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Computing hubs in the hippocampus and cortex
Wesley Clawson, Ana F. Vicente, Maëva Ferraris, Christophe Bernard*,
Demian Battaglia*†, Pascale P. Quilichini*†

Neural computation occurs within large neuron networks in the dynamic context of varying brain states. Whether
functions are performed by specific subsets of neurons and whether they occur in specific dynamical regimes
remain poorly understood. Using high-density recordings in the hippocampus, medial entorhinal, and medial
prefrontal cortex of the rat, we identify computing substates where specific computing hub neurons perform
well-defined storage and sharing operations in a brain state–dependent manner. We retrieve distinct computing
substates within each global brain state, such as REM and nonREM sleep. Half of recorded neurons act as comput-
ing hubs in at least one substate, suggesting that functional roles are not hardwired but reassigned at the second
time scale. We identify sequences of substates whose temporal organization is dynamic and stands between order
and disorder. We propose that global brain states constrain the language of neuronal computations by regulating
the syntactic complexity of substate sequences.
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INTRODUCTION
Information processing in the brain can be approached on three dif-
ferent levels: biophysical, algorithmic, and behavioral (1). The
algorithmic level, which remains the least understood, describes the
way in which emergent functional computations can be decomposed
into simpler processing steps, with architectures mixing serial and
massively parallel aspects (2). At the lowest level of individual sys-
tem components, here, in single neurons, these building blocks of
distributed information processing can bemodeled as primitive opera-
tions of storing, transferring, or nonlinearly integrating information
streams (3).

In resting state conditions, both blood oxygen level–dependent
(BOLD) and electroencephalogram (EEG) signals are characterized
by discrete epochs of functional connectivity or topographical sta-
bility, defined as resting state networks andmicrostates, respectively
(4, 5). The transitions between these large-scale epochs are neither
periodic nor random but occur through a not yet understood syntax,
which is fractal and complex (5). Does this organization at the mac-
roscopic scale (whole brain and networks of networks for resting state
networks and microstates, respectively) also exist at the microscopic
scale? Said differently, is neuronal activity at the microcircuit level
organized in discrete epochs associated to different “styles” of infor-
mation processing? Our first goal is to determine whether informa-
tion processing at the local neuronal circuit level is structured into
discrete sequences of substates and whether these sequences have an
observable syntax, whose complexity could be a hallmark of compu-
tation. Here, we focus on low-level computing operations, performed
by individual neurons such as basic information storage and sharing
(3, 6). To reduce external perturbations, such as sensory inputs, and
to establish if primitive processing operations and their temporal
sequences are brain state dependent, we study two conditions: an-
esthesia and natural sleep, which are characterized by alternating
stable brains states, theta (THE)/slow oscillations (SO) and rapid
eye movement (REM)/nonREM sleep, respectively. We consider
the CA1 region of the hippocampus (HPC), themedial entorhinal cor-
tex (mEC), and the medial prefrontal cortex (mPFC) to determine
whether algorithmic properties are shared between regions with dif-
ferent cytoarchitectures.

The second goal is to determine whether primitive processing
operations are localized or, on the contrary, distributed within the
microcircuit, as proposed for attractor neural networks (7) and liq-
uid state machines (8). This raises two key questions: Are certain
operations driven by a few key neurons, similar to hub cells in a
rich-club architecture (9)? and Do neurons have predetermined com-
puting roles, such as “sharer” or “storer” of information, and rigidly
prescribed partners in their functional interactions? Said differently,
is information routed through a hardwired “neuronal switchboard
system” like in early days of telephony or dynamically via different
addressable nodes like in decentralized peer-to-peer services?

Here, we demonstrate the existence of a multiplicity of distinct
computing substates at themicrocircuit level within eachof the probed
global brain states in both anesthesia and natural sleep. The low-level
algorithmic roles played by individual neurons change from one sub-
state to the other and appear largely independent from the underlying
cytoarchitecture, with roughly half of the recorded neurons acting as
transient computing hubs. Furthermore, we reveal complexity not
only at the level of information processing within each substate but
also at the level of how substates are organized into temporal se-
quences, which are neither regularly predictable nor fully random.
Substate sequences display an elaborate syntax in all the probed ana-
tomical regions, whose complexity is systematically modulated by
changes in global brain states. Together, our findings suggest a more
distributed and less hierarchical style of information processing inneu-
ronal microcircuits, more akin to emergent liquid state computation
than to pre-programmed processing pipelines.
RESULTS
Analysis design
Neurons were recorded simultaneously from the CA1 region of the
HPC and themEC under anesthesia (18 recordings from 16 rats) and
from the CA1 region and the mPFC during natural sleep (six record-
ings from three rats; see Fig. 1A and fig. S1 for more details on record-
ings). We focus on two elementary processing functions: information
storage, i.e., how much information a neuron buffers over time that
it has previously conveyed, as measured by the active information
storage (3), and information sharing, i.e., how much a neuron’s
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activity information content is made available to other neurons, as
measured by mutual information [see example in (6)]. We use the
term feature to discuss the metrics we use, i.e., firing, information
storage, or sharing (Fig. 1, B and C). We use the same analysis de-
sign for all features. The FeatureVector(ta) contains the values
for the descriptive features, as measured in window ta (Fig. 1B). For ex-
ample, for firing features, if 20 cells are recorded, FeatureVector(ta)
contains 20 values, representing the firing density of each neuron
during window ta. We first correlate feature vectors for a given win-
dow pair (ta, tb). Here, a high correlation value means that the two
feature vectors are very similar to one another, i.e., that the features
measured at ta are also found at tb. After, we build a feature similarity
matrix, a collection of correlation values between feature vectors for all
window pairs organized in time (Fig. 1D). A block along the diagonal
indicates a stable state for a given feature, e.g., a period over which
units fire, store, or share information in a consistently preserved pat-
tern. The axes of the similarity matrix represent time, and repetitions
of a block structure along a horizontal or vertical line mean that a
stable state for a given feature is reoccurring over time. We then
use a simple clustering technique to extract different stable states,
which we call substates, and display their switching behavior during
the recording session (Fig. 1D). Last, we define computing hubs as
Clawson et al., Sci. Adv. 2019;5 : eaax4843 26 June 2019
neurons that more heavily participate to the buffering (storage hubs)
or the funneling (sharing hubs) of information streams (Fig. 1D; see
Materials and Methods). This notion of computing hub generalizes
previously introduced notions of “hubness” (10, 11) beyond the ability
to synchronize firing toward more general types of influence on
information processing.

Identification of brain global states
Unsupervised cluster analysis of the spectral features of the fields re-
corded in the various brain regions allowed a clear identification of typ-
ical global oscillatory patterns (fig. S2), which we call global brain states.
In the following, all brain states are identified by the clustering analysis
of field recordings performed in the CA1 region [stratum oriens (SOr)
to stratum lacunosum moleculare (SLM)]. Unsupervised clustering
identified two states for anesthesia corresponding to epochs dominated
by slow (SO state) and theta (THE state) oscillations and two states
during sleep corresponding to REM versus nonREM episodes.

Brain state–dependent firing substates
As subsets of cells tend to fire spontaneously together in stereotypical
patterns (12), we first analyzed neuronal firing assemblies. Figure S3
shows that the firing rate, the burst index, and entrainment by the
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Fig. 1. Unsupervised extraction of states and hubs. (A) Cartoon representing the approximate recording locations (mEC and CA1; mPFC and CA1) during two
experiment types in anesthesia and sleep. (B) Example LFP trace taken from the 32 channels in CA1 (blue) and 32 channels in mEC (orange). Below are examples
of isolated unit activity taken from the same recording. For each time window (t), we extract different features represented by the FeatureVector(t), which has a
feature value for each channel or single unit recorded. (C) We consider four features: spectral band averaged powers (from LFP channels), single unit firing rates,
information storage, and information sharing. (D) Left: Cartoon representation of Msim. To extract substates and their temporal dynamics, we construct a feature similarity
matrix Msim in which the entry Msim(ta, tb) measures Pearson correlation between the vectors FeatureVector(ta) and FeatureVector(tb). Time flows from the
top-left corner horizontally to the top-right corner and vertically to the bottom-left corner. A block (square) along the diagonal in the resulting image identifies a period
of feature stability, i.e., a substate. A block appearing several times horizontally or vertically indicates that a feature is repeated several times. Middle: Unsupervised
clustering identifies the different substates (indicated by a number) and their temporal dynamics (the vertical axis corresponds to that of the similarity matrix). Right: We
identify computing hub cells, i.e., neurons that display exceptionally high values for a given feature, associated with given substates. Note that reoccurring states have
the same hub cells (state 3 in this example). The (*) corresponds to the neurons that are behaving in the top 5% of the examined feature.
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phase of the ongoing oscillations were brain region and brain state
dependent, as previously reported (13). A simple visual inspection of
firing behavior revealed the probable existence of different firing sets,
as some neurons tended to fire together during certain epochs, with
these epochs repeating themselves over time (fig. S4). To quantify
this observation, we constructed the feature vectors Firing(ta),
whose entries are given by the average firing rate of each neuronwithin
the window of analysis ta. The complex block structure of the similarity
matrix revealed a repertoire of state transitions much richer than the
one associated to global brain states (Fig. 2). In this example, un-
supervised clustering revealed a total of six firing substates in mEC
(Fig. 2A) and five in mPFC (Fig. 2D) during THE and REM, respec-
tively, for the two animals. Figure 2B demonstrates that a given brain
state was characterized by the switching between different firing sub-
states. Figure 2E shows that a subset of firing substates was shared be-
tween brain states and, importantly, that the switch from one firing
substate state to another did not necessarily coincide with a change
in the brain global state (and vice versa). Quantification over all re-
cordings revealed that firing substates occurred 87% of the time dur-
Clawson et al., Sci. Adv. 2019;5 : eaax4843 26 June 2019
ing either one of the possible global brain states (Fig. 2, C and F).
Substates were found in the mEC, CA1, and mPFC, and we found
an average of about five substates for all brain regions and brain
states (table S1). These results reveal that, although field recordings
show stereotyped oscillatory behavior during a given brain state, the
firing behavior of neurons displays a richer dynamic repertoire. Their
activity is compartmentalized in a small number of firing substates,
with discrete switching events from one substate to another. The firing
substates are brain state and brain region specific, and they are not
strictly entrained by the global oscillatory state.

