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Delay-coordinate mapping is an effective and widely used technique for reconstructing and analyzing the
dynamics of a nonlinear system based on time-series outputs. The efficacy of delay-coordinate mapping has long
been supported by Takens’ embedding theorem, which guarantees that delay-coordinate maps use the time-series
output to provide a reconstruction of the hidden state space that is a one-to-one embedding of the system’s attractor.
While this topological guarantee ensures that distinct points in the reconstruction correspond to distinct points
in the original state space, it does not characterize the quality of this embedding or illuminate how the specific
parameters affect the reconstruction. In this paper, we extend Takens’ result by establishing conditions under
which delay-coordinate mapping is guaranteed to provide a stable embedding of a system’s attractor. Beyond only
preserving the attractor topology, a stable embedding preserves the attractor geometry by ensuring that distances
between points in the state space are approximately preserved. In particular, we find that delay-coordinate mapping
stably embeds an attractor of a dynamical system if the stable rank of the system is large enough to be proportional
to the dimension of the attractor. The stable rank reflects the relation between the sampling interval and the number
of delays in delay-coordinate mapping. Our theoretical findings give guidance to choosing system parameters,
echoing the tradeoff between irrelevancy and redundancy that has been heuristically investigated in the literature.
Our initial result is stated for attractors that are smooth submanifolds of Euclidean space, with extensions provided
for the case of strange attractors.

DOI: 10.1103/PhysRevE.97.022222

I. INTRODUCTION

A. Motivation and contribution

Modern science is ingrained with the premise that repeated
observations of a dynamic phenomenon can help us understand
its underlying mechanisms and predict its future behavior.
While this idea dates back to ancient times with the observation
of sunspots [1], today we model the behavior of a wide
variety of measured phenomena from the life, physical, and
social sciences [2–11] as observations arising from complex
dynamical systems. Understanding and predicting a time series
is often approached by postulating a structured model for
a hidden dynamical system that drives the data generation.
Linear statistical models were used in early work [12] and
are now reflected in standard tools such as the autoregressive-
moving-average model and the Kalman filter (e.g., [13]). More
recently, the field of nonlinear time-series analysis models
time-series data as observations of the state of a (possibly high-
dimensional) deterministic nonlinear dynamical system [11].
While the underlying dynamical system may exhibit chaotic
behavior, it is often postulated as being governed by an attractor
that is a low-dimensional geometric subset of the state space.

Due to the low-dimensional behavior in the underlying state
space, it is reasonable to postulate that temporal dependencies
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in time-series observations can provide some insight into the
structure of the hidden dynamical system. This leads to a
fundamental question: How much information about a hidden
dynamical system is available in time-series measurements of
the system state? The seminal Takens’ embedding theorem
[14,15] asserts that (under very general conditions) it is
possible to use the time-series data to reconstruct a state
space that is a topologically equivalent image of the attractor
through a simple procedure known as the delay-coordinate
map. Indeed, many algorithms for tasks such as time-series
prediction and dimensionality estimation take inspiration and
justification from this fundamental guarantee [16–24]. While
the topological guarantee of Takens’ theorem provides that
the delay-coordinate map is one to one (i.e., distinct points in
the reconstruction correspond to distinct points in the original
state space), it does not speak to the overall quality of the
reconstruction or how this quality is affected by specific details
such as the algorithm parameters, the measurement function,
or the system characteristics.

Many fields of data science also rely on capturing low-
dimensional structure from high-dimensional data, and recent
advances have shown the value of guaranteeing geometric
stability of an embedding as a measure of quality for sub-
sequent inference. In such a stable embedding, the embed-
ding approximately preserves the distance between any two
points in the data set of interest, which has proven to be
valuable for robustness to imperfections in many forms (i.e.,
noise, numerical imprecision, etc.). In computer science, the
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FIG. 1. (a) The state-space trajectory of the Lorenz attractor in R3, demonstrating the characteristic butterfly pattern. (b) The time series
obtained by a measurement function that only keeps the x1 coordinate of the trajectory. (c) The delay-coordinate map points with M = 2,
recreating the butterfly pattern using only the time series.

Johnson-Lindenstrauss lemma constructs stable embeddings
for finite point clouds using random linear projections [25]. In
compressive sensing [26,27], the restricted isometry property
(RIP) condition captures the notion of a stable embedding
for sparse signal families, ensuring that signal reconstruction
from random linear measurements is robust to noise and stable
with respect to model nonidealities [28]. For dimensionality
reduction with signal families belonging to low-dimensional
manifolds and more general sets, various types of stable
embeddings have been constructed using adaptive nonlinear
techniques such as ISOMAP [29], adaptive linear techniques
[30,31], and nonadaptive linear techniques that again employ
randomness [32–35].

The main contribution of this paper is to extend the notion of
Takens’ embedding theorem to stable embeddings, providing
insight into the conditions for when time-series data can
(and cannot) be used to reconstruct a geometry-preserving
image of the attractor. In addition to providing the formal
foundations to justify the numerical algorithms based on
delay-coordinate mapping, these results also give guidance
to practitioners about how algorithm and observation design
choices affect the overall quality of the representation. In
particular, examination of our main theoretical findings gives
guidance to choosing these system parameters, echoing the
tradeoff between irrelevancy and redundancy that has been
heuristically investigated in the literature. For clarity and to
gain as much insight as possible, our main result is first
described for attractors that are smooth submanifolds of the
Euclidean space (similar to Takens’ original result) and then
extended to the case of strange attractors. The remainder of the
Introduction will provide a simplified version of the main result
to give the flavor of the contribution from this paper, with the
full technical results given in Secs. III C (smooth manifolds)
and III E (strange attractors). To streamline readability as much
as possible, the proofs and additional technical details are
contained in appendices for the interested reader.

B. Delay-coordinate maps and Takens’ embedding theorem

We consider x(·) as the trajectory of a dynamical system
in the state space RN such that x(t) ∈ RN for t ∈ [0,∞).
While the system has continuous underlying dynamics, we
observe this system at a regular sampling interval T > 0. Given
this sampling interval, one may define the discrete dynamics
in terms of the flow φT : RN → RN such that x(t + T ) =
φT (x(t)). In words, φT (·) moves the system state into the

future by T . We assume that during the times of interest the
state trajectory is contained within a low-dimensional attractor
[11] A such that x(t) ∈ A ⊂ RN for t � 0. The attractor
A is assumed to be a bounded, boundaryless, and smooth
submanifold of RN with dim(A) < N . The flow operator
restricted to this attractor is a diffeomorphism on A so that
there exists a smooth inverse φ−1

T (x(t)) = x(t − T ).
In applications of interest we often cannot directly observe

this system state but rather receive indirect measurements via a
scalar measurement function h : A → R. This function gener-
ates a single scalar measurement at a regular sampling interval
T > 0, producing the resulting discrete time series {si}i∈N =
{h(x(iT ))}i , where each si ∈R. The goal is to “reconstruct” the
hidden state trajectory x(·) given only {si}i . To approach this
task, consider the delay-coordinate map Fh,T ,M : A → RM ,
defined for an integer number of delays M through the relation

Fh,T ,M (x(iT )) =

⎡⎢⎢⎢⎢⎣
si

si−1

...

si−M+1

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
h(x(iT ))

h(x((i − 1)T ))
...

h(x((i − M + 1)T ))

⎤⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎣
h(x(iT ))

h
(
φ−1

T (x(iT ))
)

...

h
(
φ−M+1

T (x(iT ))
)

⎤⎥⎥⎥⎥⎦. (1)

Note that the delay-coordinate map is simply formed at a given
time by stacking the last M observed time-series values into
a vector. Commonly, RM is referred to as the reconstruction
space.

Takens’ embedding theorem [14,15] asserts that it is indeed
possible to reconstruct the state space from the time-series
data. With this setup, Takens’ result roughly states that if M >

2 dim(A), then the delay-coordinate map Fh,T ,M (·) resulting
from almost every smooth measurement function h(·) embeds
the attractor A into the reconstruction space RM (i.e., the
delay-coordinate map forms a diffeomorphism for A). In other
words, the topology of the attractor A is preserved in the
reconstruction space RM under the delay-coordinate map, and
therefore the trajectory in the reconstruction space Fh,T ,M (x(·))
is (in principle) equivalent to the trajectory in the state space
x(·). Figure 1 illustrates the concept of a delay-coordinate map
in the case of the widely known Lorenz attractor. Despite
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this embedding guarantee ensuring that no two points from
the attractor map onto each other in the reconstruction, the
mapping could be unstable in the sense that close points may
map to points that are far away (and vice versa). While the
simplified main result of this paper is presented for the case
of attractors that are smooth submanifolds, the extensions
presented in Sec. III E include strange attractors such as the
Lorenz attractor.

