively, which
were both smaller than the actual spatial bin size of 15 cm. This result
suggested that the decoding performance accuracy was quite reasonable,
considering the fact that the decoder used only a pure hippocampal ensem-
ble topological code in the complete absence of spatial information of the
environment.
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To test against the null hypothesis (H0) that the spike data were random
and nonstructured, we shuffled the population spike count data (row and
column shuffling as before) and repeated the random shuffling procedure
100 times, each based on independent initial conditions. We compared the
Monte Carlo distributions of the free energy values derived from the raw
and shuffled spike data. In addition, we tested against another alternative
hypothesis (H1) that the raw spike data were observed in a 1D navigation
environment (as opposed to a 2D navigation environment). As shown in
Figure 6H, nonparametric statistical testing indicated that the median free
energy obtained from fitting the raw spike data under the 2D-environment
hypothesis (H2) was significantly greater than those obtained from the H0

and H1 hypotheses (Mann-Whitney test, P < 0.001). In addition, the H2 hy-
pothesis free energy distribution was significantly different from both the H0
and H1 hypothesis free energy distributions (two-sample KS test, P < 0.001).

Given a spatially binned open field environment, we could compute the
ground truth state transition matrix directly from the animal’s behavior
(see Figure 7A), from which the ground truth spatial topology graph was
inferred (see Figure 7C). Based on the hippocampal neuronal ensemble spik-
ing activity alone, we also inferred the state transition matrix (see Figure 7B)
and the associated topology graph (see Figure 7D). Note that the diagonal
elements of the transition matrix were first zeroed out before feeding the
transition matrix to infer the topology graph (since the self-transition did
not reveal any connectivity information). In comparing the ground truth
(see Figures 7A and 7C) with the estimated results (see Figures 7B and 7D),
we observed a close qualitative similarity. Basically, the ground truth topol-
ogy graph reflected the viewpoint of an ideal external observer, which con-
sisted of an evenly spaced grid. Notably, the topology graph inferred from
the animal’s hippocampal activity (“internal observer”) appeared some-
what different in that the grid was nonevenly spaced and there were a few
relatively large holes within the graph. This discrepancy might be ascribed
to two plausible explanations: First, the externally observed behavior was
not necessarily the same as what the animal perceived and represented in its
neuronal activity. For example, it is well known that hippocampal neurons
encode spatial as well as nonspatial features (Wiener, Paul, & Eichenbaum,
1989; Hampson, Simeral, & Deadwyler, 1999; Lenck-Santini, Rivard, Muller,
& Poucet, 2005). Second, because we temporally binned the spiking activity
into 250 ms bins, the spike count statistic could vary because of run velocity
variability at different spatial locations (see Figure 6B). Generally the firing
rates of hippocampal place cells are positively correlated to the run velocity
of the animal (Zhang et al., 1998; Lu & Bilkey, 2012). In the open field envi-
ronment, rats typically ran faster along the edges of the arena and slower
across the central area of the arena. It is therefore plausible that in the rat’s
brain, the 2D environment might not be equally mapped or represented
in Euclidean metric. For two running trajectories of equal distance, two
spatial locations more quickly navigated would be represented as closer
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than two spatial locations more slowly navigated. To verify our conjecture,
we did two additional tests. First, we increased or decreased the spatial
bin size and repeated the analysis, but found that changing the spatial bin
size did not affect this observation qualitatively. Second, we simulated a
20 min 2D random walk trajectory (with equal velocity at each step) along
with population spike data (based on the real place fields estimated from
the R7 data set) and repeated the analysis, and in this case we found that
the holes disappeared (data not shown). This suggests that differences in
run velocity may underlie inhomogeneous grid spacing represented by the
ensemble spike data.

3.4 Quantification Derived from Topology Graphs. Given the inferred
state transition matrix and topology graph, we can quantify the animal’s
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behavior in time even in the absence of spatial correlate. With the inferred
state trajectory, we may construct a directed graph that consists of a number
of nodes linked together by arrows known as edges. Arrows indicate the
direction of the relationship between two nodes. The number of arrows
ending at a specific node is called the in-degree of the node and the number
of arrows leading from it is called the out-degree. In time, we can characterize
the activeness of the animal’s run behavior by counting the number of
uniquely visited nodes (normalized by the total number of the nodes). Other
quantitative measures, such as the visited frequency of the nodes and the
occurrence frequency of state sequences, are also informative to characterize
the animal’s behavior (e.g., effects of experience or anxiety) or intended
behavior (e.g., during the immobile or sleep state) in the absence of spatial
correlate. (See Figures 7E to 7H for illustrations of such quantifications on
two open-field experimental data sets, R7 and R8.)