Storage of information is dynamic within a brain state
At any given time, neuronal activity conveys an amount of infor-
mation that can be measured by Shannon entropy. We first focused
on active information storage, which measures the fraction of infor-
mation carried by a neuron i at a time t that was present in the past
activity history of i itself. For storage features, we extract several sub-
states (six for the mEC in the animal shown in Fig. 3A and seven for
CA1 in the animal shown in Fig. 3D), with an average of about four
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Fig. 2. Firing substates. Examples of similarity matrices Msim obtained from Firing(t) at different times in mEC during anesthesia (A) and in mPFC during natural
sleep (D), measured in two animals. The bar below Msim indicates the transitions occurring between THE/REM (dark blue) and SO/nonREM (light blue). Although there
were only two global brain states, six (A) and five (D) firing substates were identified. (B and E) Examples of the firing density of three neurons (a, b, and c) recorded in
mEC and mPFC, respectively, with amplitude normalized for visualization. Neurons tended to fire in specific substates, indicated here with a color code. These examples
also illustrate the switching between different firing substates inside a given global oscillatory state and their overlap across different global oscillatory states. The
analysis of all recordings revealed that a majority of firing substates tended to occur during a preferred global oscillatory state, as indicated by the bimodal histograms
during anesthesia (C) and natural sleep (F), respectively.
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states across all animals (table S1). As before, there was no strict
alignment between brain state transitions and storage substate tran-
sitions (Fig. 3, A to C and E). Yet, brain state specificity of storage
states was 80% for all regions (Fig. 3, C and F, and table S1).

Under anesthesia, the absolute storage valueswere stronger inmEC
than in CA1, particularly in layers 3 and 5 of mEC (fig. S5). During
natural sleep, however, storage values for CA1were two orders ofmag-
nitude larger than during anesthesia and were as strong as in mPFC
(fig. S5). Storage tended to be weaker for all probed regions and layers
in THE with respect to SO during anesthesia but not during natural
sleep (fig. S5). Therefore, information storage is dynamically distributed
in discrete substates and is brain state and brain region dependent. In
particular, the involvement in storage of a neuron could vary substan-
tially along time without being necessarily paralleled by a comparable
change in firing rate (Fig. 3, B and E).

Information sharing is dynamic within a brain state
Aprimitive processing operation complementary to information stor-
age is information sharing, providing a pseudo-directed metric of
Clawson et al., Sci. Adv. 2019;5 : eaax4843 26 June 2019
functional connectivity between any two circuit units (6). For each
neuron i, we quantified both “shared-in” (i acts as a sharing target,
with information shared from j neurons’ past activity) and “shared-
out” information (i acts as a sharing source and information is shared
to j neurons’ future activity). We first constructed the feature vector
Sharing(ta) containing the total amount of information funneled
through each given neuron (integrated in- and out-sharing strengths,
represented by big arrows in Fig. 4A), irrespective of whom the in-
formationwas being sharedwith. Because in- and out-sharing strengths
were strongly correlated (average Pearson correlation of >0.9), we
ignored the distinction between in- and out-sharing and speak gener-
ically of sharing substates. Representative sharing similarity matrices
and state sequences are shown in Fig. 4B (top) for mEC during anes-
thesia andmPFC during sleep and in fig. S6 for CA1. Here, we studied
only information sharing within regions, because the number of pairs
of simultaneous units in different regions that showed significant
sharingwas too small to reach robust conclusions.We found about four
sharing substates on average across animals. Sharing states displayed an
86% specificity for a given brain state (Fig. 4D and table S1).
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Fig. 3. Information storage substates. Examples of similarity matrices Msim obtained from Storage(t) at different times in mEC during anesthesia (A) and CA1
during natural sleep (D). As for firing substates, we identified more storage substates (six and seven, respectively, in the shown examples) than global oscillatory states.
We show in (B) and (E) that the participation of three individual neurons to information storage (indicated in arbitrary units for visualization) was substate dependent.
The values reported above the plots correspond to the average firing rate of neuron b (green color) during the corresponding epochs within consistent storage substates.
The analysis of all recordings showed that storage substates tended to occur during a preferred global oscillatory substate, as indicated by the bimodal histograms for
anesthesia (C) and for natural sleep (F).
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During anesthesia, we measured a stronger absolute sharing
values in CA1 than inmEC, a pattern reversed with respect to storage
values, particularly in stratum radiatum (SR) and stratum pyramidale
(SP) of CA1, although mEC layer 5 had a sharing strength compa-
rable to CA1s SR and SP (fig. S5). During natural sleep, the partici-
pation to information sharing of SO in CA1 increased by an order of
magnitude and was as large as the one of mPFC, notably layer 4 (fig.
S5). As for storage, the involvement of a neuron in sharing could vary
along time even without corresponding variations of its firing rate
(fig. S6, B and E).

Sharing assemblies are “liquid”
The previous analysis is focused on sharing strengths at the single-
cell level. We then determined which neurons sharing cells were ex-
changing information, i.e., the detailed network neighborhood of
sharing, or sharing assembly (cartoon networks in Fig. 4A). Two
striking features were apparent. First, both the block structure of the
Clawson et al., Sci. Adv. 2019;5 : eaax4843 26 June 2019
sharing assemblies and the state transition sequences are nearly
matching the sharing strength ones (Fig. 4B), as evidenced by a relative
mutual information value of 98% on average. Second, in contrast to
sharing strengths, the blocks in the sharing assembly similarity matrix
were of a light blue color, indicating a strong variability of sharing as-
semblies within a given substate. This phenomenon was quantified by
liquidity analysis, with liquidity being a measure bounded between 0
and 1, where a value of 0 represents an absence of internal variability
within a substate and a value of 1 representing completely random
variability (seeMaterials andMethods). The liquidity values of sharing
assemblies for all sharing substates throughout all recordings lay be-
low the diagonal (Fig. 4C). This result can be better understood, con-
sidering the toy examples of Fig. 4A. The cartoons represent snapshots
at three different nonsequential times of a given hub neuron in its
sharing network environment. The three considered time frames all
fall within the same substate; therefore, the overall in- and out-sharing
strengths, represented by the orange and gray arrows, respectively, are
A

C

D

BSharing strength vs.
sharing assemblies

Anesthesia Natural sleep

Fig. 4. Information sharing substates. The cartoon in (A) shows an example of sharing assembly for a given sharing hub neuron across three nonsequential occur-
rences of the same substate. The total strength of in- and out-going sharing is equal (large, external arrows) during ta, tb,, and tc while the assembly changes (smaller,
internal arrows). The changing size of internal arrows represents the sharing strength of that particular functional connection between the sharing hub and its source
and target neurons. (B) Similarity matrices Msim for sharing strengths Sharing_S(t) (top) and sharing assemblies Sharing_A(t) (bottom) in mEC during anesthesia
(left) and mPFC during natural sleep (right). We identified a multiplicity of substates within each global oscillatory state as shown by the colored bars below the feature
similarity matrices. The similarity matrices for sharing strengths and assemblies have a matching block structure. However, sharing strengths were very stable within a
substate (red-hued blocks), while sharing assemblies were highly volatile (light blue–hued blocks). (C) This is quantified for each sharing assembly substate by a liquidity
coefficient. For all observed sharing substates across all regions and global oscillatory states in all animals, the liquidity of sharing assemblies was much larger than the
one of sharing strengths. (D) Most sharing substates occurred preferentially during a preferred global oscillatory state for both anesthesia and natural sleep combined
(see fig. S5 for separated histograms for the two conditions).
5 of 16

http://advances.sciencemag.org/


SC I ENCE ADVANCES | R E S EARCH ART I C L E

 on A
pril 20, 2021

http://advances.sciencem
ag.org/

D
ow

nloaded from
 

constant (meaning stability). However, the sources and targets of the
funneled information can widely vary in time (meaning instability).
Although the sum of ingoing and outgoing information remained
overall constant within each sharing substate, information was shared
over different cell assemblies from one time period to the next. All
three brain regions displayed remarkable liquidity in sharing assem-
blies through all brain states, and liquidity was brain region and brain
state specific (Fig. 4C). As reported in table S2, the largest liquidity was
observed for mPFC sharing assemblies during natural sleep (~94%).
CA1 displayed a substantial reduction in the liquidity of sharing as-
semblies whenmoving from anesthesia to sleep (dropping from~86%
in anesthesia to ~57% in sleep). Last, as for the other features, infor-
mation sharing substates were brain state specific (Fig. 4D).