C. Simplified main result

To quantify the quality of the embedding in the recon-
struction space, we seek the stronger guarantee that the delay-
coordinate map Fh,T ,M (·) is a stable embedding of the attractor
A. By stable embedding, we mean that Fh,T ,M (·) must act as a
near isometry on A, in the sense that

εl �
‖Fh,T ,M (x) − Fh,T ,M (y)‖2

2

M‖x − y‖2
2

� εu, ∀ x,y ∈ A, x �= y

(2)

for some isometry constants 0 < εl � εu < ∞. Said another
way, if εl ≈ εu, the stable embedding condition of (2) guar-
antees that the delay-coordinate map preserves the geometry
of the attractor (rather than merely its topology) by ensuring
that pairwise distances between points on the attractor are
approximately preserved in the reconstruction space. Since
x(·) ⊂ A, the same would hold for the trajectory and its image,
thereby guaranteeing the quality of the trajectory embedding
in the reconstruction space RM .

The main result of this paper is to determine the conditions
on the attractor A, measurement function h(·), number of
delays M , and sampling interval T such that Fh,T ,M (·) is a
stable embedding of A. This is a more ambitious objective
than Takens’ embedding theorem (leading naturally to more
restrictive conditions), but with the benefit of quantifying
the quality of the embedding and relating that quality to
the problem-specific parameters. Roughly speaking, our main
result shows that Fh,T ,M (·) stably embedsA (in the sense of (2))
for most measurement functions h, provided that the following
condition is satisfied:

RH,T ,M (A) � dim(A) ln

(
vol(A)

1
dim(A)

rch(A)

)
. (3)

Here, dim(A) and vol(A) are the dimension and volume of
the attractor A ⊂ RN , and rch(A) is an attribute of A that
captures its geometric regularity. To quantify the notion of
“most” measurement functions, our result is probabilistic and
holds with high probability over measurement functions drawn
from a rich probability model H . The stable rank RH,T ,M (A) of
A quantifies the ability of the random measurement functions
to observe the system attractor. Both reach and stable rank are
well-studied concepts, and will be discussed (along with the
detailed probability model H ) in full technical detail later.

Typically, if a dynamical system is fairly “predictable,” then
RH,T ,M (A) grows proportionally with M as the number of
delays grows. In this case, the delay-coordinate map stably
embeds A when the number of delays scales linearly with the
dimension of the attractor as in Takens’ original theorem. On
the other hand, if the dynamical system is highly unpredictable,

then it is likely that RH,T ,M (A) plateaus rapidly with increasing
M and it will be more difficult to stably embed this system
through delay-coordinate mapping even with very long delay
vectors. In Sec. III, the main contribution of this paper pre-
cisely quantifies these conditions governing the quality of the
embedding from the delay-coordinate map. As we also discuss,
these conditions have a natural interpretation in the context of
classical empirical methods for choosing T and M .

II. BACKGROUND AND RELATED WORK

A. Takens’ embedding theorem

To expound on the overview in Sec. I B, we turn our attention
to a detailed technical statement of Takens’ theorem [14]
showing that the delay-coordinate map Fh,T ,M (·) embeds the
attractor A (and, of course, the trajectory x(·) ⊂ A).

Theorem 1: (Takens’ embedding theorem [14]). Let A ⊂
RN be a smooth, bounded, and boundaryless submanifold of
RN , and let M > 2 dim(A) be an integer. For pairs (φT ,h)
where the flow φT : A → A is a diffeomorphism on A and
where h : RN → R is a smooth measurement function, it is
a generic property that the delay-coordinate map Fh,T ,M (·)
is an embedding (i.e., diffeomorphism) of A ⊂ RN into the
reconstruction space RM .

In this theorem, “generic” means that the set of pairs (φT ,h)
for which Fh,T ,M (·) yields an embedding is open and dense in
the set of all mappings. This topological notion of genericity
was later extended to an “almost every” probabilistic argument
by Sauer et al. [15]. In fact, the probe space framework
developed in Ref. [15] was the inspiration for our analysis
which involves drawing h randomly from a subspace of
measurement functions (see Sec. III A). We also note that by
relaxing the manifold assumption, Takens’ theorem has also
been generalized to cover embedding of fractal sets such as
strange attractors [15] (formed by chaotic dynamical systems
[11]) and embeddings of forced systems [36].

Note that, under Takens’ theorem, Fh,T ,M (A) ⊂ RM is
diffeomorphic to A ⊂ RN , so that the topology of the attractor
A and the flow on this attractor are preserved under delay-
coordinate mapping. In particular, we may trace Fh,T ,M (x(·))
with its samples and “reconstruct” the trajectory in the (often
inaccessible) state space using only the time-series data. In
fact, several important characterizations of dynamical systems
are preserved under delay-coordinate mapping and can be
computed directly in the reconstruction space, including the
number (types) of fixed points (orbits), the dimension of the
attractor (i.e., dim(Fh,T ,M (A)) = dim(A)), and the Lyapunov
exponents [11,37]. Justified by these properties, the recon-
struction space representation formed by the delay-coordinate
map has been used for many practical time-series processing
algorithms [38], including tasks such as prediction [11,39],
noise reduction [40], chaos synchronization and control
[41–43], system identification [44], and detection of causality
in complex networks [45].

While Takens’ original theorem proves that the delay-
coordinate map is theoretically equivalent to the attractor in
the hidden state space, it may map close points far apart and
far points close together. This warping, though topologically
equivalent, means that even small changes in the reconstruction
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space representation (e.g., due to noise, etc.) can amount to
arbitrarily large changes in the corresponding points in the state
space. One might ask the following: Are there any conditions
where the delay-coordinate map is guaranteed to bound the
errors due to noise? Will changes to the delay-coordinate map
parameters (e.g., increasing the number of delays, decreasing
the sampling interval), the system, or the measurement function
affect the quality of the reconstruction or its tolerance to
noise? Takens’ original theorem does not address these issues,
motivating our study of geometrically stable embeddings.

B. Related work

Prior work by Casdagli et al. [16] begins to methodically
address the issue of noise in delay embeddings by studying the
effects of the sampling interval T and number of delays M on
asymptotic quantities defined to capture the effects of noise on
the delay-coordinate map. We note that, when the image of an
attractor is warped or folded (and thus, not a stable embedding),
noise sensitivity can be a problem as the conditional probability
of the state given a noisy observation of the delay vector may
be poorly localized. In addition, the conditional variance of
h(x((i + 1)T )) (the next value in the time series) may increase,
which reduces the ability to predict the time series.

While some approaches have been developed to perform
noise reduction in the reconstruction space [46], more gener-
ally, one finds a rich literature on methods of choosing the opti-
mal T and/or M that account for noise by examining quantities
that can typically be interpreted as having some dependence on
the distortion of the attractor. To illustrate the concept (without
claiming to be an exhaustive review), methods have been
proposed to choose parameters by examining how they change
the neighborhood relationships between points (e.g., the in-
troduction of “false nearest neighbors”) [47–49], geometric
quantities (e.g., space filling) intended to separate trajectories
[50,51], test statistics proposed for determining whether the
result is a valid embedding of the input [52], and statistics
related to the predictive power of the time series (e.g., mutual
information) [17,19]. The work in [20] recommends the mean
orbital period (approximated from the oscillations of the time
series) as a reliable choice for the window length (i.e., T M),
noting that most methods for choosing embedding parameters
are based on empirical arguments, use arbitrary criteria, and
ultimately do not guarantee good reconstructions. While not
primarily introducing a method to choose parameters per se,
our results provide a theoretical basis for proposed methods
by explicitly illustrating the impact of parameter choices
(and other problem-specific details) on a natural measure for
assessing reconstruction quality: geometric stability.

Our approach to guaranteeing the stability of delay-
coordinate mapping relies heavily on recent advances in
the fields of compressive sensing and geometric functional
analysis. As mentioned previously, a central condition in
compressive sensing is the RIP, which requires a linear mea-
surement operator to provide a stable embedding of the sparse
signal family. Of particular interest in compressive sensing are
randomized linear measurement operators. In particular, when
the measurement operators are constructed randomly (e.g., as
a random matrix populated with independent and identically
distributed Gaussian entries), the RIP can be satisfied with

high probability [53]. The basic compressive sensing results
have been extended to various classes of structured randomized
measurement functions [32,54–56] as well as other low-
dimensional models [57] such as smooth manifolds [33–35].
This work is especially indebted to recent developments in
geometric functional analysis which appeared first in Ref. [55]
to establish the RIP for a class of structured random matrices.
It is also worth noting the recent work [58], in which sparse
recovery tools are used to help identify a dynamical system in
spite of large erasures in the available data.

A study of stable delay-coordinate mapping for linear
dynamical systems and with measurement functions that are
deterministic and linear has previously appeared in Ref. [59].
The current result is a significant extension of this previous
work by allowing general nonlinear systems and measurement
functions that are both randomized and nonlinear. However,
the main result in this work has a similar flavor to [59],
as both papers highlight cases where the embedding quality
plateaus and cannot be improved by increasing the number of
delays M .