3.4.1 Topological Complexity. We further investigate the question that
given a derived topology graph, is there any quantitative measure for topo-
logical complexity that is independent of the shape and size of the graph
as well as the between-node distance? In other words, the topological com-
plexity shall reveal key information about the mapping between spatial

Figure 6: Open field (R7 data set) result. (A) Space occupancy map in an evenly
binned 8 × 9 grid (15-cm spatial bin size). (B) Histogram of the rat’s run velocity
with a 250 ms temporal bin size. (C) One example of the estimated state-space
map, where the median value of the spatial position that each state (circled
number) represented was shown. From the numbered state sequence, one can
infer the animal’s trajectory in the open field. (D) The comparison of true and
estimated (sorted) state occupancy curves, which both showed a skewed dis-
tribution. (E, F) Snapshot comparison between the true (black) and estimated
(blue) animal’s run trajectory in the 2D environment (based on the mapping
in panel C). The mean estimation errors across the complete run trajectory on
the x- and y-axes are 11.70 cm and 11.71 cm, respectively. (G) Model selection
for spatial bin size based on the Bayesian deviance information criterion (DIC).
Error bar statistics were computed from the results of 50 independent Monte
Carlo trials. (H) Distributions of the free energy value derived from the H2 hy-
pothesis with raw (red solid curve) and shuffled (dotted curve) spike count
data, and from the H1 hypothesis with raw data (blue dashed curve). All free
energy values were obtained based on the same model size (m = 72). Probability
distributions of the free energy were estimated from 100 random Monte Carlo
trials. The median free energy derived from the H2 hypothesis with raw data
(red solid curve) was significantly greater than those derived from the H0 and H1

hypotheses (Mann-Whitney test, P < 0.001). The free energy distribution of H2
(red) was significantly different from the others (two-sample KS test, P < 0.001).
A color version of the figure is provided in the online supplementary material.
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locations and the states (or nodes). Given the inferred state-space map, we
can assess the state density for every spatial location in the environment,
and we define the topological complexity Td by the mean state density
across all spatial locations. Specifically, the state density measures the de-
gree of ambiguity about the number of unique states required to represent
a specific spatial location. The state density is also independent of the spa-
tial sampling and behavioral occupancy. For instance, a topographic map
representation would imply Td = 1 since there is only one-to-one mapping
between the spatial locations and states. In theory, a linear track would
have Td = 2 due to the direction ambiguity (i.e., two states are required to
represent the same spatial location). For a similar reason, the junction points
of the T-maze or H-maze would have a higher state density due to many-
to-one state-space mapping. As expected, the 2D open field environment
would have a higher mean state density than the 1D environments.

To confirm our conjecture, we computed the heat maps of state density
for four topologically different environments from previous examples (see
Figure 8). As expected, the topological complexity Td is increased from
the linear track (R1, m = 60), to T-maze (R5, m = 60), to H-maze (R6, m =
85), and to open field (R7, m = 72), with increasing estimated mean state
density (or Td) of 2.02, 2.35, 2.40, and 4.15, respectively. The computation of
state density also took into account the size of m by properly adjusting the
distance metric. In all heat maps, the spatial bin size is 5 cm; therefore, the
state density unit is 5 cm−1 (1D environment) or 25 cm−2 (2D environment).
Interestingly, the respective median state density estimates are 2, 2, 2, and
4, revealing the true difference in topological complexity between 1D and
2D environments.

Figure 7: Open field (R7 data set) result. (A) Ground truth state transition prob-
ability matrix estimated from the animal’s behavior (m = 72). (B) One example
of the state transition probability matrix estimated from the ensemble spike
data, which shared a similar structure as panel A. In panels A and B, the diago-
nal elements {Pii} of the matrices were zeroed out before feeding the transition
matrices to infer topology graphs. (C, D) Ground truth topology graph (from
the ground truth transition matrix) and inferred topology graph (from the es-
timated transition matrix), respectively. (E, F) Topology graphs inferred from
hippocampal ensemble activity for the open field environment (left column: R7
data set; right column: R8 data set). All axes of the panels are in au. Nodes
correspond to states. In each panel, the animal’s run trajectory during the first
2 minutes was color-coded. (G, H) Quantification of the animal’s behavior in
terms of the number of visited nodes within the graph shown above every
30 seconds (normalized by the total number of visited nodes). Error bar shows
the SD estimated from 10 Monte Carlo runs. A color version of this figure is
provided in the online supplementary material.
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Figure 8: (Top row) Heat maps of inferred state density (in color bar) for four
spatial environments (shown in Figure 1), with estimated topological complex-
ity Td (mean state density) and state dimensionality m shown above. In all heat
maps, the spatial bin size is 5 cm; therefore, the state density unit is 5 cm−1 or
25 cm−2. Note that the state density is typically higher at the bifurcation points
in the T-maze and H-maze. (Bottom panel) Estimated mean and median state
density statistics for the above four spatial environments. Error bar shows the
SD statistic from 10 Monte Carlo runs.