Loose coordination of substate transitions between
brain regions
Single units were recorded simultaneously in two regions (CA1 and
mEC; CA1 and mPFC). We thus assessed whether substate transi-
tion events in one region matched the transition in the other region.
We computed the relative mutual information between substate se-
quences of a given type (e.g., firing, storage, or sharing) observed in
one region and the other. We did not find significant differences for
these measures across the three features (firing, storage, and sharing)
and therefore pooled them together. The median relative mutual
information between substate transitions in the probed cortical and
hippocampal regions was 18% during anesthesia (between mEC
and CA1) and 42% during natural sleep (between mPFC and CA1).
These levels of coordination between substate sequences denoted a
lack of perfect parallelism between transitions in the different re-
gions, but they were still well above chance level. Thus, substate dy-
namics display some coordination between CA1 and mPFC during
sleep (table S3), which is in keeping with the fact that information
exchange occurs between the two regions during sleep (14). The
weak coordination under anesthesia suggests that circuits may oper-
ate more independently from one another in this condition (but still
not completely).

A large fraction of cells can act as computing hubs
Functional, effective, and anatomical hub neurons [mostly
g-aminobutyric acid releasing (GABAergic)] have been identified
in the brain (15). We complement the concept, introducing storage
and sharing hubs, i.e., neurons displaying an elevated storage or
sharing values, respectively (see Materials and Methods). In contrast
to the sparsity of functional, effective, and anatomical hubs, a large
fraction of cells acted as a computing hub in at least one substate, as
illustrated in Fig. 5A. Computing hubs could be recruited across all
probed regions and layer locations (Fig. 5, B and C). As summarized
in Fig. 5B, the probability of serving as computing hub—storage or
sharing confounded—was 40% or more on average for almost all
layers, apart from the possibly undersampled SLM and SR in CA1.
We observed a general tendency for inhibitory interneurons to have
a larger probability to serve as computing hubs than for excitatory
cells. This tendency was particularly strong for cortical regions and
was notably significant in layer 5 of mEC (during anesthesia) and
layer 3 of mPFC (during sleep), for which the probabilities of in-
hibitory interneurons serving as computing hub in at least one sub-
state approached 70%. The probability of serving as a computing
hub at least once was relatively similar when evaluated separately for
storage or sharing. In particular, 43% of the neurons serving as a stor-
Clawson et al., Sci. Adv. 2019;5 : eaax4843 26 June 2019
age hub in a substate could serve as a sharing hub in another substate
but, in general, not simultaneously, as only 12% of the neurons were
“multifunction” hubs.

Despite this large flexibility in the dynamic assignment of hub
roles, the notion of hub continued tomake sense within each individ-
ual substate. Within a substate, on average, only ~9% of cells acted as
hub (storage or sharing pooled), so still a strict “elite” (although not a
permanent one but appointed just within the associated state). Thus,
the set of recruited hubs constituted, at each time, a characteristic
fingerprint of the active substates (with only 4% of the substates being
“hubless”).

We also studied the probability that a computing hub emerged in a
given layer (Fig. 5C). During anesthesia, all probed layers of CA1 and
mEC showed a ~20% uniform probability for a storage and sharing
computing hub to emerge. Natural sleep was associated to an enhanced
recruitment of computing hubs. The probabilities of hub emergence
exceeded ~40% for storage hubs in layer 5 of mPFC and in SP of
CA1. The analysis of deep or superficial CA1 SP principal neurons,
which are involved in different microcircuits (16), did not reveal
an intralayer distribution of computing hubs. These results suggest
that the probability that a neuron serves as computing hub is not
correlated to its anatomical region or layer location.

Last, we tested whether computing hubs were characterized by
high firing rates. Using the same procedure used to extract comput-
ing hubs, we found that 62% of the cells were high firing at least in
one firing substate, with 70% being putative interneurons. There was
a poor overlap between computing hubs and high firing rate cells.
Table S3 already shows that storage and sharing substate sequences
are only loosely coordinated with firing substate sequences (see also
firing rate information in Fig. 3, B to E, and fig. S6, B to E). Further-
more, being a high firing rate cell does not guarantee that this cell will
also be a computational hub (or the other way around). This is also
shown in Fig. 5C, where the yellow levels over the histogram bars
indicate the fraction of storage and sharing hubs, which also happen
to be high firing cells. We conclude that a storage hub can have a
normal or even smaller than average firing rate.

The syntax of substate sequences is complex and brain
state dependent
Collectively, our results demonstrate the existence of substate se-
quences in three different brain regions during anesthesia and natu-
ral sleep.Using a linguistics analogy, we assign a letter to each identified
substate (represented by a color in the figures). The temporal sequence
of substates thus translates into a stream of letters. However, if we con-
sider the three features simultaneously, then we obtain a stream of
three-letter words. All combinations of possible letters from our three
features define the dictionary of words that can be expressed. We rep-
resent a stream of words as a switching table (Fig. 6A). This allows us
to explore two aspects of the “neuronal language”: the statistics of the
words and the statistics of the transitions between the words (the
syntax). We found that the words were mostly (85%) brain state spe-
cific, as expected, because the substate letters are already brain state
specific (see Figs. 3, C and F, and 4D). Although the syntactic rules
structuring the production of words are unknown, we can quantify
their complexity. Algorithmic information theory or the minimum
description length (MDL) framework links complexity to the notion of
compressibility (17). As illustrated in Fig. 6B, an ordered, regular
switching table requires a short description, as a small list of instructions
can be written to reproduce the table (e.g., word D 100 times, followed
6 of 16
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by word B 88 times, etc.). At the opposite extreme, a completely ran-
dom switching table would need a lengthy exhaustive description—as
many instructions as the length of the table itself. A complex switching
table stands between regularity and randomness and requires a de-
scription that is compressed, longer than a regular table but shorter
than a random table.

Figure 6C shows that the syntaxwas complex (between 0 and 1) for
all brain regions and brain states and that THE/REM states were more
complex than SO/nonREM states. We added two recordings from
mPFC under anesthesia for comparison. Figure 6D shows that the
measured complexity was significantly larger than the upper thresh-
old for regularity and significantly smaller than the lower threshold
for randomness (P < 0.05, Bonferroni corrected, direct confidence in-
terval comparison).

Last, we assessed whether switching from SO to THE or from
nonREM to REM increased the complexity. As shown in Fig. 6E,
the tendency was toward an increase of complexity in all cases, from
+30% for mEC during anesthesia and mPFC during anesthesia or
sleep to roughly+10% forCA1during anesthesia or sleep. This relative
increase was always significant (P < 0.05, Bonferroni corrected, con-
fidence interval comparison) apart fromCA1, forwhich two recordings
Clawson et al., Sci. Adv. 2019;5 : eaax4843 26 June 2019
displayed increased complexity during nonREM sleep. We conclude
that the syntax is complex and brain state dependent.

What determines complexity?
We then investigated which factors contribute to complexity. Different
durations of wordsmay account for variations in complexity. Although
word dwell times were different by one order of magnitude between
anesthesia and sleep with median of ~18 min (~10 min, first quartile;
~28 min, third quartile) during anesthesia and ~1.4 min (~1 min, first
quartile; ~2.1 min, third quartile) during sleep, complexity values for
anesthesia and natural sleep were similar.

We also evaluated the burstiness coefficient, B (18), of the stream
of words. This coefficient ranged between −1 ≤ B ≤ 1, with B = −1
corresponding to a perfectly periodic stream of words, B = 0 to a
Poisson train, and B = 1 to a maximally bursting stream. We found
a positive correlation between burstiness and complexity (P < 0.01,
bootstrap CI). Burstiness was greater during THE/REM (0.15) than
during SO/nonREM (0.09; P = 0.03, Kruskal-Wallis test), which may
contribute to the increased complexity found during THE/REM.