C. Differential geometry

Because we will consider attractorsA that are submanifolds
ofRN , it is helpful to review the differential geometry concepts
that characterize A and play a major role in the present results.
The reader may also refer to [60] for a more comprehensive
introduction.

To any point x ∈ A we can assign a tangent subspace
TxA ⊂ RN comprised of the directions of all curves on A
that are tangent to x. The linear subspace TxA has dimension
dim(A) in RN , and the union of all tangent subspaces is called
the tangent bundle of A:

TA :=
⋃
x∈A

{x} × TxA.

Consider a smooth map ψ : A → A. The derivative of this
map at x ∈ A is the linear operator Dψ(x) : Tx → Tψ(x) that
satisfies

lim
τ→0

‖ψ(x + γ (τ )) − ψ(x) − [Dψ(x)](γ (τ ))‖2 = 0, (4)

for every smooth curve γ : [−1,1] → A that passes through
x with γ (0) = x. The normal subspace NxA is the (N −
dim(A))-dimensional orthogonal complement of TxA with
respect to RN . The normal bundle of A is the union of all
normal subspaces:

NA :=
⋃
x∈A

{x} × NxA.

For r > 0, we also letNrA denote the open normal bundle ofA
of radius r comprised of all normal vectors of length less than
r . For example, when A is the unit circle in R2 and r ∈ (0,1),
NrA may be identified with an annulus of width 2r (around
the circle).

A geodesic curve onA is a smooth curve that minimizes the
�2 distance between every pair of nearby points that it connects
[60]. The geodesic distance between a pair of points on A is
the length of the shortest geodesic curve that connects them.
The �2 distance between points never exceeds their geodesic
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distance. Throughout, we assume that A is regular in the sense
that, for some geodesic regularity geo(A) ∈ [1,∞), we have

‖x − y‖2 � dA(x,y) � geo(A)‖x − y‖2, ∀ x,y ∈ A (5)

where dA(x,y) stands for the geodesic distance between x,y ∈
A. For a circle, geo(A) = π

2 .
The reach measures the regularity of a manifold and is

closely related to its condition number [33,53,61].

Definition 1: (Reach of a manifold [62]). LetA be a bounded
and smooth submanifold of RN . The reach of A [denoted
with rch(A)] is the largest number r � 0 having the following
property: the open normal bundle about A of radius r is
embedded in RN for all r < rch(A).

In perhaps the simplest example, the reach of a circle
with radius ρ is simply ρ. Reach controls both local and
global properties of a manifold. Its role is summarized in
two key relationships. First, the curvature of any unit-speed
geodesic curve on A is bounded by 1/rch(A). Second, at long
geodesic distances, reach controls how close the manifold may
curve back upon itself. For example, supposing x,y ∈ A with
dA(x,y) > rch(A), it must hold that ‖x − y‖2 > rch(A)/2.
See [33] for more details.

III. MAIN RESULT

We are now prepared to give a precise setup and statement
of the result that was summarized in Sec. I C, along with
additional interpretation and discussion.

A. Measurement apparatus

We first set up our framework for choosing a measurement
function h(·) that is used to observe the trajectory x(·). In
general we seek a result in which the choice of measurement
function is not specific and arbitrary measurement functions
chosen according to some probability measure will work with
overwhelming probability. To do this, inspired by an approach
developed in Ref. [15], we limit the measurement function
to some subset H of the space of all smooth functions. To
establish this subset, we fix a finite collection of P measure-
ment basis functions hp : A → R, p ∈ {1,2, . . . ,P }. For any
coefficient vector α ∈ RP , we define a measurement function
hα : A → R that is a corresponding linear combination of the
measurement basis functions:

hα(·) =
P∑

p=1

α[p]hp(·). (6)

We limit our attention to the class H of measurement functions
formed by arbitrary linear combinations of this set of basis
functions:

H := {hα(·) : α ∈ RP } = span
[{hp(·)}Pp=1

]
. (7)

Note that while the sum in Eq. (6) is linear, each basis function
can be nonlinear, resulting in a rich and flexible set of potential
measurement functions. Note two concrete examples:

(i) H is the class of all linear functions onRN when hp(·) =
〈·,ep〉 for p ∈ {1,2, . . . ,P } with P = N . Here, ep ∈ RN is the
pth canonical vector in RN (i.e., ep[p] = 1 and ep[n] = 0
when n �= p).

(ii) H is the set of all N -variate polynomials of degree K

if {hp(·)}Pp=1 is the set of all monomials of degree K with

P = (
K+N

N

)
.

Our main theorem will depend on certain properties of the
measurement basis functions that are revealed by defining the
map H : A → RP , where

H (x) := [h1(x) h2(x) · · · hP (x)]∗ ∈ RP , ∀ x ∈ A. (8)

The superscript asterisk indicates the transpose of a matrix or
vector. We will require that the measurement basis functions
are sufficiently well behaved in that the following three
assumptions on H are met:

(A1) H (·) is a bi-Lipschitz map on A, in the sense
that lH‖x − y‖2 � ‖H (x) − H (y)‖2 � uH‖x − y‖2 for every
pair x,y ∈ A, and for some lH ,uH ∈ (0,∞).

(A2) H (·) is a diffeomorphism between A and H (A),
resulting in H (A) ⊂ RP being a bounded, boundaryless, and
smooth submanifold of RP with dim (H (A)) = dim(A).

(A3) The nonzero singular values of DH (x) belong to
some interval [ηmin,ηmax] ⊂ (0,∞), where DH (·) is the deriva-
tive of H (see Sec. II C).

Under the above assumptions on the basis functions, the
flow φT : A → A in the state space naturally induces a flow
φH,T : H (A) → H (A) (in RP ) specified as

H (x)
φH,T (·)→ φH,T (H (x)) := H (φT (x)), ∀ x ∈ A. (9)

As with the flow φT (·), the induced flow φH,T (·) is a diffeo-
morphism [but on H (A) rather than A].

Let Fhα,T ,M (·) denote the delay-coordinate map formed
with a measurement function hα(·) ∈ H, and let Fhp,T ,M (·)
denote the delay-coordinate map associated with the pth basis
function hp(·). For x ∈ A, we will find it useful to collect the
components of the delay-coordinate map due to the different
measurement basis functions and write them as columns of a
matrix such that

XH,T,M := [Fh1,T ,M (x) Fh2,T ,M (x) · · · FhP ,T ,M (x)]

∈ RM×P . (10)

Using (6), we can confirm the following useful identity:

Fhα,T ,M (x) = XH,T,Mα, ∀ x ∈ A, α ∈ RP . (11)

The introduction of φH,T (·) above allows us to rewrite
XH,T,M ∈ RM×P (see (10)) as

XH,T,M = [
H (x) H

(
φ−1

T (x)
) · · · H

(
φ−M+1

T (x)
)]∗

(see (8))

= [
H (x) φ−1

H,T (H (x)) · · · φ−M+1
H,T (H (x))

]∗
(see (9)). (12)

We also define the “trajectory attractor” as

AH,T ,M :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎣
H (x)

φ−1
H,T (H (x))

...

φ−M+1
H,T (H (x))

⎤⎥⎥⎥⎥⎦ : x ∈ A

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ ⊂ RMP . (13)
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Taken together, (11) and (12) show that the reconstruction
vectors produced by the delay-coordinate map Fhα,T ,M (·) can
be viewed as linear operator (which depends on α) acting on
points in the trajectory attractor. The reach of the trajectory
attractor will play a role in our main result.

B. Stable rank

Lastly, our main result depends on a certain quantity that
summarizes the quality of the measurement apparatus for
a given dynamical system. To that end, drawing from the
scientific computing literature [63], we first define the stable
rank of a matrix A ∈ RM×P as

R(A) := ‖A‖2
F

‖A‖2
, (14)

where ‖A‖F and ‖A‖ are the Frobenius and spectral norms of
A, respectively. It is straightforward to confirm that

1 � R(A) =
∑

i σi(A)2

σ1(A)2
� rank(A), (15)

where σ1(A) � σ2(A) � · · · � 0 are the singular values of A.
In a sense, stable rank R(·) is a more robust alternative to the
standard rank in that it is less sensitive to small changes in
the spectrum. Supposing that P � M , two extreme cases are
worth noting here. First, if the rows of A are orthonormal,
then R(A) = M . In this case, the rows of A are equal in length
and have “diverse” directions. Second, if the rows of A are
identical, then R(A) = 1.

The star of this show will in fact be the stable rank of the
attractor A, which we define to be

RH,T ,M (A) := inf
x,y∈A, x �=y

R(XH,T,M − YH,T ,M ), (16)

where XH,T,M ∈ RM×P is defined in Eq. (11) (see also (12)),
and YH,T ,M is defined analogously with y in place of x.
If P � M , then (15) dictates that

RH,T ,M (A) ∈ [1,M]. (17)

For example, when H (A) is a subset of an r-dimensional sub-
space (say with r 
 M), then (16) dictates that RH,T ,M (A) �
r 
 M . On the other hand, if the rows of XH,T,M − YH,T ,M

have similar lengths and diverse directions (for every x,y ∈ A),
then RH,T ,M (A) might be close to M . As we see next, the larger
RH,T ,M (A), the better.