3.5 Hippocampal Neuronal Representation During Quiet Wakeful-
ness. Next, we examined the ensemble spiking activity from the rat hip-
pocampus in a linear track environment when the animal was awake and
stationary (i.e., nonlocomotion, velocity threshold: <2cm/s), which we re-
fer to as the off-line awake state. During the quiet wakefulness, ripple
activity (150–250 Hz) was frequently observed in the hippocampal local
field potential (LFP), which was associated with brief multi-unit activity
(MUA) bursts. We used a previously established criterion (Davidson et al.,
2009) to detect these MUA bursts and examined the associated hippocam-
pal ensemble spiking activity. Many groups have reported the compressed
reactivation of spatial sequences (replay events) in this state, in association
with sharp wave ripples (SPW-R) (Foster & Wilson, 2006; Diba & Buzsáki,
2007; Davidson et al., 2009; Karlsson & Frank, 2008; Carr, Jadhav, & Frank,
2011; Jadhav, Kemere, German, & Frank, 2012).

We adapted our method to detect such replay events in the off-line
awake state. We first binned the ensemble spiking activity with a 250 ms
bin size during periods of locomotion (velocity threshold >15 cm/s). We
then binned the ensemble spiking activity with a 25 ms bin size (com-
pression factor of 10) during periods of hippocampal SPW-R-associated
MUA bursts. In the learning mode, we estimated the state transition matrix
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Figure 9: Detection of the reactivation of spatial sequences on a linear track
(R4 data set). (A) Animal’s position on the track (blue line). The horizontal
red line indicates the the stationary awake period where the animal had low
velocity (<2 cm/s) and high SPW-R-associated hippocampal multiunit activity
bursts (MUA > mean +4 SD). (B) Animal’s run velocity, where the horizontal
line represents the 2 cm/s velocity threshold. (C) Aggregated MUA across all
tetrodes, where the horizontal dashed and solid lines represent the mean and
mean + 4 SD of the MUA, respectively. (D) State-space map inferred from the
locomotion period. (E, F) Snapshots of the ensemble spiking activity from 18
single units during quiet wakefulness. (G) Reconstructed state trajectory for
a replay event from panel F. Note that in our replay detection approach, the
virtual position can be “filled in” even in the absence of spiking activity in some
time bins. A color version of this figure is provided in the online supplementary
material.

based on the ensemble spike data from the locomotion period (R4 data set,
m = 42). In the testing mode, we fed in the ensemble spike data during
quiet wakefulness using the previously estimated state transition matrix.
Specifically, we computed the free energy score of the data and the posterior
probability trace of the state trajectory. An illustrative example is shown in
Figure 9. In Figures 9A and 9B, the animal’s position and run velocity on the
track are displayed as a function of time. Figure 9C shows the hippocampal
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MUA aggregated across all seven tetrodes, and Figure 9D shows the state-
space map inferred from the data during RUN epochs. The state-space
mapping had some ambiguity mainly due to very short recording of RUN
epochs (2.5 min and 9.5 full laps). Within the period of hippocampal SPW-R-
associated MUA bursts (see Figure 9E), we applied the decoding analysis to
hand-picked ensemble spike data where many (>8) units were active (see
Figure 9F) and estimated the posterior probability of the state trajectory
(see Figure 9G). As an illustrated result shown in Figure 9G, we recovered
one long (sequence length >4) state trajectory (9 consecutive time bins of
state ID: 6 → 7 → · · · → 14) that had high posterior probability. From the
inferred state-space map (see Figure 9D), the replayed state trajectory cor-
responded to an inbound-run trajectory from around 175 cm to 100 cm on
the track. The virtual replay speed was about 333 cm/s, 10 to 15 times faster
than the behavioral velocity (see Figure 9B). The compression factor was
consistent with the scale reported in previous findings (Foster & Wilson,
2006; Davidson et al., 2009). For each candidate replay event, we also ran
the inference procedure multiple times, each based on a different initial
condition. Based on many Monte Carlo trials, we could score the candidate
replay event by its repeated frequency (via state-space mapping) and pre-
dictive free energy and then determine its statistical significance using a
predefined criterion. If the replay event was significant, the repeated fre-
quency and predictive free energy of the replayed spatial sequence would
be presumably high; in contrast, the predictive free energy of a random spa-
tial sequence derived from randomly shuffled spike data would be lower.
Nevertheless, we did not delve into this issue further since it was beyond
the focus of this study.

4 Topological Versus Topographic Coding of Spaces

There has been debate on the role of hippocampal population codes
between topographic and topological representations of the spatial envi-
ronment. In section 3, we focused on the sufficiency of topological repre-
sentation. However, neither the necessity nor the efficiency of a topological
code has been studied as compared to the topographic code. In this section,
we investigate a few specific questions. Given the well-known fact that ve-
locity information is encoded in hippocampal rate codes (Zhang et al., 1998;
Hirase, Czurkó, Csicsvari, & Buzsáki, 1999; Huxter, Burgess, & O’Keefe,
2003; Lu & Bilkey, 2012), is it possible for hippocampal neurons to utilize
such metric information to accommodate a fuzzy and mixed representation
or to construct a topological map with topographic constraints? From a
computational perspective, what is the optimal spatial representation that
achieves a trade-off between decoding accuracy and encoding efficiency?
How does the topological representation vary with respect to the number of
the neurons? How does the favor of the topological versus topographic cod-
ing (in terms of the decoding accuracy) change with respect to the number
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of neurons? The answers to these questions are important and relevant not
only in neuroscience but also in engineering applications (such as robotics).