The richness of the dictionary also affects complexity (19). We
therefore evaluated the used dictionary fraction, i.e., the ratio between
BA

C

Substates Probability of being hub at least once

Probability that a hub emerges in a layer

Fig. 5. A democracy of computing hubs. (A) Within every computing substate, some neurons exhibited significantly strong values of information storage or sharing
(computing hubs). However, these computing hubs did generally change from one substate to the other, as shown in this example. Different rows correspond to
different single units recorded in mEC during anesthesia and different columns correspond to different computing substates (left, storage substates 1 to 6; right,
sharing substates 1 to 4). An entry is colored in yellow when the neuron is a computing hub within the corresponding substate. In the example shown, while ~9%
of neurons on average were simultaneously acting as computing hub, more than 40% of the recorded units were recruited as hubs for at least one substate when
considering all the computing substates together (vertical bar on the right). (B and C) The probability that a neuron acted as hub depended only loosely on its
anatomical localization. Panel (B) shows that for all regions and layers, the probability that a neuron acts as computing hub at least once was always larger than
30%. Inhibitory (i) neurons tended to be recruited as hubs more frequently than excitatory (e) neurons. Analogously, panel (C) shows that none of the layers display
a specialization in either one of the two processing operations of information storage or sharing. Asterisks denote statistically significant comparisons (lack of overlap
between 95% confidence intervals for the probability, reported as vertical ranges on top of the histogram bar). In (C), a yellow horizontal line indicates the fraction of
computing hub cells, which also happen to be simultaneously high firing rate cells. Many computing hubs thus have an average or low firing rate. In (B) and (C), in CA1,
light blue represents anesthesia and dark blue represents natural sleep.
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the number of observed words and themaximum theoretical number
of words, i.e., the dictionary.We find a significant positive correlation
between the used dictionary fraction and complexity (P < 0.05,
bootstrap CI; fig. S7B). The richness of the dictionary was greater
during THE/REM (21%) than during SO/nonREM (14%; P = 0.032,
Kruskal-Wallis test), which may also contribute to the increased
complexity found during THE/REM.

A bivariate linear regression of complexity over burstiness and
used dictionary fraction revealed a correlation of 0.62 (P < 0.05,
bootstrap CI) between predicted and observed complexity, demon-
strating that complexity is largely explained by burstiness and the
used dictionary fraction.

Last, we verified that our results did not depend on themeasure of
complexity. Redoing analyses using the equivalent and commonly
used Lempel-Ziv complexitymeasure (19) leads to qualitatively equiv-
alent results. Lempel-Ziv complexity also strongly correlated with our
measure of complexity (Pearson correlation, 0.84; P< 0.001, bootstrap
confidence interval).
Clawson et al., Sci. Adv. 2019;5 : eaax4843 26 June 2019
DISCUSSION
Here, we demonstrate two levels of organization of brain activity. At
the single-cell level, we find that a large proportion of recorded neu-
rons act as computing hubs during discrete time epochs (substates)
within a given stable brain state (e.g., REM and nonREM). At the
microcircuit level, we find a rich repertoire of computational substates
characterized by temporally structured sequences, whose complexity
was modulated by the global brain oscillatory state. This type of orga-
nization was shared between three anatomical different brain regions:
the HPC, the mEC, and the mPFC.

The hubness of a neuron may be determined by fixed features,
e.g., an exceptional extension of axonal arborizations (10), a suitable
location in the circuit wiring diagram facilitating the control of syn-
chronization (11), or yet some developmental “droit d’aînesse” (15).
During natural sleep and anesthesia, however, we find that >40% of
the recorded neurons act as a computational hub during at least one
substate, meaning that computing hubs form a rather open and not
so elitist club. The computational hubness is dynamic—a neuron
A

C

D

E

B

vs.

A
ne

st
he

si
a 

m
E

C

S
tate index

S
le

ep
 m

P
FC

State type

Regular Random

ComplexState type

Fig. 6. Complexity of substate sequences. State switching found for each feature (firing, storage, and sharing) did not align in time. This can be visualized by state
switching tables, whose different rows graphically represent transitions between global brain oscillatory states and firing, storage, and sharing substates. (A) Examples
of switching tables for mEC during anesthesia (top) and for mPFC during natural sleep (bottom; note the different time scales). (B) Switching tables were neither
perfectly regular (top left) nor random (top right), but they were “complex,” displaying organized patterns escaping simple description (bottom). (C) The
complexity of the switching tables was larger for THE/REM than for SO/nonREM for most recordings. We included two recordings from mPFC under anesthesia
for comparison. (D) Switching tables were complex in all cases. Complexity values were significantly above the upper threshold for regularity and below the lower
threshold for randomness. (E) The increase of complexity was significant for mEC when transitioning from SO to THE and for mPFC from nonREM to REM sleep. This
trend in CA1 was not statistically significant [significance assessed in terms of lack of intersection between 95% confidence intervals and threshold values for both
(D) and (E)]. Asterisks indicate that the number of recordings in this category was not enough to assess significance, but that the median value lay below or above
the considered threshold.
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acting as a hub in a given substate may not be a hub in a different
substate or may swap its nature (e.g., converting from a storage to a
sharing hub). The stronger tendency for putative inhibitory cells to
serve as hubs (>70%) is in keeping with the known role of GABAergic
cells in orchestrating network activity (10, 11, 15). Furthermore, be-
cause our analysis was limited to few brain states, the proportion of
putative principal and GABA neurons acting as computational hubs
may even be an underestimate. Perhaps all neurons act as computa-
tional hubs during specific brain states (including exploration and
quiet awakening).

That hubs share information with ever changing source and target
neurons is in apparent contradiction with the existence of sequential
firing of cell assemblies in cortical and hippocampal circuits, including
during nonREM sleep (12, 15, 20–22). Our information-theoretical
analyses require the use of at least 5-s-long sliding windows, which
is not sufficient to detect fast sequences of activation, as replay events
occur within 500 ms (22). Replay sequences are not strictly stable as
they demonstrate intercycle variability (23), which may reflect liquid-
ity. The liquid nature of information sharing suggests that neuronal
activity is not frozen at fixed-point attractors as in classic artificial neu-
ral networks butmay be sampling the broad basin of attraction of shal-
low attractors (7) or higher-dimensional manifolds “at the edge of
chaos,” as found in reservoir computing schemes (24). In this case,
information is shared across extremely volatile assemblies within a
given substate. The assembly dynamics are thus liquid—i.e., neither
frozen into crystallized patterns nor fully random as in a gas—and
are only mildly constrained to robustly maintain the computational
role of sharing hubs while preserving entropy of firing patterns, and
therefore bandwidth for local computations. This preservation of
hub function in a heterogeneous and reconfiguring circuit can be
seen as a form of homeostasis of the computing role, generalizing
the concept of homeostasis of circuit behavior evidenced in in-
vertebrate systems (25). While this latter homeostasis preserves the
functional level, in our case, homeostasis would extend down to the
algorithmic level, referring to the three-level hierarchy proposed by
Marr and Poggio (1).

During a “stable” behavior such as resting state, analysis of BOLD
and EEG signals consistently revealed the presence of temporal se-
quences of resting state networks and topographical microstates, re-
spectively (4, 5). Here, we find that an analogous switching between
discrete states occurs at a completely different scale of microcircuits.
During a stable oscillatory regime (e.g., THE rhythm), neuronal com-
putation is organized in temporal sequences of computational sub-
states. While field oscillations constrain neuronal firing and neuronal
firing produces field oscillations, we find only a loose match between
the switch from one oscillatory mode to the other and the switch from
one substate to the other. Transitions between global states (related
to the scale of mesoscale collective dynamics) sometimes anticipate
and sometimes follow transitions between firing, storage, or sharing
substates (related to the scale of microscopic firing dynamics), as if
dynamic changes occurring at either one of the scales had destabilizing
effects on the dynamics at the other scale (in both directions, meso- to
microscale and micro- to mesoscale). The behavior of CA1 cells may
reflect specific internal dynamics not tightly controlled by the CA1
local field, which mostly reflects synaptic inputs originating from
outside the CA1 region. The repertoire of computing substates is brain
state specific. Beyond proposals that oscillations are central for the
routing of information between regions (26), we thus suggest here that
global oscillatory states could also organize information processing
Clawson et al., Sci. Adv. 2019;5 : eaax4843 26 June 2019
within local regions by enforcing the use of their own state-specific
“languages” (expressed in terms of combinations of alternative in-
trinsic substates).

Signatures of computation can be identified even if the function
and meaning of the computation are unknown and even when sys-
tem states are sampled partially, as it is the case for the present study.
This allowed us to extract a symbolic representation of substates
(letters) for a given feature, which make words when considering sev-
eral features. The syntax of the substate word sequences is complex,
standing between order and randomness (as it was already the case for
the sharing dynamics within each substate). The capacity to generate
complex sequences of patterns is a hallmark of self-organizing systems
and has been associated to their emergent potential to performuniver-
sal computations (17). Moreover, dynamics at the “edge of chaos”
confer advantages for information processing (24).

We find that the syntactic complexity of substate sequences is
brain state dependent, as it was the case for the substate dictionaries,
and more complex during THE oscillations/REM sleep than during
SO/nonREM sleep, suggesting an increased load of computation in
the former brain state. The temporal complexity of activation se-
quences was also shown to bemodulated by brain states at themacro-
scale level of whole-brain dynamics (27). In keeping with the view
that slow/THE oscillations measured during anesthesia share general
properties with nonREM/REM sleep (28, 29), we found similar rules
of organization in terms of substate sequences and their complexity,
despite the fact that the word dwell times in anesthesia are one order
of magnitude greater than during natural sleep.We speculate that the
nature of the undergoing oscillation (slow versus THE) constrains the
repertoire of words used and their syntax, modulating the type of
computation performed by the recruitment of varying computing
hubs. Sleep, oscillatory patterns, and neuronal firing are altered in nu-
merous neurological disorders, including epilepsy (30), and therefore,
it will be important to assess whether the repertoire of substates and
the syntax are likewise affected.