C. Main result

We are now in position to state the main result of this work.

Theorem 2: (Stable Takens’ embedding theorem). Let A ⊂
RN be a smooth, bounded, and boundaryless submanifold of
RN . For a fixed sampling interval T > 0, assume that φT (·)
is a diffeomorphism on A and that the singular values of the
derivative of φT (·) belong to the interval [σmin,σmax] ⊂ (0,∞).
For an integer P , fix the measurement basis functions hp:
A → R for p ∈ {1,2, . . . ,P } and let H be the linear span of
{hp(·)}p. The random coefficient vector α ∈ RP is assumed
to have entries that are independent and identically distributed
zero-mean and unit-variance sub-Gaussian random variables
with sub-Gaussian norm θ [64].

Consider the map H : A → RP constructed in Eq. (8),
and suppose that H (·) satisfies the assumptions A1–A3 listed
in Sec. III A. Let RH,T ,M (A) denote the stable rank of A as
defined in Eq. (16). For arbitrary isometry constant δ ∈ (0,1)
and failure probability ρ ∈ (0,1), suppose that

RH,T ,M (A) �Cθ max

⎛⎝δ−2 dim(A) ln

⎛⎝ηmax

√
dim(A)

(
σ

−2M dim(A)
min − 1

σ
−2 dim(A)
min − 1

) 1
2 dim(A) vol(A)

1
dim(A)

rch(AH,T ,M )

⎞⎠,

e
− min W ( −δ2

dim(A) )
,δ−2 ln

(
1

ρ

)⎞⎠, (18)

where Cθ is a constant that depends only on θ , and make the mild assumption that

vol(A)
1

dim(A)

rch(AH,T ,M )
� 1

ηmin
√

dim(A)

(
σ−2M dim(A)

max − 1

σ
−2 dim(A)
max − 1

)− 1
2 dim(A)

, (19)

with AH,T ,M ⊂ RMP defined in Eq. (13) and W (·) denoting the Lambert W function [66].
Then, except with a probability of at most ρ (over the choice of α), the delay-coordinate map Fhα,T ,M (·) stably embeds A in

the sense that

(1 − δ)l2
H geo(A)−2 σ−2M

max − 1

M
(
σ−2

max − 1
) �

∥∥Fhα,T ,M (x) − Fhα,T ,M (y)
∥∥2

2

M‖x − y‖2
2

� (1 + δ)u2
H geo(A)2 σ−2M

min − 1

M
(
σ−2

min − 1
) , (20)

for every pair x,y ∈ A with x �= y.

The proof of this result is found in Appendix A. In Eq. (20),
regarding the behavior of the terms involving σmax and σmin

(the largest and smallest singular values of the derivative of
φT (·)), we note that these terms are close to 1 if the singular

values cluster near 1. In particular,

lim
σ→1

σ−2M − 1

M(σ−2 − 1)
= 1.
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D. Observations and interpretation

Several remarks are in order to help shape our understanding
of Theorem 2.

Remark 1: (Comparison with Takens’ theorem). Let us fix
the measurement basis functions {hp(·)}. Note that the distri-
bution of the random coefficient vector α ∈ RP in Theorem
2 induces a distribution on the space of measurement func-
tions, H = span[{hp(·)}]. Qualitatively speaking, Theorem 2
establishes that, except on a subset with an exponentially small
measure, every function in H forms a delay-coordinate map
that stably embeds A, if RH,T ,M (A) is proportional to dim(A)
with a proportionality constant that depends chiefly on the
geometry of A and the flow φT (·).

In contrast, Takens’ original theorem (Theorem 1) estab-
lished that generic choices of the flow φT and measurement
function h will yield an embedding so long as that M >

2 dim(A). The refinement of Takens’ theorem by Sauer et al.
[15] established that, for a fixed flow φT and a random choice
of h from a certain probe space, one will obtain an embedding
with probability one. This result also required that M >

2 dim(A) but placed certain restrictions on the periodicities
of the orbits of φT on A.

Thus, Theorem 2 provides a stronger embedding guarantee
than the topological and probabilistic Takens’ theorems, but it
does so with a nonzero failure probability and it is contingent
on a condition involving the stable rank RH,T ,M (A). If this
condition can be satisfied for a given attractor A, flow φT , and
space of measurement functions H, it may require choosing
the number of delays M larger than 2 dim(A).

Remark 2: (Stable rank). The requirement on the stable
rank of A in Eq. (18) merits special attention. Let us fix the
measurement basis functions (and consequently the map H (·)).
The condition in Eq. (18) must be satisfied to stably embed A,
which may require the user to sufficiently increase RH,T ,M (A)
by adjusting the sampling interval T and the number of
delays M . In fact, (18) helps justify certain design rules
that are commonly employed in constructing delay-coordinate
mappings.

Suppose for the moment that an oracle could inform the user
of RH,T ,M (A) for a given pair (T ,M) and let us examine the
behavior of the stable rank under these variables. If P < M ,
then RH,T ,M (A) is upper bounded by P . However, if P � M ,
recall from (17) that RH,T ,M (A) ∈ [1,M]. If RH,T ,M (A) ≈
M , the user could eventually enforce (18) by increasing M

(thereby stably embedding A). But how can the user enforce
RH,T ,M (A) ≈ M by adjusting T ? From (16), RH,T ,M (A) ≈ M

means that the rows of XH,T,M − YH,T ,M ∈ RM×P are nearly
orthonormal for every pair x,y ∈ A (see the discussion in
Sec. III B). Roughly speaking, the following considerations
are relevant:

(i) For the rows of XH,T,M − YH,T ,M (see (12)) to have
nearly the same length, T must be substantially smaller (in
magnitude) than the Lyapunov exponents of the flow φT (·) on
A so that

∥∥φ−m
H,T (H (x)) − φ−m

H,T (H (y))
∥∥

2 ≈ ‖H (x) − H (y)‖2,

∀ x,y ∈ A, m ∈ {0,1, . . . ,M − 1}, (21)

by the invariance of Lyapunov exponents under the diffeomor-
phism H (·) [[11], Sec. 11.2]. Note that when T is comparable
to the Lyapunov exponents (in magnitude), then the rows
of XH,T,M − YH,T ,M might differ considerably in length, and
RH,T ,M (A) is likely to be small (leading to a poor embedding
of A).

This aspect of our theoretical result mirrors the well-
recognized phenomenon of irrelevancy [16,19,20]. Indeed,
when T is comparable to the Lyapunov exponents (in mag-
nitude), entries of the delay vector Fhα,T ,M (x(t)) ∈ RM are
likely to be “causally independent.” In this case, the trajectory
Fhα,T ,M (x(·)) ⊂ RM in the reconstruction space will be unnec-
essarily more complex than the original trajectory x(·) ⊂ RN

in the state space.
(ii) For the rows of XH,T,M − YH,T ,M to be nearly orthog-

onal for every x,y ∈ A, the trajectories of the flow φH,T (·)
on H (A) should be “diverse” in that they should “visit”
different dimensions as time progresses. Adjusting T here
might help push the rows of XH,T,M − YH,T ,M to become
nearly orthogonal. However, when T is very small, the rows of
XH,T,M − YH,T ,M (for a pair x,y ∈ A) are similar in direction
and length, and consequently RH,T ,M (A) is likely to be small
(resulting in a poor embedding).

Similarly, this aspect of our theoretical result mirrors a
known phenomenon called redundancy [16,19,20]. Indeed,
when T is very small, the adjacent entries of a delay vector
Fhα,T ,M (x(t)) ∈ RM are likely to be highly similar (or “cor-
related”) and the information contained in Fhα,T ,M (x(t)) is
largely redundant. In this case, the trajectory Fhα,T ,M (x(·)) ⊂
RM in the reconstruction space will be stretched out along
the identity line (regardless of the geometry of the attractor
A ⊂ RN ).

To summarize the main points, if T is chosen too large or
too small, then RH,T ,M (A) will rapidly plateau when the user
increases M . Thus, our theoretical findings echo the (mainly
heuristically investigated) tradeoff between irrelevancy and
redundancy in the literature, suggesting the user may improve
the embedding quality if a sampling interval in this ideal
intermediate range can be found.

Remark 3: (Choice of T and M). The discussion in Remark
2 raises the following question:

Can the user experimentally find the right range for T and
M without prior knowledge of the quantities involved in (18)?

To answer this question, we first point out that a similar issue
has arisen in the past with choosing the number of delays M

for Takens’ original theorem. As a practical method for setting
this parameter [11], the community has observed that dim(A)
is preserved under delay-coordinate mapping effectively as
long as M > 2 dim(A) and there is no noise. This observation
suggests the following procedure for estimating dim(A) and
consequently estimating the required number of delays M in
Takens’ theorem. For fixed T and every M within a fixed
range {M1, . . . ,M2}, the user constructs a sequence of delay-
coordinate maps for many example test observations from the
system. For each M , the user applies the Grassberger-Procaccia
algorithm [68] to estimate dim(Fh,T ,M (A)) and searches for
a range of values of M where the graph of dim(Fh,T ,M (A))
(versus M) plateaus. This plateau is an estimate for dim(A),
and a reasonable choice of M immediately follows. When
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TABLE I. Prescription to find the proper range of the sampling interval T and the number of delays M in delay-coordinate mapping.