4.1 Comparison of Decoding Efficiency Between Topological and To-
pographic Codes. A full topographical map implies topological informa-
tion. However, it is unclear whether a full topographical map is necessary
for the hippocampus to adequately represent the spatial environment. To
address this question, we compared the decoding performance of a pure
topological code, a topographically constrained code, and a pure topo-
graphic code in an open field environment (R7 data set). In a pure topologi-
cal code, there are no a priori place fields, and no spatial correlate can be used
in encoding. In contrast, in a pure topographic code, the spatial correlate is
used in encoding to estimate the place fields of individual units, which are
subsequently used for decoding. For place fields, we used a nonparametric
model based on the assumption of Poisson firing rate statistics (see section
2.6). A topographically constrained code is intermediate between purely
topographic and purely topological, such that some of the states in the
topological map are provided by topographic (actual spatial) information
and are topographically constrained as landmarks in the environment.

First, we systematically varied the percentage level of topographic con-
straints in the topological code and compared the decoding accuracy. A
code with 0% topographic constraint implies a pure topological code (de-
coding result illustrated in Figures 6E and 6F), whereas a code with 100%
topographic constraints is essentially a pure topographic code (in this case,
place fields were estimated and applied to maximum likelihood decoding
analysis). In the case of a pure topographic code, by varying the spatial bin
size from 15 cm to 10 cm to 5 cm, we obtained the respective average median
decoding errors as 11.13 cm, 8.25 cm, and 5.59 cm. To begin to consider a
topological code with topographic constraints, we randomly assigned the
spatial bins, either uniformly or proportional to the spatial occupancy fre-
quency in space (see Figure 6A), with the actual (known) spatial locations as
landmarks. For a spatially-binned 8 × 9 open field environment (with 15 cm
bin size), the percentage of the topographic constraints varied from 0, 10,
20, 40, 60, 80, to 100. Except for the 0 and 100% levels, at each percentage
level, we repeated random samplings with different assignments 20 times
to compute the mean decoding error. Thus, decoding error was evaluated
over all epochs of run behavior based on the animal’s actual positions. The
result is shown in Figure 10A. As expected, as more topographic constraints
were imposed, the decoding accuracy gradually improved to a minimum
of 7.5 cm (half bin size at 100% level). In contrast, for the finest pure topo-
graphic code (with 5 cm spatial bin size), the mean and median decoding
errors are 10.08 cm and 5.59 cm, respectively.

To gain further insight into the topological code without or with topo-
graphic constraints, we hypothesize an idealized situation where the animal
has sampled uniformly (i.e., equal navigation occupancy) and sufficiently
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Figure 10: (A) Comparison of decoding accuracy as a function of percentage
of topographic constraints, where the error bar shows the SD among 20 Monte
Carlo trials with random sampling. The code with 0% topographic constraints
implies a pure topological code, whereas the code with 100% topographic
constraints is essentially a pure topographic code. (B) An idealized curve be-
tween the order of average decoding error and the number of topographic
constraints varying from 0 to m. According to certain criteria, an optimal num-
ber 3 < m∗ < m may be identified to achieve a desirable trade-off between the
average decoding error and the number of topographic constraints. (C) Decod-
ing accuracy of topographic codes as a function of sample size with strategies
of uniform sampling and occupancy-based sampling. (D) Decoding accuracy of
topographic codes as a function of sample size with varying spatial bin size. In
panels C and D, horizontal lines represent the average decoding error from the
pure topological code given 15 cm bin size.