In conclusion, our results reveal a rich algorithmic-level organiza-
tion of brain computations during natural sleep and anesthesia, which
combines a complex combinatorics of discrete states with the flexibil-
ity provided by liquidly reconfiguring assemblies.While we cannot yet
prove that this substate dynamics is functionally relevant, it has the
potential to serve as a substrate for previously undisclosed computa-
tions. The next aim will be to perform the similar analysis during spe-
cific behavioral tasks, such as goal-driven maze navigation. Words
and/or their sequence may sign specific cognitive processes. The fact
that the algorithmic instructions and primitive processing operations
are similar in three brain regions with different architectural organiza-
tions suggests the existence of a basic architecture for low-level com-
putations shared by diverse neuronal circuits.
MATERIALS AND METHODS
Data information
We used in this work a portion of the data (13 of 18 experiments) ini-
tially published by Quilichini et al. (29), which includes local field po-
tentials (LFPs) and single-unit recordings obtained from the dorso
mEC of anesthetized rats. We also used a portion of the data (2 of
16 experiments) initially published by Ferraris et al. (28), which in-
cludes LFPs and single units recorded in the mPFC under anesthesia.
Seven recordings are original data in bothmEC and dorsalHPCunder
anesthesia and 10 recordings in four animals during natural sleep in
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HPC and mPFC. See fig. S1 for details on recordings, number of cells,
and layers recorded.

Animal surgery
We performed all experiments in accordance with experimental
guidelines approved by the Rutgers University (Institutional Animal
Care and Use Committee) and Aix-Marseille University Animal
Care and Use Committee. We performed experiments on 13 male
Sprague-Dawley rats (250 to 400 g; Hilltop Laboratory Animals),
8 maleWistar Han IGS rats (250 to 400 g; Charles Rivers Laboratories),
and 3 male Long-Evans rats (350 to 400 g; Charles River Laboratories).
We performed acute (anesthesia) experiments on the Sprague-Dawley
and seven of the Wistar rats, which were anesthetized with urethane
(1.5 g/kg, intraperitoneally) and ketamine/xylazine (20 and 2 mg/kg,
intramuscularly), additional doses of ketamine/xylazine (2 and
0.2 mg/kg) being supplemented during the electrophysiological
recordings. We performed chronic (natural sleep) experiments on
oneWistar and the Long-Evans rats, which were anesthetized using
2% isoflurane in 1 liter/min of O2 for the surgery procedure. In both
cases, the body temperature was monitored and kept constant with
a heating pad. The head was secured in a stereotaxic frame (Kopf),
and the skull was exposed and cleaned. Two miniature stainless steel
screws, driven into the skull, served as ground and reference elec-
trodes. To reach the mEC, we performed one craniotomy from
bregma: −7.0 mm anteroposterior (AP) and +4.0 mm mediolateral
(ML); to reach the CA1 area of HPC, we performed one craniotomy
from bregma: −3.0 mm AP and +2.5 mm ML in the case of HPC
coupled to mEC recordings and −5.6 mm AP and +4.3 mm ML in
the case of HPC coupled tomPFC recordings; to reach themPFC, we
performed one craniotomy from bregma: +3 mm AP and +0.8 mm
ML. We chose these coordinates to respect known anatomical and
functional connectivity in the cortico-hippocampal circuitry (28, 29).
We used different types of silicon probes to record the extracellular
signals. In acute experiments, the probes were mounted on a stereo-
taxic arm.We recorded the dorso-medial portion of themEC activity
using a NeuroNexus CM32-4x8-5mm-Buzsaki32-200-177 probe (in
eight experiments), a 10-mm-long Acreo single-shank silicon probe
with 32 sites (50 mm spacing) arranged linearly (in five experiments),
or a NeuroNexus H32-10mm-50-177 probe (in five experiments),
which was lowered in the EC at 5.0 to 5.2 mm from the brain sur-
face with a 20° angle. We recorded HPC CA1 activity using a H32-
4x8-5mm-50-200-177 probe (NeuroNexus Technologies) lowered at
2.5mm from the brain surface with a 20° angle (in four experiments),
a NeuroNexus H16-6mm-50-177 probe lowered at 2.5 mm from the
brain surface with a 20° angle (in two experiments), and an E32-
1shank-40mm-177 probe (Cambridge NeuroTech) lowered at 2.5 mm
from the brain surface with a 20° angle (in one experiment). We re-
corded mPFC activity using NeuroNexus H32-6 mm-50-177 lowered
in layer 5 at 3 mm perpendicularly from the brain surface (in two
experiments). In chronic experiments, the probes were mounted on a
movable micro-drive (Cambridge NeuroTech) fixed on the skull and
secured in a copper mesh hat. We recorded HPC CA1 activity (probes
lowered perpendicularly at 2.5 mm from the brain surface) using a
NeuroNexus H32-Poly2-5mm-50-177 probe (in two experiments), a
Cambridge NeuroTech E32-2shanks-40mm-177 probe (in one experi-
ment), and aNeuroNexusH32-4x8-5mm-50-200-177 probe (in one ex-
periment).We recordedmPFCactivity (probes lowered perpendicularly
at 3.0 mm from the brain surface) using a NeuroNexus H32-4x8-5mm-
50-200-177 probe (in two experiments) and a NeuroNexus H32-Poly2-
Clawson et al., Sci. Adv. 2019;5 : eaax4843 26 June 2019
5mm-50-177 probe (in one experiment). The on-line positioning of
the probes was assisted by the presence of unit activity in cell body
layers and the reversal of THE ([3 6] Hz in anesthesia, [6 11] Hz in
natural sleep) oscillations when passing from L2 to L1 for the mEC
probe, the presence in SP of either unit activity or ripples (80 to 150Hz)
for theHPCprobe, and theDVdepth value and the presence of intense
unit activity for the mPFC.

At the end of the recording, the animals were injected with a lethal
dose of pentobarbital Na (150 mg/kg, intraperitoneally) and perfused
intracardially with 4% paraformaldehyde solution. We confirmed the
position of the electrodes (DiI was applied on the back of the probe
before insertion) histologically on Nissl-stained 40-mm section, as re-
ported previously in detail (28, 29). We used only experiments with
appropriate position of the probe for analysis. The numbers of re-
corded single units in different anatomical locations for the different
retained recordings are summarized in fig. S2.

Data collection and spike sorting
Extracellular signal recorded from the silicon probes was amplified
(1000×), bandpass-filtered (1 Hz to 5 kHz), and acquired continu-
ously at 20 kHzwith a 64-channelDataMax System (RCElectronics or
a 258-channel Amplipex) or at 32 kHz with a 64-channel DigitalLynx
(NeuraLynx at 16-bit resolution). We preprocessed raw data using a
custom-developed suite of programs (31). After recording, the signals
were downsampled to 1250 Hz for the LFP analysis. Spike sorting was
performed automatically using KLUSTAKWIK [http://klustakwik.
sourceforge.net (32)], followed by manual adjustment of the clus-
ters, with the help of autocorrelogram, cross-correlogram (CCG),
and spike waveform similarity matrix [KLUSTERS software package;
https://klusta.readthedocs.io/en/latest/ (33)]. After spike sorting, we
plotted the spike features of units as a function of time and discarded
the units with signs of significant drift over the period of recording.
Moreover, we included in the analyses only units with clear refractory
periods and well-defined clusters. Recording sessions were divided
into brain states of THE and SO periods. The epochs of stable theta
[THE in anesthesia experiments, REM in natural sleep experiments,
or slow oscillations (SO in anesthesia experiments and nonREM in
natural sleep experiments)] periods were visually selected from the
ratios of the whitened power in the THE band ([3 6] Hz in anesthesia
and [6 11] Hz in natural sleep) and the power of the neighboring
bands ([1 3] and [7 14] Hz in anesthesia and [12 20] Hz in natural
sleep) of EC layer 3 LFP, which was a layer present in all the 18 anes-
thesia recordings, or layer 5 mPFC recordings in natural sleep re-
cordings, and assisted by visual inspection of the raw traces (fig. S2)
(28, 29).We then used band-averaged powers over the same frequency
ranges of interest as features for the automated extraction of spectral
states via unsupervised clustering, which confirmed our manual clas-
sification. We determined the layer assignment of the neurons from
the approximate location of their somata relative to the recording sites
(with the largest amplitude unit corresponding to the putative location
of the soma), the known distances between the recording sites, and the
histological reconstruction of the recording electrode tracks.