How to choose T and M in delay-coordinate mapping

1. Given a time series {si}i and a scalar measurement function h(·), compute the delay vectors {Fh,T ,M (x(iT ))}i ⊂ RM for every pair
(T ,M) in the window [Tmin,Tmax] × [Mmin,Mmin + 1, . . . ,Mmax].

2. For each pair (T ,M), empirically compute the dimension dT,M and volume VT,M of the surface formed by the delay vectors
{Fh,T ,M (x(iT ))}i , and plot VT,M√

M
dT,M

for various pairs (T ,M) in the above window.

3. Find the range of (T ,M) for which the graph is nearly constant. This provides the recommended range for T and M in delay-coordinate
mapping of the system under study.

noise is present, this plateau may disappear at large values
of M as well, resulting in a “sweet spot” in the graph where
M = O(2 dim(A)) and dim(Fh,T ,M (A)) = dim(A).

Returning to the present problem, a similar approach can
be used. If (18) indeed holds, then (with high probability) the
delay-coordinate map with parameters T and M stably embeds
A into the reconstruction space RM and the volume of A is
preserved. In general, (2) implies that

(εlM)
dim(A)

2 vol(A) � vol
(
Fhα,T ,M (A)

)
� (εuM)

dim(A)
2 vol(A).

(22)

This claim is proved similar to those in Appendix B. This
observation implies a variant of the algorithm described above
where volume is used in place of dimension to find the correct
range of T and M , which we detail in Table I.

Remark 4: (Quality of embedding). Let us again fix the basis
functions (and thus H (·)), and suppose that (18) holds for a
given isometry constant δ ∈ (0,1) and failure probability ρ ∈
(0,1). Then the quality of embedding in (20) clearly depends
on

(i) the bi-Lipschitz constants of H (·) (i.e., lH ,uH );
(ii) the spectrum of the derivative of the flow φT (·) (through

σmin,σmax); and
(iii) the geodesic regularity of the attractorA [i.e., geo(A)].
Large values of uH

lH
, σmax

σmin
, and geo(A) in Eq. (20) all result in a

poor embedding guarantee forA (i.e., a large disparity between
the upper and lower bounds in Eq. (20)). In particular, when
the dynamical system is highly unpredictable (e.g., has a large
Lyapunov exponent), then σmax

σmin
is likely to be very large and

the embedding guarantee (and, indeed, the embedding itself) is
likely to be poor. In a nutshell, stably embedding unpredictable
systems (e.g., chaotic systems) is often difficult.

Remark 5: (Orbits and other pathologies). The flow φT (·)
has an orbit with period n if φn

T (x) = φnT (x) = x for some
x ∈ A. As noted in Remark 1, the probabilistic statement of
Takens’ theorem by Sauer et al. [15] placed certain restrictions
on the periodicities of the orbits of φT . Indeed, the existence of
orbits also typically deteriorates the stable rank of a system. As
an extreme example, consider an orbit of period one, otherwise
known as a fixed point: φT (x) = x for some x ∈ A. Using (16),
we may easily verify that RH,T ,M (A) = 1 for any choice of
basis functions and any number of delays M . That is, the stable
rank ofA does not increase at all when the user increases M . In
view of (18), this leads to a very poor embedding of the attractor
A. We note that orbits of period one are explicitly forbidden by
Sauer et al. [15] and implicitly forbidden in Theorem 1 through
the genericity of φT .

E. Extensions to strange attractors

While our discussion thus far has focused on attractors that
comprise smooth submanifolds of Rn, many dissipative dy-
namical systems (e.g., chaotic systems) converge onto attrac-
tors that are not smooth submanifolds of the Euclidean space.
In this section, we discuss what changes when considering the
stable embedding of more general (e.g., strange) attractors. In
what follows, we continue to assume that the state lies on the
attractor A so that for every time t , x(t) ∈ A.

1. Global enveloping manifolds

The easiest scenario arises when there exists a global
enveloping manifoldM that subsumes the attractorA. Roughly
speaking, we say thatM ⊂ Rn is a global enveloping manifold
of an attractor A ⊂ Rn if A ⊂ M and at every point x ∈ A,
TxA = TxM (see [69,70] for a more precise definition). Here,
TxM denotes the conventional tangent space of M at x (recall
Sec. II C), and TxA denotes a generalized tangent space of A
at x, defined as follows.

Definition 2: (Generalized tangent space [70]). Consider an
attractor A ⊂ RN and a point x ∈ A. The generalized tangent
space of A at x, denoted TxA, is the smallest linear space
containing all unit vectors of the form (zi − yi)/‖zi − yi‖2

generated by sequences {yi} and {zi} in A with yi → x and
zi → x.

In scenarios where there does exist a global enveloping
manifold M for A, Theorem 2 can be naturally extended to
provide conditions for the stable embedding of M (and thus
A). In order to prove this result, one merely replaces A with
M throughout the statement and the proof of Theorem 2;
consequently, all of the geometric quantities that appear in the
resulting bound, dimension, volume, reach, and so on, will refer
to M instead of A. As noted in Remark 4, when the dynamical
system is highly unpredictable (e.g., has a large Lyapunov
exponent), then σmax

σmin
is likely to be very large and the embedding

guarantee (and, indeed, the embedding itself) is likely to be
poor. In such a case, Remark 6 may have some value.

However, because it may be unreasonable to assume that
the enveloping manifold is invariant under the flow (i.e., that
φT (M) = M), one may relax this assumption in the statement
and proof of the theorem; all that is needed is that φT acts as
a diffeomorphism between M and φT (M) (or, more precisely,
betweenM and each of φ−1

T (M), . . . ,φ−M+1
T (M)), and that the

assumptions on H listed in Sec. III A hold not only on M but
also on each of φ−1

T (M), . . . ,φ−M+1
T (M).
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2. More general attractors

Alas, a counterexample in Ref. [70] shows that not all sub-
sets of Euclidean space, and thus potentially not all attractors
of dynamical systems, can have a global enveloping manifold.
When the attractor A does not have a global enveloping
manifold, we require a few additional definitions that will
endow the attractor with certain geometric properties that make
it amenable for our analysis. We first describe these properties
in terms of a general subset B ⊂ RN .

Definition 3: (Box-counting dimension [15]). Consider a
set B ⊂ RN . Suppose RN is divided into cubes of size ζ by a
grid based at points whose coordinates are ζ multiples of the
integers. Let N (ζ ) be the number of boxes or cubes of size
ζ that intersect B. Then, the box-counting dimension of B,
denoted by boxdim(B), is defined as

boxdim(B) := lim
ζ→0

− lnN (ζ )

ln(ζ )
.

Definition 4: (Covering regularity). We say that the set B
has covering regularity cov(B) (depending on some maximum
size ζ0) if for every ζ � ζ0,

N (ζ ) � cov(B)ζ− boxdim(B),

where N (ζ ) is the number of boxes or cubes of size ζ that
intersect B (see Definition 3).

One can think of the covering regularity cov(B) as a
proxy for the volume of B because volume is proportional to
N (ζ )ζ boxdim(B) in the limit of small ζ whenB is a submanifold.

Definition 5: (Tangent covering regularity). We say that the
set B has tangent covering regularity tancov(B) (depending
on some maximum size ζ0) if for every a ∈ B, whenever
‖x − a‖2,‖y − a‖2 � ζ � ζ0 for some x,y ∈ B, we can find
a v ∈ TaB such that∥∥∥∥v − x − y

‖x − y‖2

∥∥∥∥
2

� tancov(B)ζ.

Here, tancov(B) can be thought of as a measure the curvature
of B.

Definition 6: (Tangent dimension). We define the tangent
dimension tandim(B) of the set B as

tandim(B) := sup
x∈B

dim (TxB),

where TxB refers to the generalized tangent space of B at x

(see Definition 2).

As noted in Ref. [70], the tangent dimension bounds the box-
counting dimension from above: for any set B, tandim(B) �
boxdim(B). In what follows, we shall ignore the dependence
of the regularity quantities on their maximal resolution ζ0.

With these properties thus defined, we present our result
for the stable embedding of a general (including strange)
attractor. The following theorem makes a series of assumptions
not on the attractor A itself, but rather on the trajectory
attractor AH,T ,M ⊂ RMP defined in Eq. (13). We discuss these
conditions further after presenting the main result, which is
proved in Appendix C.