in a circular environment (with radius 1 and area π). Without loss of gen-
erality, uniform landmark sampling in the environment is also assumed.
When the number of landmarks is 0, there is no spatial correlate, and one
cannot establish any correspondence between the abstract spatial topol-
ogy and actual environment. In this limit, the decoding error is infinity
(without relying on occupancy and state-space map). When the number of
topographic constraints is 1 (say, the landmark state i is in the center), given
any nonzero state transition probability Pik or Pki (1 ≤ ∀k ≤ m, k �= i) and
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the velocity information, one can estimate the between-state distance dik;
however, since there is no direction information, there will be uncertainty
(radius of dik around the center) about the kth state location in the environ-
ment. In this case, the average error for mapping the remaining m − 1 states
is on the scale of the width of environment (diameter 2). When the number
of topographic constraints is 2 (say, the landmark states i and j are along
the diameter of the circular environment), given any nonzero state transi-
tion probability Pik, Pjk, Pki or Pkj (1 ≤ ∀k ≤ m, k �= i, j), one can estimate the
between-state distances dik and djk based on the velocity. Since in this case,
there is more metric information, the uncertainty and average decoding er-
ror are reduced (roughly to the scale of 1). As three topographic constraints
are imposed, given the estimated between-state distances, we can use these
three spatial locations to triangulate the remaining (m − 3) state locations.
Further addition of landmarks will impose increasing constraints on the
environment, and the decreased decoding error will gradually saturate. Ul-
timately the uncertainty and decoding error will fall to 0, as the number
of topographic constraints approaches m. Under certain criteria, one can
envision an optimal number 3 < m∗ < m that achieves an optimal trade-off
between the decoding error and the number of topographic constraints. (See
Figure 10B for an idealized illustration.) In practice, the value of m∗ may
vary as a function of the animal’s spatial occupancy, behavioral sampling
(and the induced state transition statistics), and the size of m.

Next, in order to test the efficiency and robustness of the topographic
code while fixing the number of neurons, we systematically varied the per-
centage of the sample size (i.e., the number of temporal bins along with
the spatial correlate during run epochs) available for encoding analysis. A
topographic code with 100% sample size would produce the best achiev-
able decoding accuracy, and the decoding accuracy would degrade with
decreasing sample size. In contrast, the performance of a pure topological
code would remain unchanged because of its encoding-free nature. We var-
ied the sample size percentage (5%, 10%, 25%, 50%, 75%, and 100%) by sam-
pling either uniformly or proportional to the spatial occupancy frequency
in time, and computed the median decoding error. Regardless of the sample
size, the decoding analysis was always evaluated on the total run epochs
based on the animal’s actual positions. In this example, T = 2356 temporal
bins and m = 72 spatial bins were used to represent an area of 1.26 m2. The
result is shown in Figure 10C. As fewer samples were used in encoding, the
decoding accuracy of a topographic code degraded (first slowly and then
dramatically around 50%). This phenomenon was present in both uniform
sampling and occupancy-based sampling, but the performance was worse
in uniform sampling. This effect also persisted for various choices of spa-
tial bin size (see Figure 10D, assuming uniform sampling). Although the
exact statistics could depend on the animal’s run behavior, we expect this
phenomenon would generalize across behavior. In this example, when the
sample size was below 25%, the decoding accuracy of the topological code
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(with 15 cm bin size) outperformed that of the topographic code (even with
the finest bin size). Note, however, that if the spatial bin size of the topolog-
ical code was reduced to 10 cm or 5 cm, the decoding performance of the
topological code deteriorated, partially due to the insufficient sample size
required to infer a large state space. In principle, animals can use an adap-
tive spatial representation (e.g., fine/low resolution in high/low behavioral
occupancy regions) to compensate for nonuniform spatial sampling.

4.2 Spatial Representation with Respect to Number of Neurons. Spa-
tial topological representation of population codes depends on the hip-
pocampal place cells. In order to examine how the topological representa-
tion changes with respect to the number of place cells, we randomly selected
a subset of neurons (10%, 25%, 50%, 75%) to run the same analysis for both
1D (R1 data set) and 2D (R7 data set) environments. We fixed the state
dimensionality m = 60 for the 1D environment and m = 72 for the 2D en-
vironment. As a general observation, as the number of neurons decreased,
the quality of the reconstructed state-space map reduced or became more
ambiguous (see representative examples in Figure 11A, as compared to
Figure 3A), so did the state transition matrix (result not shown). However,
the derived topology graph was relatively robust for both environments
(see Figure 11B). Specifically, in the 2D open field environment, as fewer
number of neurons were included, the detail of the topology graph started
to be missing (possibly due to the lack of place field coverage in certain
spatial locations); however, the 2D grid structure was still preserved.

In addition, we repeated the same decoding analysis as Figure 10C and
compared the decoding accuracy between topological and topographical
codes with varying numbers of neurons. The results on the median and
median decoding error across 10 random trials are shown in Figure 11C.
As expected, the performance of both topological and topographical codes
degraded with the decreasing number of neurons. Furthermore, it appeared
that the topological code had overall superior performance in decoding
accuracy, especially in the presence of small number of neurons. In the 2D
example here, the topographic code only obtained a lower average median
decoding error with more than 36 neurons (75% out of 47).