Characterizations of single unit activity
We calculated pairwise CCGs between spike trains of these cells during
each brain state separately (28, 29).We determined the statistical sig-
nificance of putative inhibition or excitation (trough or peak in the
[+2 5] ms interval, respectively) using the nonparametric test and cri-
terion used for identifying monosynaptic excitations or inhibitions
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(28, 29), inwhich each spike of each neuronwas jittered randomly and
independently on a uniform interval of [−5 5] ms a thousand times to
form 1000 surrogate datasets and from which the global maximum
andminimumbands at 99% acceptance levels were constructed. Thus,
inspection of CCGs allowed us to identify single units as putatively
excitatory or inhibitory, an information that we used to perform the
computing hub characterizations in Fig. 5B.

To perform the analyses of fig. S3, we then computed the burst
index and the phasemodulation of units. Burst index denotes the pro-
pensity of neurons to discharge in bursts. We estimated the amplitude
of the burst spike autocorrelogram (1-ms bin size) by subtracting the
mean value between 40 and 50 ms (baseline) from the peak measured
between 0 and 10 ms. Positive burst amplitudes were normalized to
the peak, and negative amplitudes were normalized to the baseline to
obtain indexes ranging from −1 to 1. Neurons displaying a value of
0.6 were considered bursting.

To establish the phase modulation of units, we concatenated dif-
ferent epochs of slow or THE oscillations and estimated the instan-
taneous phase of the ongoing oscillation by Hilbert transform of the
[0.5 2] or [3 6] Hz in anesthesia and [6 11] Hz in natural sleep filtered
signal for slow or THE oscillations, respectively. Using linear inter-
polation, we assigned a value of phase to each action potential. We
determined the modulation of unit firing by Rayleigh circular statis-
tics; P < 0.05 was considered significant.We first assessed the circular
uniformity of the data with a test for symmetry around the median,
and we performed group comparison tests of circular variables using
circular analysis of variance (ANOVA) for uniformly distributed
data and using a nonparametric multisample test for equal medians
“CM test,” similar to a Kruskal-Wallis test for nonuniformly distrib-
uted data (https://philippberens.wordpress.com/code/circstats), and
P < 0.05 was considered significant.

Feature-based state extraction
We performed a sliding window analysis of the recorded LFP time se-
ries and single unit spike trains, extracting in a time-resolvedmanner a
variety of different descriptive features. For all the considered features
(see specific descriptions in later subsections), we used similar window
sizes and overlap for the sake of a better comparison. For anesthesia
recordings, we adopted a long window duration of 10 s—demanded
by the estimation needs for the most “data-hungry” information-
theoretical features—with an overlap of 9 s. For natural sleep record-
ings, we adopted a window duration of 10 s with an overlap of 9 s.

We computed each set of descriptive features and compiled them
intomulti-entry vectors FeatureVector(t) for every time window
centered on different times t.

We then computed a similarity matrixMsim to visualize the varia-
bility over time of the probed feature set. The entries Msim(ta, tb) are
given by the Pearson correlation coefficient between the entries in the
vectors FeatureVector(ta) and FeatureVector(tb), treated
as ordered sequences, and are thus bounded between −1 and +1.
Blocks of internally elevated correlation along the similarity matrix
diagonal denote epochs of stable feature configurations. Similar config-
urations are detected by the presence of off-diagonal highly internally
correlated blocks and the existence of multiple possible configurations
by the poor correlation between distinct blocks.

We then extracted feature-based states using a standard iterative
K-means algorithm to cluster the different vectorsFeatureVector(t)
based on the correlation distance matrix defined by 1 − Msim. We
defined the substates of different types as the different clusters ob-
Clawson et al., Sci. Adv. 2019;5 : eaax4843 26 June 2019
tained for different feature types. We chose the number of clusters K
by clustering using K = 2, 3,… 20 and first guessing K using a max-
imal silhouette criterion across all Ks. We also inspected dendrograms
from single-linkage clustering as a cross-criterion. Using both pieces of
information, K was manually adjusted case by case (up to ±2 clusters
with respect to the unsupervised silhouette criterion) to best match the
visually apparent block structure of the similarity matrix Msim, which
results in an optimized K selection for each recording.

Feature robustness
To compute the robustness of the feature computation, the original
spiking times were randomly shuffled 1000 times and the features
were recomputed for each instance for two files, one in anesthesia
and one in natural sleep. To compare it to the original features com-
puted, k for each recording and each feature was kept the same. The
information retained after shuffling was computed by dividing the
mutual information between the shuffled features and the original
by the entropy of the new feature set.We found a significant difference
for both anesthesia and in natural sleep across all features.

Global oscillatory states
We defined eight different unequally sized frequency ranges, which
were manually adjusted recording by recording to be better centered
on the recording-specific positions of the slowwave andTHEpeaks and
of their harmonics (e.g., 0 to 1.5Hz, 1.5 to 2Hz, 2 to 3Hz, 3 to 5Hz, 5 to
7 Hz, 7 to 10 Hz, 10 to 23 Hz, and 23 to 50 Hz for the anesthesia spec-
trogram and the similaritymatrix of fig. S2A).We averaged the spectro-
grams over all channels within each of the layers in the simultaneously
recorded regions (e.g., EC and CA1 for anesthesia), and then we coarse-
grained the frequencies by further averaging over the eight above
ranges. We finally compiled all these layer- and band-averaged power
values into time-dependent vectors Spectra(t), with a number of en-
tries given by eight (number of frequency bands) times the number of
layers probed in the considered recording, i.e., up to eight (CA1 SOr, SP,
SR, and SLM;EC layers 2, 3, and 5; andPFC layers 1,2, 3, and 5), yielding
atmost 64 entries.We then processed these spectral features as described
in the previous section to extract global oscillatory states—as any other
substate type—via unsupervised clustering.

Firing sets and firing hubs
Not all neurons are equally active in all temporal windows. To deter-
mine typical patterns of single neuron activation, we binned the
spiking data for each unit in 50-ms windows—if a neuron fired within
that window, the result was a “1,” and if it did not fire, the result was a
“0.”We enforced a strictly binary encoding, i.e., we attributed to a bin
a 1 symbol even when more than one spike was fired within this bin.
Our bin size choice was made to maintain less than a 5% loss of
information when ignoring multiple firing events within a bin. Fur-
ther, note that for most of the spike trains, multiple firing events were
extremely rare, i.e., apart from a few cases the information loss was
much smaller than 5%. We then averaged over time this binned spike
density separately for each single unit and within each time window
and compiled these averages into time-dependent vectors Firing(t)
with N entries, where N is the overall number of single units probed
within the considered recording.We constructed separate feature vec-
tors for each of the simultaneously recorded regions. Firing substate
prototypes were given by the centroids of the clusters extracted from
the similarity matrix Msim resulting from the stream of Firing(t)
feature vectors. We then defined a neuron to be a high firing cell in
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a given state if its firing rate in the state prototype vectorwas higher than
the 95% percentile of all concatenated state prototype vector entries.

Active information storage
Within each time window, we computed for each single unit an ap-
proximation to the active information storage (AIS). AIS is meant to
quantify how much the activity of a unit is maintaining over time
information that it was conveying already in the past (3). This
information-theoretical notion of storage is distinct from the neuro-
biological notion of storage in synaptic weights. It is an activity-based
metric (hence the adjective “active”), able to detect when temporal
patterns in the activity of a single unit can serve the functional role
of “memory buffer.” AIS is strictly defined as

AISi ¼ MI½iðtÞ; ið→tÞ�

i.e., as shared information between the present activity i(t) of a
single unit i and its past history of activity i(→t). Before computing
mutual information, we binned all spike trains with method as for
determining the Firing(t) descriptive feature vector. The limited
amount of available data within each temporal window makes nec-
essary to introduce approximations. Therefore, we replaced the full
past history of activity i(→t) with activity at a time in the past i(t-t)
and then summed over all the possible lags

AÎSi ¼ St MI½iðtÞ; iðt � tÞ�

where the lag twas varying in the range 0≤ t≤ 0.5Tq, whereTq is the
phase of the THE cycle. Note that MI values were generally vanishing
for longer latencies.We evaluatedMI terms using a “plug-in” function
estimator on binarized spike trains, which takes the binned spike
trains of two neurons for a defined time window and computes the
mutual information and entropy values of the two variables (3). Con-
cretely speaking, we estimated the probability p that a bin includes a
spike and the complementary probability 1 − p that a bin is silent for
each unit by direct counting of the frequency of occurrence of 1s and
0s in the binned spike trains of each unit. These counts yielded the
probability distributions P(i) and P(j) that two neurons i and j fire
or not. Analogously, we sampled directly from data the histogram
P(i,j) of joint spike counts for any pair of two units i and j. These
histograms were then directly “plugged in” (hence the name of the
used estimator) into the definition of MI itself

MIði; jÞ ¼ ∑i∑jPði; jÞlog2
Pði; jÞ
PðiÞPðjÞ

We then subtracted from each MI value a significance threshold
(95th percentile of MI estimated on shuffled binarized trains, 1000
replicas), putting to zero nonsignificant terms (and thus negative
after bias subtraction). Although this corrected plug-in estimator is very
rough, it is sufficient in our application in which we are not interested
in quantitatively exact values of MI but just in relative comparisons of
values finalized to state clustering over a large amount of observations.
We compiled the N resulting AÎSi values into time-dependent vectors
Storage(t), constructing separate vectors for each of the simulta-
neously recorded regions. We then constructed storage substates
through unsupervised clustering based on the Msim matrices, as pre-
Clawson et al., Sci. Adv. 2019;5 : eaax4843 26 June 2019
viously described. We defined a neuron to be a storage hub in a given
state if its AÎSi value in the state prototype vector was higher than the
95% percentile over all entries of concatenated cluster prototype vec-
tors. This conservative threshold guarantees that only neurons with
exceptionally high AIS values are labeled as hubs. While we may have
some false negatives—i.e., neurons with values in the right tail of the
AIS distribution not labeled as hubs—we are thus protected against
false positives.