Theorem 3: (Stable Takens’ embedding theorem for strange
attractors). Let A ⊂ RN be an attractor. For a fixed sampling
interval T > 0, assume that φT (·) is a flow on A. For an
integer P , fix the measurement basis functions hp : A → R
for p ∈ {1,2, . . . ,P } and let H be the linear span of {hp(·)}p.
The random coefficient vector α ∈ RP is assumed to have
entries that are independent and identically distributed zero-
mean and unit-variance sub-Gaussian random variables with
sub-Gaussian norm θ .

Consider the map H : A → RP constructed in Eq. (8),
and suppose that H (·) satisfies assumption A1 listed in
Sec. III A. Let AH,T ,M ⊂ RMP be the associated trajec-
tory attractor defined in Eq. (13). Suppose AH,T ,M has
box-counting dimension boxdim(AH,T ,M ), tangent dimension
tandim(AH,T ,M ), covering regularity cov(AH,T ,M ) > 1, and
tangent covering regularity tancov(AH,T ,M ) > 3√

MP
. Finally,

let RH,T ,M (A) denote the stable rank ofA as defined in Eq. (16).
For arbitrary isometry constant δ ∈ (0,1) and failure prob-

ability ρ ∈ (0,1), suppose that

RH,T ,M (A) �C ′
θ max

(
δ−2 tandim(AH,T ,M ) ln(

√
MP tancov(AH,T ,M )(cov(AH,T ,M ))1/ boxdim(AH,T ,M )),

e
− min W ( −δ2

tandim(AH,T ,M ) )
,δ−2 ln

(
1

ρ

))
, (23)

where C ′
θ is a constant that depends only on θ . Then, except with a probability of at most ρ (over the choice of α),

1 − δ �
∥∥Fhα,T ,M (x) − Fhα,T ,M (y)

∥∥2
F∑M−1

m=0

∥∥H (
φ−m

T (x)
) − H

(
φ−m

T (y)
)∥∥2

2

� 1 + δ (24)

holds for all x,y ∈ A with x �= y.
Moreover, if (24) holds for all x,y ∈ A with x �= y and if there exist quantities geo(A), σmin, σmax such that for all x,y ∈ A

and m = 1,2, . . . ,M − 1,
geo(A)−1σ−m

max‖x − y‖2 �
∥∥φ−m

T (x) − φ−m
T (y)

∥∥
2 � geo(A)σ−m

min ‖x − y‖2, (25)

it follows that

(1 − δ)l2
H geo(A)−2 σ−2M

max − 1

σ−2
max − 1

�
∥∥Fhα,T ,M (x) − Fhα,T ,M (y)

∥∥2
2

‖x − y‖2
2

� (1 + δ)u2
H geo(A)2 σ−2M

min − 1

σ−2
min − 1

(26)

holds for all x,y ∈ A with x �= y.
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Much like our original Theorem 2, Theorem 3 guarantees a
stable embedding of an attractor with high probability, under
the condition that the stable rank RH,T ,M (A) is sufficiently
large. However, whereas the right-hand side of (18) involves
mostly properties of the attractor A itself, the right-hand side
of (23) references properties of the trajectory attractor AH,T ,M

instead. Indeed, a key step in the proof is bounding the covering
number of the set of all normalized secants of the trajectory
attractor. In the proof of Theorem 2, we used Lemma 3 to
relate properties of AH,T ,M to those of A. In the case of strange
attractors, we leave this connection as an open question.

Perhaps interestingly, Theorem 3 does not require any
assumptions regarding φT or H being a diffeomorphism, nor
any assumptions on the singular values of their derivatives.
Such properties do likely affect the quality of the embedding.
In the proof of Theorem 2, we used these properties both
in Lemma 3 (to relate properties of AH,T ,M to those of A)
and to guarantee that a condition equivalent to (25) holds.
However, the original proof of the condition equivalent to (25)
required an argument involving geodesic distance, which is
not appropriate for a strange attractor. Here, we pull out (25)
as its own assumption, which could conceivably hold even for
a strange attractor. Thus, in Eq. (25), the quantities geo(A),
σmin, σmax do not necessarily refer to the geodesic regularity of
the attractor A or the singular values of the derivative of φT (·).
However, for (25) to hold, these parameters would likely play
similar roles to those that they played in Theorem 2.

IV. EXAMPLES

In this section, we present two examples that support the
theoretical findings in Sec. III C, emphasizing the relationship
between the stable rank of a system and the number of delays
in delay-coordinate mapping.

A. Moment curve

We begin with an example where we can analytically
calculate (or bound) the quantities of interest. Strictly speaking,
Theorem 2 applies to subsets of RN and not to A ⊂ CN as
in this example. However, study of the “real” moment curve
(formed from the real part of γ (·)) is far more tedious, and is
therefore not pursued here for the sake of the clarity. In fact, we
strongly suspect that Lemma 15 in Ref. [33] and consequently
Theorem 2 can be extended (with minor changes) to account
for complex attractors.

For an integer N , letA be the moment curve inCN . That is,

A = {γ (t) : t � 0} ⊂ CN, γ (t) =

⎡⎢⎢⎢⎣
1

ei2πt

...
ei2π(N−1)t

⎤⎥⎥⎥⎦. (27)

Note that A is a closed curve because γ (n) = γ (0), for every
integer n. For a fixed T > 0, we endow A with a linear
dynamical system with flow φT (·). This linear flow, which we
identify with an N × N matrix, is specified as

φT = diag
[
γ (T )

] ∈ CN×N, (28)

where diag[a] returns the diagonal matrix formed from the
entries of vector a. For any t � 0, observe that φT (γ (t)) =
φT γ (t) = γ (t + T ); that is, A = γ (·) is parametrized by time.

Let H be the space of all linear functionals on CN , so that
every scalar measurement function may be characterized as
hα(·) = 〈·,α〉 for some α ∈ CN . In the language of Theorem 2,
we set P = N and take H (·) to be the identity operator (and, in
particular, H (A) = A). Assume also that the entries of α are
independent Gaussian random variables with zero mean and
unit variance (the variance of a complex random variable is the
sum of the variances of its real and imaginary parts).

We next compute the relevant geometric quantities. Since
A is a curve, dim(A) = 1, and vol(A) is simply its length:

vol(A) = length(γ (·)) =
∫ 1

0

∥∥∥∥dγ (t)

dt

∥∥∥∥
2

dt

= 2π

√√√√N−1∑
n=0

n2

∫ 1

0
dt [see (27)]

= π

√
2

3
(N − 1)N (2N − 1). (29)

Next, we turn to the geodesic regularity of the moment curve
which involves comparing geodesic and Euclidean distances
between an arbitrary pair of points on A. Using (29) (and the
implicit observation therein that γ (·) has constant “speed”), we
deduce that the geodesic distance between γ (t1),γ (t2) ∈ A is
given by

dA(γ (t1),γ (t2)) = |t1 − t2|length
[
γ (·)]

= |t1 − t2|π
√

2

3
(N − 1)N (2N − 1),

∀ t1,t2 ∈ [0,1). (30)

In Appendix E, we calculate the Euclidean distance ‖γ (t1) −
γ (t2)‖2 and estimate the geodesic regularity of the moment
curve by comparing the two metrics.

Lemma 1: (Geodesic regularity). For an integer N , let A
be the moment curve in CN (see (27)). Then, the geodesic
regularity of A (see (5)) is bounded as

geo(A) � 2π2

3(1 − β1)
N (N − 1), ∀ N > Nm. (31)

Above, β1 > 0 is a (small) absolute constant, and Nm is a
sufficiently large integer (which is subject to change in every
appearance).

In other words, the geodesic regularity of A is poor,
geo(A) = O(N2) which, in light of (20), suggests that delay-
coordinate mapping might poorly embed this system (when
the dimension of the state space N is large). The guarantees in
Theorem 2 appear to be conservative here as our simulations
indicate later in this section.

Next, to compute the reach, we borrow from Lemma 1 in
Ref. [33]:

β2

√
N � rch(A) �

√
N, ∀ N > Nm. (32)

Here, β2 < 1 is independent of N , and Nm is a sufficiently
large integer (note that the discrepancy in the definition of
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(a) (b)

FIG. 2. Stable rank and quality of delay-coordinate mapping for the linear system described in Sec. IV A. (a) Stable rank versus M (number
of delays) with sampling interval T ≈ 1

250 . Note that the stable rank of the system gradually improves with increasing M . (b) Quality of
embedding through delay-coordinate mapping as measured by the isometry constants εl � εu versus M with T ≈ 1

250 [see (2)]. Note that, like
the stable rank, the quality of embedding gradually improves with increasing M .

moment curve here and in Ref. [33] is inconsequential). That
is, fortuitously, the reach of the moment curve is relatively
large. Next, we turn to the stable rank of this system. The
estimate below is obtained in Appendix F.

Lemma 2. For an integer N , letA be the moment curve inCN

[see (27)]. For T ∈ (0, 1
M

], equip A with the linear flow φT (·)
specified in Eq. (28). Then, the stable rank of A [as defined in
Eq. (16)] satisfies

M

20 + 40
N sin(πT ) ln

(
e/ tan

(
πT
2

))
� RH,T ,M (A) � M, ∀ N > Nm (33)

where Nm is a sufficiently large integer.