To summarize the findings of this section, we have demonstrated the
merits and limitations of topological and topographic codes in spatial rep-
resentation and decoding accuracy. A pure topographic code would imply
a precise characterization of the place fields with respect to the full environ-
ment. Such a code would be optimal for decoding, but it is not necessarily
efficient for encoding, especially in the presence of a large environment and
small sample size. In contrast, an abstract topological code with a small
number of topographic constraints may achieve a good trade-off between
decoding accuracy and encoding efficiency. For the same practical reason, it
is more efficient for downstream neurons of the hippocampus to decode an
animal’s spatial location based on a “fuzzy” semitopographic map without
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Figure 11: (A) Examples of the derived state-space map for the 1D linear track
environment (m = 60, R1 data set) with varying numbers of neurons (10%, 25%,
50%, 75% out of 74). (B) Examples of the derived topology graph for the 2D
open field environment (m = 72, R7 data set) with varying numbers of neurons
(10%, 25%, 50%, 75% out of 49). (C) Comparison of the mean and median
decoding errors between the topological and topographic codes in the same 2D
environment with varying numbers of neurons. Error bar was obtained from
10 random trials.

storing or accessing the place fields of neuronal ensembles. In addition,
the topological code is more robust in terms of spatial representation and
decoding accuracy, especially with fewer neurons.

5 Discussion

Although the physiology of rodent hippocampal cells has been well studied
(Nakazawa, McHugh, Wilson, & Tonegawa, 2004; Ahmed & Meht, 2009), it
remains unclear how ensembles of hippocampal place cells could represent
abstract spatial topology through spiking activity alone. Understanding
the internal representation of rodent hippocampal population codes from
the perspective of the internal observer would provide insight into the
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population coding mechanism. Here we investigate this problem using a
computational approach based on statistical modeling and inference.

Our approach employs unsupervised learning for exploratory analysis
of neural ensemble spike data, aiming to discover the inherent temporal
structure embedded in population codes. This approach is generalizable
beyond the rodent hippocampus, and in principle can be applied to record-
ings from other neural circuits in both rodents and primates. For modeling
other systems, we can employ a parametric neuronal tuning curve model
that incorporates covariates (Chen, Vijayan, Barbieri, Wilson, & Brown,
2009; Chen, Putrino, Ghosh, Barbieri, & Brown, 2011). Such a model-based
approach allows us to examine ensemble spiking activity in greater detail,
such as quantifying the representation variability of single-lap data. We can
test hypotheses about the dimensionality (1D versus 2D) of spatial topol-
ogy embedded in hippocampal population codes, and we can also compare
the coding efficiency between topological and topographic codes. Specifi-
cally, the quantitative measure of topological complexity may be useful not
only in revealing the dimensionality of the spatial topology but also allow-
ing us to compare hippocampal ensemble representations under different
behavioral conditions in the same environment.

5.1 Triangulating Embedded Topological Spaces. A general mathe-
matical theory of triangulating topological spaces has been previously dis-
cussed in Curto and Itskov (2008) and Dabaghian et al. (2011, 2012). In
theory, provided that the spatial environment is covered by a number of
overlapping rodent hippocampal place fields that are convex, the space
can be triangulated. Consequently, when the place cells fire consistently
in time whenever the animal forages in the same spatial location, one can
construct cell groups whose spiking activity coverage represents the topo-
logical subsets from which the embedded topological space can be triangu-
lated. Accordingly, as long as the space is fully covered by place fields, the
topological representation of the spatial environment will remain relatively
unchanged even in the presence of plasticity or remapping of individual
place fields.

5.2 Relation to Other Methods and Limitation of Our Approach. Re-
cently a few computational approaches have been proposed to uncover
the spatial topology maps from hippocampal population codes (Curto &
Itskov, 2008; Dabaghian et al., 2012). These approaches are based on two
common assumptions: (1) the temporal pattern of hippocampal neuronal
firing (especially co-firing) is key to decoding spatial information, and
(2) since cofiring implies spatial overlap of place fields, a map encoded
by cofiring of place cells will be based on connectivity and adjacency, which
will give arise to a topological map.

Specifically, the basic idea of the algebraic analysis approach (Curto
& Itskov, 2008) is (1) to define some cell groups consisting of place cells
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that collectively fire within a 2 theta cycle (250 ms) window, (2) extract the
topological features (homology groups) from the cell groups, (3) reconstruct
a topology graph for every cell group and a distance matrix for any pairwise
cell groups, and (4) to run a nonmetric multidimensional scaling (MDS)
algorithm to visualize the distance matrix, thereby revealing the embedded
spatial topology. In their theoretical assumptions, the hippocampal place
fields were convex (except for a small percentage of multipeaked place
fields), and the union of the place fields covered the entire space. In practice,
these assumptions are not always valid; in addition, temporal smoothing
of the spike trains and selection of proper threshold values in steps (2) and
(3) are crucial in their analysis (K. Marku, personal communication).

In the investigation of two open field experimental data sets (R7 and R8),
we have also analyzed the hippocampal ensemble spike data using soft-
ware of the algebraic approach (http://www.math.unl.edu/∼vitskov2/
software/SpikeTop/). We found that the results derived from the algebraic
analysis were less intuitive and difficult to interpret. In addition, the final
results were rather sensitive to the thresholding and smoothing operations
(data not shown due to space limitation), whereas the outcomes of our
derived topology graph were more robust with respect to different initial
conditions (with or without thresholding). This might be due to the fact that
our probabilistic model explicitly exploits the Markovian structure of the
population codes. Provided that the Markovian structure of {S(t)} is dis-
carded and the spike activity at any time bins is marginally independent,
then all methods will boil down to estimating the correlations between
place cells.