AIS absolute values varied widely between the different record-
ings. To compare AIS measures and their relative changes between
global oscillatory states across recordings, we first averaged AIS for
all the units within a specific anatomic layer. We then normalized
these average AIS values by dividing them by the average AIS value
in the SO state (in anesthesia) or the nonREM state (in natural sleep)
for the specifically considered recording and layer. The results of this
analysis are shown in fig. S5, where different lines correspond to dif-
ferent recordings.

Information sharing networks and strengths
Within each time window, we computed time-lagged mutual in-
formation MI[i(t), j(t − t)] between all pairs of spike density time
series for different single units i and j [evaluated via the same binning
method for determining the Firing(t) descriptive feature vector].
Although MI is not a directed measure, a pseudo-direction of sharing
is introduced by the positive time lag, supposing that information can-
not be causally shared from the future. Thus, for every directed pair of
single units i and j (including autointeractions, with i = j), we defined
pseudo-directed information sharing as

Isharedðj→ iÞ ¼ St MI½iðtÞ; jðt � tÞ�

where the lag t was varying in the range 0≤ t≤ 0.5 Tq, where Tq is the
phase of the THE cycle. Once again, we estimated MI terms via direct
plug-in estimators on binarized spike trains, as with storage, subtracting
a significance threshold (95th percentile of MI estimated on shuffled
binarized trains, 400 replicas) and zeroing not significant terms. All
these Ishared (j→ i) entries were interpreted as weights in the adjacency
matrix of an information sharing directed functional network, and we
defined as sharing assembly formed by a neuron i the star-subgraph of
the information sharing network composed of i and all its immediate
neighbors. We compiled all the overall N2 different values of Ishared
(j→ i) into time-dependent feature vectors Sharing_A(t), thus de-
scribing all the possible sharing assemblies at a given time. We then
also computed information sharing strengths by integrating the total
amounts of information that each single unit was sharingwith the past
activity of other units in the network (“sharing-in”)

Isharedð→iÞ ¼ Sj Ishared ðj→ iÞ

orwith the future activity of other units in the network (“sharing-out”)

Ishared ði→Þ ¼ Sj Ishared ði→ jÞ

That is, the integrated amount of shared information was given by
the in-strength and the out-strength of a node in the information
sharing network with individual link weights Ishared (j→ i). We com-
piled the N incoming Ishared (→ i) and N outgoing Ishared (i→) values
12 of 16
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into time-dependent vectors Sharing_S(t). We computed separate
Sharing_A(t) and Sharing_S(t) for each of the simultaneously
recorded regions. We then performed as before unsupervised clus-
tering based on the associated Msim matrices to extract sharing sub-
states. Because the block structure displayed by theseMsimmatrices for
sharing assemblies and strengths are nearly perfectly overlapping, we
conducted all substate analyses based on Sharing_S(t) vectors only.
We defined a neuron to be a sharing hub in a given state if its Ishared
(* → i) and/or Ishared (i → *) values in the state prototype vector were
higher than the 95% percentile of all concatenated cluster prototypes
entries (again protecting against false-positive detection).

The relative comparisons of information sharing between SO and
THE (REM and nonREM) epochs for different recordings shown in
fig. S5 are based, as in the case of AIS in fig. S5, on averaged and scaled
values. We first averaged the total Ishared (i.e., sharing in plus sharing
out) over all the units within a specific anatomic layer.We then normal-
ized these average total Ishared values by dividing them by the average
total Ishared value in the SO state (in anesthesia) or the nonREM state
(in natural sleep) for the specifically considered recording and layer.

Liquidity of sharing
TheMrec matrices for sharing assemblies display light blue (low internal
correlation) blocks, while the Mrec matrices for sharing strengths have
similar blocks but red hued (higher internal correlation).We quantified
this visual impression by evaluating liquidity of sharing strength and
sharing assembly substates. For a given recording and a given associated
Mrec matrix (e.g., the one for the Sharing_A or the Sharing_S
features), we defined Ta as the set of times t for which the system is
in a given substate a relative to the considered feature of interest. We
then evaluated the liquidity L(a) of this substate a as

LðaÞ ¼ ∑
tDTa

t
∑
t′DTa

t′<t
ð1� ∣Mrecðt; t′Þ∣Þ

�
#Ta

2

� �

where ∣ ∙ ∣ denotes the absolute value operator and #Ta is the number
of elements of the set Ta. Liquidity values are thus bounded in the
interval 0≤ L(a)≤ 1, with 1 indicating the maximum liquidity (i.e.,
maximum internal variability) of a substate.

Oscillatory mode specificity and hub distributions
For each substate (firing, storage, and sharing), we computed the frac-
tion of times that the substate was observed during a SO or THE state
(in anesthesia) or a nonREMor REM state (in natural sleep).We defined
the largest among these fractions as the oscillatory specificity of this
substate.Oscillatory specificities close to 1 indicate that a substate occurs
mostly within one of the two possible global states observed in each re-
cording, while specificities close to 0.5 indicate that the substate do not
occur preferentially in one of the global states.

To evaluate the probability that a hub emerges in a given anatomical
layer, we computed for every recording the fraction of cells recorded in
each layer that were labeled as hubs at least in one computing substate
(storage or sharing). We computed separately these fractions layer by
layer for excitatory and inhibitory cells and for anesthesia or sleep.
These fractionswere equal to unit when all the excitatory (or inhibitory)
cells in a layer happened to be hubs at least once.We then evaluated the
general probability that a hub emerges in a layer, which is different from
the previous one, because it also takes into account the fact that some
cellsmaybe labeled as hubsmore often thanothers.We then considered
Clawson et al., Sci. Adv. 2019;5 : eaax4843 26 June 2019
the list of all hubs of a given type (storage or sharing) across all substates,
including repetitions (if a neuron was hub in more than one substate,
then it appearedmultiple times in the list), and evaluated the fraction
of times in which a hub in this list was belonging to a given layer. We
computed separately these fractions layer by layer for storage or sharing
hubs and for anesthesia or sleep. Ninety-five percent confidence inter-
vals for the mean fractions above were evaluated as 2.996 times their
sample SD over the different recordings for which they could be com-
puted. We considered two mean fractions to be different when their
95% confidence intervals were fully disjoint.

Coordination between substate transitions
To compare sequences of substates of different types or in different
regions, we introduced a symbolic description of substate switching.
Each substate was assigned a letter symbol, i.e., a label s(p), where p can
stand for firing, information storage, or sharing and s(p) is an arbitrary
integer label different for every substate. We could thus describe the
temporal sequences of the visited substates of each different type as
an ordered list of integers s(p)(t).Wequantified the degree of coordination
between the sequences of substates of different types (e.g., p = “storage”
versus q = “sharing”) or in different regions (e.g., p = “storage in EC”
versus q = “storage in CA1”) by evaluating the relative mutual infor-
mation term

MI sðpÞðtÞ; sðqÞðtÞ
h i

=max HðsðpÞðtÞÞ;H sðpÞðtÞ
� �h i

normalized between 0 (full statistical independence between the two
substate sequences) and 1 (complete overlap between the two substate
sequences) by dividing it by the entropyHof themost entropic among
the two symbolic streams. We evaluated these MI and H terms using
direct plug-in estimators on the joint histograms of substate labels.We
estimated chance expectations for the level of coordination by repeat-
ing the same procedure for substate sequences with shuffled substate
labels and then finding the 99th percentile over 1000 permutation rep-
licas of the computed MI/H.

Mutual information measure’s dependence on bin size
The original decision for the bin size was chosen such that, when dis-
cretized, the information content lost by counting two or three spikes on
the same neuron within a given bin as a 1 was less than 5%. On average,
the information content lost was less than 1% across all recordings. To
analyze the dependence on bin sizes, one example recordingwas chosen
in the PFC during natural sleep in different bin sizes (25, 33, and 66ms)
and computed substates using the same methods described above. To
make the comparison focused on bin size, the same number of clusters
per feature was chosen to reflect the original number. We then com-
puted the amount of information about the substate sequences com-
puted with the original bin size that were retained by corresponding
substate sequences derived for each different bin size. To do so, we used
the same procedure described in the previous section to quantify co-
ordination between sequences for different types of states or between
different regions. Notably, we computed mutual information between
the substate sequences for different bin sizes (normalized by the entropy
of the original sequence) and compared this relative mutual information
with chance expectation (obtained via shuffling substate sequences, as
above). We found that the mutual information between corresponding
sequences for different bin sizes was two order of magnitudes above the
chance level, denoting high robustness of our procedure for extracting
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substates. Correspondingly, we also found that, for matched substates
between sequences extracted for different bin sizes, the identifica-
tion, number, and anatomical localization of hubs were onlymargin-
ally altered.