Roughly speaking, as long as 1
N
� T � 1

M
, the stable rank

of our system is large (RH,T ,M (A) ≈ M). (Note that M � N is
necessary for this claim to hold.) Since the stable rank of any
system is bounded by the number of delays M (see (17)), this
result is nearly ideal.

Let us now empirically compute the stable rank of this
system (see (16)) for variable number of delays M and with
N = 250 and T = 1/(N + ξ ), where ξ is chosen randomly
from a standard normal distribution. The outcome appears in
Fig. 2(a). To see the connection between the stable rank and
the quality of embedding, we plot in Fig. 2(b) the isometry
constants εl � εu (recall (2)) versus the number of delays M .
To produce the plot, we generated 100 independent copies
of hα(·) and computed the isometry constants according to

(2). The curve shows the mean isometry constants (over
100 repetitions). As M increases, the stable rank increases
(improves) and the isometry constants tighten (the quality of
embedding improves); this matches Theorem 2.

B. Nonlinear Schrödinger system

As a case study involving a nonlinear system, we consider
a sequence of points on a trajectory generated by a certain
partial differential equation, the nonlinear Schrödinger (NLS)
equation:

iut (z,t) + 1
2uzz(z,t) + |u(z,t)|2u(z,t) = 0.

Here, t denotes the continuous time variable and z denotes the
continuous space variable; ut denotes the partial derivative of
u with respect to t and uzz denotes the second order partial
derivative of u with respect to z; and we adopt the boundary
conditions u → 0 as z → ±∞. Adapting the construction
provided in [[71], Chap. 19], we sample N = 800 points
between z = −30 and 30 at each time to generate data in CN .
Data are generated with a time step of 0.02 s. The evolution
of the trajectory over time is shown in Fig. 3, which plots the
magnitude of the entries of each data vector. The three different
plots correspond to three different integer values of a parameter
S which is used in the initial conditions

u(z,0) = S sech(z + z0)ei�t .

The resulting solutions are known as the S-soliton solutions
(with S = 1,2,3) and have an initial center position z0 = 23.5

FIG. 3. Magnitude of trajectory vectors for the nonlinear Schrödinger system, with (from left to right) S = 1, 2, and 3 soliton solutions
displayed.
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(a) (b)

(c) (d)

FIG. 4. Embedding demonstration for the nonlinear Schrödinger system, S = 2 soliton solution with nonlinear RBF measurement functions.
(a) Visualization of data vectors x ∈ CN on the original trajectory, projected via a random linear map to R3. Color (shading) is used to indicate
the time (in seconds) corresponding to each data vector x. (b) Pairwise distances ‖x − y‖2

2 between all pairs x,y ∈ CN on the original trajectory.
(c) Visualization of the resulting delay-coordinate vectors Fhα,T ,M (x), projected via a random linear map to R3. Again, color (shading) is used
to indicate the time (in seconds) corresponding to each original data vector x. (d) Pairwise distances ‖Fhα,T ,M (x) − Fhα,T ,M (y)‖2

2 between all
points in the reconstruction space.

and a drift over time due to the group velocity parameter
� = π .

We begin by presenting a specific example involving the
S = 2 soliton solution. Figure 4(a) plots a random projection
of the data vectors from CN to R3, and Fig. 4(b) shows the
pairwise distances ‖x − y‖2

2 between all pairs x,y ∈ CN on
the trajectory. This projection, which is useful for obtaining
a generic visualization of the trajectory, is computed by
constructing a real-valued 3 × N matrix � populated with
independent zero-mean and unit-variance Gaussian random
variables. For each data vector x ∈ CN , we compute �x and
preserve the real part of the resulting vector. Here, we consider
only the final ∼5 s of the data; the initial ∼10 s are used for
populating delay-coordinate vectors when needed.

In this example, we set T = 0.06 s and M = 160. To
construct the class H of measurement functions, we consider
a set of P = 50 nonlinear radial basis functions (RBFs), each
defined by a center vp ∈ CN randomly chosen from a ball with
radius comparable to the data set. The resulting measurement
basis functions take the form hp(x) = e−‖x−vp‖2/2σ 2

, where σ

is a scaling parameter chosen to be comparable to the norm of
a typical data vector.

Figure 4(c) shows a random projection of the resulting
delay coordinate vectors Fhα,T ,M (x), where the entries of α

are independent Gaussian random variables with zero mean
and unit variance. Figure 4(d) shows the pairwise distances

‖Fhα,T ,M (x) − Fhα,T ,M (y)‖2
2 between all points in the recon-

struction space. Figure 5(a) shows a scatter plot comparing the
original distances ‖x − y‖2

2 between points on the trajectory
to the corresponding distances ‖Fhα,T ,M (x) − Fhα,T ,M (y)‖2

2 in
the reconstruction space RM . The dashed lines have slopes
equal to the minimum and maximum observed values of the
ratio ‖Fhα,T ,M (x) − Fhα,T ,M (y)‖2

2/‖x − y‖2
2 over all pairs

x,y ∈ CN on the trajectory. Under a highly stable embedding
[and in particular if the left- and right-hand sides of (20) were
comparable to one another], the two lines in Fig. 5(a) would
have slopes comparable to one another. In this experiment, the
ratio of the larger slope to the smaller slope is approximately
8.80. Up to some degree of approximation, small pairwise
distances remain small, and large pairwise distances remain
large.

We can unpack the factors that affect the degree of
tightness in this embedding. The careful reader of Appendix A
and especially (A29) will note that the variability
of the ratio ‖Fhα,T ,M (x) − Fhα,T ,M (y)‖2

2/‖x − y‖2
2 is

affected, in turn, by the variability of the ratios
‖H (x) − H (y)‖2

2/‖x − y‖2
2 (see assumption A1 in Sec. III A

as well as (A27)), ‖XH,T,M − YH,T ,M‖2
F /‖x − y‖2

2 (see
(A28)), and ‖Fhα,T ,M (x) − Fhα,T ,M (y)‖2

2/‖XH,T,M −
YH,T ,M‖2

F (see (A23)). Figures 5(b)–5(d) show scatter
plots corresponding to these three sets of pairwise distances,
respectively. Variability in ‖H (x) − H (y)‖2

2/‖x − y‖2
2 can
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(a) (b)

(c) (d)

FIG. 5. Pairwise distance preservation in the various stages of a delay-coordinate embedding, S = 2 soliton solution with nonlinear RBF
measurement functions.

be caused by a large ratio between uH and lH ; the ratio of
the slopes in Fig. 5(b) is approximately 6.35. Variability in
‖XH,T,M − YH,T ,M‖2

F /‖x − y‖2
2 is affected not only by uH

and lH , but also by σmin, σmax, and geo(A). The ratio of
the slopes in Fig. 5(c) is approximately 8.05. Variability in
‖Fhα,T ,M (x) − Fhα,T ,M (y)‖2

2/‖XH,T,M − YH,T ,M‖2
F is affected

by the stable rank RH,T ,M (A), which in this example is
approximately 5.66. The ratio of the slopes in Fig. 5(d) is
approximately 2.14. The tests below further reveal the causes
and effects of changing the parameters we have discussed
here.

To further our study, we also experiment with the S = 1
and 3 soliton solutions, and we test additional classes H
of measurement functions. In addition to the RBF kernel
already considered, we also take H to be the space of all
linear functionals on CN , as in Sec. IV A. We also consider
a set of nonlinear monomials of maximum degree K in N

variables. Any such monomial can be written as hp(x) =
x[1]β1 × x[2]β2 × · · · × x[N ]βN for some {βn}n with

∑
n βn �

K . We use a set of P = 200 randomly picked monomials with
maximum degree K = 3.

With a fixed value of T = 0.06 s, Fig. 6(a) plots, as a
function of M , the ratio of the largest and smallest isometry
constants corresponding to ‖XH,T,M − YH,T ,M‖2

F /‖x − y‖2
2.

[In the previous example, this corresponded to the ratio
of the slopes in Fig. 5(c), which was approximately 8.05.]
Figure 6(b) shows the corresponding plot for ‖Fhα,T ,M (x) −
Fhα,T ,M (y)‖2

2/‖XH,T,M − YH,T ,M‖2
F , and Fig. 6(c) shows the

corresponding plot for ‖Fhα,T ,M (x) − Fhα,T ,M (y)‖2
2/‖x − y‖2

2,

reflecting the tightness of the overall embedding. Figure 6(d)
shows the stable rank RH,T ,M (A) as a function of M . In these
plots, we see several general trends:

(i) The overall embedding is generally tightest for the
S = 1 soliton solution and weakest for the S = 3 soliton solu-
tion. As illustrated in Fig. 3, the complexity of the trajectories
generally increases for larger values of S. For example, the tra-
jectory for S = 1 has constant speed, while the instantaneous
speed of the trajectory when S = 3 varies over a dynamic range
of approximately 6.95. This variability affects factors such
as σmin and σmax, leading to more variability in ‖XH,T,M −
YH,T ,M‖2

F /‖x − y‖2
2 as shown in Fig. 6(a). There is relatively

little effect of S on ‖Fhα,T ,M (x) − Fhα,T ,M (y)‖2
2/‖XH,T,M −

YH,T ,M‖2
F as shown in Fig. 6(b).