In our statistical approach, the derived topology graph relies on an ac-
curate estimate of the state transition matrix. As discussed in section 3,
thresholding is a useful step to denoise the estimated state transition matrix.
In addition to the heuristics, another possible solution is to systematically
search for a suboptimal threshold along a thresholding path, and the se-
lected threshold would reflect a good trade-off between the interpretability
of the graph and the topological complexity. Nevertheless, how to choose
sensible threshold value to produce a reliable topology graph remains a
subject for future study.

5.3 Neural Representation of Spatial Maps and Temporal Sequences.
In rodents, various forms of spatial maps are represented in the
hippocampus-entorhinal cortex network. It was suggested that the hip-
pocampus functions as an associative or attractor network (Tsodyks, 1999)
that encodes the abstract topological map of the space, which serves
as a locus of the animal’s spatial awareness (Burgess & O’Keefe, 1996;
Muller, Stead, & Pach, 1996), whereas other parts of the circuit (such as the
entorhinal cortex) provide metric information with a complementary rep-
resentation of the environment. Although we have restricted our focus
to hippocampal place cells, other types of cells, such as grid cells, head
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direction cells, and border cells, also contribute to spatial representation
and navigation (Leutgeb, Leutgeb, Moser, & Moser, 2005; McNaughton,
Battaglia, Jensen, Moser, & Moser, 2006; Mathis, Herz, & Stemmler, 2012).

Hippocampal place fields are well known to be plastic in novel environ-
ments (Frank, Stanley, & Brown, 2004; Frank, Brown, & Stanley, 2006) and to
remap with manipulation of spatial cues and with progressive morphing of
the environment (Gothard, Skaggs, Moore, & McNaughton, 1996; Colgin,
Moser, & Moser, 2008; Leutgeb, Leutgeb, Treves, Moser, & Moser, 2004; Leut-
geb, Leutgeb, Treves, et al., 2005). These findings suggested the topological
coding nature of the rodent hippocampus. One theoretical hypothesis of
topological coding is that Voronoi tessellation of many overlapping place
fields provides a triangulation of the space and that a topological repre-
sentation is achieved by chaining these neighboring subspaces together
through sequential neuronal activity (Dabaghian et al., 2011).

The rodent hippocampus is also responsible for representing episodic
memory in the form of ordered temporal sequences (Hasselmo, 2012). The
representation of topological maps can be viewed as a form of ordered
spatial sequence, where the place cells encode the “relative” space while
animals forage in the environment. When the space is morphed, the place
fields also change accordingly. In most rodent behavioral tasks, space and
time are strongly coupled and nearly inseparable (Redish, Rosenzweig,
Bohanick, McNaughton, & Barnes, 2000). Recently, the question of a hip-
pocampal representation of time has been studied by disentangling the
spatial component (Pastalkova, Itskov, Amarasingham, & Buzsáki, 2008;
MacDonald, Lepage, Eden, & Eichenbaum, 2011). In a temporal sequence
memory task, during the delay periods hippocampal neuronal ensembles
temporally organized and disambiguated distinct sequences of events that
comprised specific repeated experiences (MacDonald et al., 2011). It would
be interesting to use our approach to investigate these “time cells” and
“time fields.”

5.4 Efficiency of Topological and Topographic Codes. From a compu-
tational decoding perspective, a topological code is more efficient than a
pure topographic code, especially in the presence of a large environment
and sparse sample size. It is impractical to restore every piece of topographic
information in the real world. To improve accurate spatial representation,
a topological code can be incorporated with some metric information and
topographic landmarks, producing a fuzzy semitopographic map. Animals
may use different behavioral strategies (such as nonperiodic stopping or
orienting) to identify landmarks inside the environment. In addition, other
neurons, such as border cells and visual cortical cells, can provide addi-
tional cues for the environment, which together may produce a coherent
spatial representation. Such a spatial mapping strategy has been widely
used in robotic localization and mapping.
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5.5 Implications Beyond Hippocampal Population Codes. The prob-
abilistic interpretation of neural population codes has become an active
research topic (Zemel, Dayan, & Pouget, 1998; Ma, Beck, Latham, & Pouget,
2006; Beck, Ma, Latham, & Pouget, 2007). An accurate statistical charac-
terization of neural codes would enable us to better understand neural
representations at both single cell and population levels. This would also
help to develop efficient algorithms to decode neural ensemble spiking
activity online in brain-machine interfaces (Kemere et al., 2008). Character-
izing the internal representation of ensemble spiking activity in terms of
hidden states facilitates our intuitive understanding of data acquired dur-
ing various tasks, including eye movement, motor planning, associative
learning, motor planning, and reaching movement (Seidemann, Meilijson,
Abeles, Bergman, & Vaadia, 1996; Rainer & Miller, 2000; Smith et al., 2004;
Jones, Fontanini, Sadacca, & Katz, 2007; Czanner et al., 2008; Yu et al., 2009;
Chen et al., 2009; Lawhern, Wu, Hatsopoulos, & Paninski, 2010). In addition,
the variability in behavior and task-related neural responses at the single
cell level would be expected to contribute to variability in population re-
sponses. Statistical approaches may provide a quantitative way to examine
such noisy ensemble spiking activity across trials.