Complexity of substate sequences
After converting sequences of substates into symbolic streams of letters,
we defined substate words as the triplets of letters corresponding to the
firing, the information storage, and the information sharing substates
simultaneously observed at each time t, i.e.

SðtÞ ¼ sðfiringÞðtÞ sðstorageÞðtÞ…sðsharingÞðtÞ

We then constructed a switching table T in which the temporally
ordered columns provide the sequence of substate words S(t) along
time. We compiled separate switching tables for each recording and
for each of the simultaneously recorded regions. The total set of substate
words effectively found ina specific switching table constitutes its associated
dictionary of substate combinations. We then defined the used dictionary
fraction as the ratio between the number of observed words and the max-
imum theoretically possible number of words that could have been com-
posed given the available substate letters (depending on howmany firing,
storage, or sharing substates have been effectively extracted).

We evaluated the complexity of substate word sequences using a
procedure inspired from the notion of Kolmogorov-Chaitin complexity
(17) and MDL approaches (17). The basic concept is that, for a regular
symbolic sequence (as our streams of substate words), it will be possible
to design a tailored “compression language” such that the sequence will
admit amuch shorter descriptionwhen reformulated into this language
with respect to the original length in terms of number ofwords.On the
contrary, a random symbolic sequence will be poorly compressible, i.e.,
its descriptions in terms of a generative languagewill be nearly as long as
the original list of symbols appearing in the sequence. A complex sym-
bolic sequence will stand between these two extremes—still admitting
a compressed generative description but not as short as for regular se-
quences. Departing from universal compression approaches, as the
original MDL formulation (17) or the Lempel-Ziv approach (19),
we introduce here a “toy language” for generative description,
specialized to compress state transition tables as the ones in Fig. 6A.
Our choice is conceptually compliant with the MDL approach but—
for the sake of pedagogy—avoids technical steps as the use of binary
prefix coding.

Let W = {S1, S2, …, Sw} be the dictionary of substate words
appearing in the switching table T that we want to describe. We first
define the exhaustive list description (Dlist) of T as a string of the
following form

Dlist≔S1 t1;1 t1;2…t1;k1 S2 t2;1 t2;2…t2;k2…Sw tw;1 tw;2…tw;kw

In such a description, the symbol of each substate word Sq

(counting as one description unit) is followed by an exhaustive list
of all the kq times tq,1, tq,2, …, tq,kq (each time index counting as an
extra description unit) at which the recorded system produced the
matching substate word. If the number of analyzed time windows
is K = k1 + k2 +… + kw, then the length of the exhaustive list descrip-
tion will be |Dlist| = K + w description units (K time stamps plus w
substate word symbols).
Clawson et al., Sci. Adv. 2019;5 : eaax4843 26 June 2019
Let us then define the block-length description (Dblock) of the stream
of substate code words as a description of the following form

Dblock≔S1 w1;1 l1;1 w1;2 l1;2…

w1;m1 l1;m1 S2 w2;1 l2;1 w2;2 l2;2…w2;m1 l2;m1…

Sw ww;1 lw;1 ww;2 lw;2…ww;mw lw;mw

In such a description, the symbol of each word Sq (always counting
as one description unit) is followed by a list of stepping instructions for a
hypothetical “writing head” moving along different discrete positions
on an idealized tape, similarly to computing automata as the Turing
machine (34). At the beginning, themachine is initialized with the head
on the first position on the tape. The integers wq,n—at odd positions
(first, third, etc.) after the word symbol—indicate how many steps the
machine head must shift on the tape toward the right without writing,
but just skipping positions. The integers lq,n—at even positions (second,
fourth, etc.) after the word symbol—indicate instead how many steps
the machine must also write on the tape the symbolic string Sq before
shifting to the next position on the right. Every time that a new symbol
Sq is met when parsing the step length description, the position of the
writing head is reset to the leftmost starting position on the tape. This
parsing grammar is obviously more complex than the one for a simpler
“parrot machine” designed to parse exhaustive list descriptions as the
ones described above. The length in symbols of this block-length de-
scription is variable and depends on how regular the word sequence
is to compress and regenerate. The block-length description segment
Sq wq,1 lq,1 … wq,mq lq,mq will be shorter than the matching exhaustive
list description segment Sq tq,1… tq,kq whenever 2mp < kp, which can
happen if transitions for the different types of substate letters are regu-
larly aligned, in such a way that the resulting switching table have long
alternating blocks with repeated substate words.

The syntactic complexity of a sequence of substate words can then
be evaluated by quantifying how much the program to generate the
switching table T via a “smart” compressing machine interpreting
block-length descriptions is shorter than the program to generate
the same table T via a “dumb” parrot machine interpreting exhaustive
length descriptions. We define the description length complexity of a
switching table T as

DLC ¼ ∣DblockðT Þ∣=∣DlistðT Þ∣

To give a toy example, let us consider the sequence T = “AAAAAAA
BBBB AAAAACCCCCDDD BBBBBB,” built out of four possible col-
lection of substate words S1 = A, S2 = B, S3 = C, and S4 = D. The
exhaustive list description for this sequence will be

DlistðT Þ ¼
A 1 2 3 4 5 6 7 12 13 14 15 16 B 8 9 10 11 25 26 27 28 29 30

C 17 18 19 20 21 D 22 23 24

with length |Dlist(T )| = 34 descriptive units. Its step length descrip-
tion will be

DblockðT Þ ¼ A 0 7 4 5 B 7 4 13 6 C 16 5 D 21 3

with length |Dblock(T )| = 16 descriptive units, i.e., |Dblock(T )| < |Dlist(T )|.
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Given the noisiness of data, we dropped fromboth the exhaustive list
description and the step length description the segments corresponding
to exceedingly rarewords Sq. In particular, ranking the codewords from
the least to the rarest, we dropped all the wordsSr with r≥ R such that
removing all of their occurrences in the word stream reduced the
stream’s overall length of no more than 10% (lossy compression).

We computed confidence intervals for description length complexity
(DLC) values via a jackknife construction in which we drop one word at
random position from the temporal stream S(t) made of K symbols,
generating up toK Jackknife surrogate streams, eachwithK− 1 symbols.
The confidence interval was then given by the 5th and the 95th percen-
tiles over the complexities evaluated from these Jackknife surrogates.

Appropriate reference criteria were then required to discriminate
complex versus orderedor randomswitching tables.Weneed to compare
the empirically observed DLC values against two thresholds. Complex
switching tables should have a DLC below a threshold for randomness
testing and above a threshold for regularity testing. Given a switching
table T , we constructed a randomized version T rand by randomly per-
muting independently the entries of each of its rows. For each recording,
we constructed 1000 instances of T rand and evaluated DLC for all of
them, identifying as upper threshold for complexity the 5th percentile
DLCrand = q5%[DLC(T rand)]. We then constructed an enhanced regu-
larity version T regular of each T by lexicographically sorting entries row
by row (to get blocks of homogeneous code words as long lasting as
possible based on exactly the same building bricks). We then arbitrarily
defined a lower threshold for complexity DLCregular = 2 DLC(T regular).
The thresholds DLCregular and DLCrand varied for every switching table.
However, the criterion DLCregular < DLC < DLCrand was fulfilled for all
the considered recordings, whose state transition sequences could then
be certified to be complex (in our arbitrary but quantitative and oper-
ational sense).

We could restrict the evaluation of complexity to subtable restricted
to words occurring during selected different global oscillatory states only.
In this way, we could compare the complexity of sequences occurring
within different global states, e.g., REM versus nonREM. We plot in
Fig. 6E the relative complexity variations between two global states
a and b

D ðDLCÞ ¼ ðDLCa –DLCbÞ=ðDLCa þ DLCbÞ

Weevaluated once again confidence intervals for relative complexity
variations via one-leave-out jackknife on global state–restricted switching
table columns.

Burstiness of state sequences
We also characterize switching tables in terms of their “style” of transi-
tions, looking at two different temporal statistics. First, we computed all
intertransition times from a table T , i.e., the number of time steps
occurring between one block (continuous time intervalwith a same sub-
state word maintained in time) to the next. Note that these intertransi-
tion times are precisely the lp,n integers appearing in the block-length
description Dblock (T ) of the table T . After computing the mean ml and
the SD sl of these intertransition times, we then evaluated the burstiness
coefficient (18)

B ¼
sl
ml
� 1

sl
ml
þ 1
Clawson et al., Sci. Adv. 2019;5 : eaax4843 26 June 2019
Such a coefficient is bound between−1 <B< 1 and is equal to 0when
transitions between substate words follow a Poisson statistic, negative
when the train of transitions is more periodic, and positive when more
bursty than for a Poisson train.
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