The concept of topological coding of a stimulus is not limited to the repre-
sentation of space in the rodent hippocampus. In fact, similar experimental
findings have been reported in the primate primary motor cortex (M1)
(Georgopoulos, 2002) and primary visual cortex (V1) (Singh et al., 2008).
Georgopoulos (2002) discussed motor topology and the neural represen-
tations of direction, size, and location of movement in space. Specifically,
he reviewed the results of of behavioral studies of drawing geometrical
figures and discussed how the representation of topological features can be
invariantly extracted from primate M1 neuronal populations irrespective
of attributes of size, location, and the muscles effecting the motor trajec-
tory. In another context, Singh et al. (2008) cast the fundamental question
about neural representation in terms of the topological structure of primate
V1 neuronal ensemble spiking activity. They reported that the topological
structure of V1 spiking patterns was similar to those evoked by natural im-
age stimulation and consistent with the topology of a 2-sphere in 3D space.
Other brain areas such as the restrosplenial cortex (RSC) (Wyss & Van Groen,
1992; Vann, Aggleton, & Maguire, 2009) might also use topological coding
for kinematic stimuli.

6 Conclusion

We have applied a computational approach to examine the neural represen-
tation of spatial topology in the rodent hippocampus. Using probabilistic
modeling and Bayesian inference without access to spatial correlates of the
neuronal activity, we successfully extracted the underlying topological fea-
tures (e.g., junctions and dimensionality) of the environment, in addition to
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certain metric (semitopographic) information (e.g., track length) embedded
in the population code. The topological representation of space embed-
ded in rodent hippocampal population codes was robust. Our results raise
several testable questions: How would the internal representation of pop-
ulation codes change with manipulation of hippocamal function, such as
partial hippocampus lesions (Kesner & Novak, 1982), transgenic manipula-
tions of hippocampal circuitry (McHugh, Blum, Tsien, Tonegawa, & Wilson,
1996; Suh, Rivest, Nakashiba, Tominaga, & Tonegawa, 2011), or Alzheimer’s
disease models (Cacucci, Yi, Wills, Chapman, & O’Keefe, 2009)? In addi-
tion, how can our approach be extended to the analysis of sleep-associated
ensemble spike data in which there is no behavioral correlate to compare
against? These questions will be the topic of our future investigations.

Appendix

A.1 Electrophysiology and Recording. Male Long-Evans rats or mice
were implanted with microdrive arrays containing between 11 and 24
tetrodes. The microdrive arrays were implanted above either the right
dorsal hippocampus or bilaterally above both hippocampi in one rat
(Yamamoto & Wilson, 2008). The tetrodes were slowly lowered into the
brain reaching the cell layer of CA1 two to four weeks following the date of
surgery. Each tetrode’s signal was split into spike and LFP channels. Spike
channels were filtered between 300 Hz and 6 kHz, and the LFP channels
were filtered between 1 Hz and 450 Hz. Thresholds were set on each tetrode
channel and waveform shape was saved from each tetrode channel when-
ever an individual channel passed a fixed threshold. A differential reference
electrode was left in the white matter immediately dorsal to the hippocam-
pus. Recorded spikes were manually clustered and sorted to obtain single
units using a custom software (XClust, M.A.W.). Once stable units were
obtained, the rodents were allowed to explore freely in the environment.
We used diodes placed on the head of each animal to track position with a
sampling rate of 30 frames/s.

A.2 Animal Behavior. Under different experimental protocols, rodents
(rats or mice) freely foraged in specific spatial environments, including a
linear track, T-maze, end-to-end T-maze (“H-maze”), and open field (see
Figure 1). In the linear track, T-maze and open field, there were no behavioral
restrictions placed on the animals, and the rodents were encouraged to
explore the environment with rewards (e.g., chocolate sprinkles, fruit juice)
distributed at the end of the tracks or inside the open field. In the H-maze,
the animals performed a spatial working memory task involving paired
sample and test epochs, as described in Jones and Wilson (2005). In the
sample phase, rats ran in the “force” direction to turn left (L) or right (R)
to win reward. In the test phase, rats ran the “choice” direction and found
reward by choosing the reward site that required a non-matching behavior
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(turning R or L). To identify the period of rodent locomotion during spatial
navigation, we used a velocity threshold (>10 cm/s for mice and >15 cm/s
for rats) to select the RUN epochs and merged them together.
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