(ii) The linear measurement functions generally result in
the tightest embeddings; partly this is due to the fact that lH =
uH = 1 in the linear case. The nonlinear monomial functions
produce the loosest embeddings. However, the nonlinear RBF
functions perform nearly as well as the linear functions.

(iii) In general, as M increases, the stable rank increases
RH,T ,M (A), which reduces the variability of ‖Fhα,T ,M (x) −
Fhα,T ,M (y)‖2

2/‖XH,T,M − YH,T ,M‖2
F and thus of the overall

embedding ‖Fhα,T ,M (x) − Fhα,T ,M (y)‖2
2/‖x − y‖2

2. This is as
expected in light of Theorem 2.

Finally, over a fixed total delay of 9.6 s, we experiment with
a range of M values. In each case, we choose T = 9.6/M .
Results are shown in Figs. 6(e) and 6(f). These results show
that, over this total amount of time it is not necessary to sample
densely in time; moderately small values of M (around 40),
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(a) (b)

(c) (d)

(e) (f)

FIG. 6. Embedding demonstration for the nonlinear Schrödinger system, including the S = 1, 2, and 3 soliton solutions and various linear
and nonlinear measurement functions. With T fixed to 0.06 s: (a) x − y vs XH,T,M − YH,T ,M , (b) XH,T,M − YH,T ,M vs Fhα,T ,M (x) − Fhα,T ,M (y),
(c) x − y vs Fhα,T ,M (x) − Fhα,T ,M (y), (d) stable rank. With MT fixed to 9.6 s: (e) x − y vs Fhα,T ,M (x) − Fhα,T ,M (y), (f) stable rank.

corresponding to moderately large values of T (around 0.24 s)
lead to delay-coordinate embeddings with a reasonable degree
of tightness.

V. CONCLUSIONS AND OPEN PROBLEMS

The main result of this paper extends Takens’ celebrated
embedding theorem to provide conditions when a delay-
coordinate map can provide a stable embedding of a dynamical
system attractor. Given the prevalence of these techniques in
nonlinear time-series analysis, this result provides a much
needed theoretical justification of their numerical performance
in the presence of real-world imperfections such as noise and
quantization. While the conditions of this result are restrictive
and it may not always be possible to meet them in practice,
there is significant value in knowing for which scenarios one
can guarantee a given quality level of the embedding. In fact,

researchers have informally conjectured that instability issues
may limit the performance of numerical techniques based on
delay-coordinate mapping without the theoretical foundations
to examine this issue formally (e.g., see the discussion regard-
ing Takens’ theorem in the Supplemental Material of [72]). The
examination of our results has also led to new and insightful
interpretations of classical (generally heuristic) techniques for
selecting parameters such as the sampling time and number of
delays.

Building on these results, there appear to be no shortage of
interesting directions for future work. For example, note the
following:

(i) Remark 3 and Table I provide a recipe for choosing
the sampling interval T and the number of delays M in
delay-coordinate mapping. It is of interest to experimentally
validate this procedure and perhaps find alternatives with lower
computational complexity.
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(ii) An open question is whether it is possible to improve
(increase) the stable rank of a dynamical system (and hence
improve the quality of delay-coordinate mapping) by optimiz-
ing over the choice of scalar measurement functions. While we
suspect that answer is negative, a rigorous study of this topic
does not currently exist.

(iii) A remaining technical challenge is the role of
rch(AH,T ,M ) (reach of the “trajectory attractor”) in Theorem 2
(also see (13)). We suspect that rch(AH,T ,M ) can be expressed
entirely in terms of rch(A) (and T , M , and basis functions
{hp}). Such an expression will substantially simplify and
clarify Theorem 2 but has remained elusive despite our efforts.

(iv) While multivariate time-series have been occasionally
discussed in the literature (e.g., [73]), as with our work,
most treatments of delay-coordinate maps are restricted to a
single scalar measurement function. An open question is how
the presence of multiple measurement functions (producing
diverse observations at each sampling time step) would affect
the stability of the attractor embedding.
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APPENDIX A: PROOF OF THEOREM 2
(STABLE TAKENS’ THEOREM)

We reserve the letters C,C1,C2, · · · to represent universal
positive constants. We adopt the following (semi)order: a � b

means that there is an absolute constant C1 such that a � C1b.
If, instead of being an absolute constant, C1 = C1(θ ) depends
on some parameter θ , we write a �θ b. Of course, a � b and
a �θ b are defined similarly. Occasionally, we will use the
convention that [a : b] = a,a + 1, · · · ,b for integers a � b.

Throughout the proof, the dependence on different quanti-
ties might be suppressed if there is no ambiguity. Consider x ∈
A and scalar measurement function hα(·) = ∑

p α[p]hp(·) as
a linear combination of basis functions. Recall from (11) and
(12) that the corresponding delay vector can be written as

Fhα,T ,M (x) = XH,T,Mα,

XH,T ,M = [
H (x) H

(
φ−1

T (x)
) · · · H

(
φ−M+1

T (x)
)]∗ ∈ RM×P ,

(A1)

and where φT : A → A is the flow on the attractor. For a fixed
pair of points x,y ∈ A, consider the random variable∥∥Fhα,T ,M (x) − Fhα,T ,M (y)

∥∥2
2

‖XH,T,M − YH,T ,M‖2
F

= ‖XH,T,Mα − YH,T ,Mα‖2
2

‖XH,T,M − YH,T ,M‖2
F

,

(A2)

and note that

E

[∥∥Fhα,T ,M (x) − Fhα,T ,M (y)
∥∥2

2

‖XH,T,M − YH,T ,M‖2
F

]

= E[‖(XH,T,M − YH,T ,M )α‖2
2]

‖XH,T,M − YH,T ,M‖2
F

= 1,

where the second identity holds because the entries of α ∈ RP

are independent and have unit variance. This suggests that for
all pairs of points in A, the ratio in Eq. (A2) might be close to
one. That is, we hope that the following quantity is small with
overwhelming probability:

sup
x,y∈A

∣∣∣∣∣
∥∥Fhα,T ,M (x) − Fhα,T ,M (y)

∥∥2
2

‖XH,T,M − YH,T ,M‖2
F

− 1

∣∣∣∣∣
= sup

Z∈Z

∣∣‖Zα‖2
2 − E

[‖Zα‖2
2

]∣∣. (A3)

Above, we conveniently set

Z :=
{

XH,T,M − YH,T ,M

‖XH,T,M − YH,T ,M‖F

: x,y ∈ A

}
⊂ RM×P . (A4)

To control the supremum in Eq. (A3), we invoke a recent result
by Krahmer et al.

Proposition 1: [[55], Theorem 3.1]. For integers M and
P , let Z ⊂ RM×P be a collection of matrices. Moreover, let
α ∈ RP be a random vector whose entries are independent
zero-mean, unit-variance random variables with sub-Gaussian
norm of θ . Set

dF (Z) = sup
Z∈Z

‖Z‖F , d2(Z) = sup
Z∈Z

‖Z‖,

where ‖ · ‖F and ‖ · ‖ stand for the Frobenius and spectral
norms, respectively. Also, let γ2(Z,‖ · ‖) be the Gaussian width
of Z with respect to the spectral metric, and define

E1 := γ2(Z,‖ · ‖) · (γ2(Z,‖ · ‖) + dF (Z)) + dF (Z)d2(Z),

E2 := d2
2 (Z),

E3 := d2(Z)(γ2(Z,‖ · ‖) + dF (Z)).

Then, for arbitrary v > 0, it holds that

P

[
sup
Z∈Z

∣∣‖Zα‖2
2 − E

[‖Zα‖2
2

]∣∣ > C2(θ )E1 + v

]
� 2 exp

(
−C2(θ ) min

(
v

E2
,
v2

E2
3

))
,

where C2(θ ) and C3(θ ) depend only on θ .
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Without dwelling too much on the concept of Gaussian width above, we recall the following well-known relation [74]:

γ2(Z,‖ · ‖) �
∫ ∞

0

√
ln(#(Z,‖ · ‖,s)) ds. (A5)

Above, #(Z,‖ · ‖,s) is the covering number of the set Z with respect to the metric ‖ · ‖ and at scale s > 0. That is, #(Z,‖ · ‖,s)
is the smallest number of balls of radius s (and with respect to the metric ‖ · ‖) needed to cover the set Z. In order to apply
Proposition 1 to (A3), we must first calculate dF (Z), d2(Z), and #(Z,‖ · ‖,s) [with Z as in Eq. (A4)]. That, we set out to do next.
Observe that

dF (Z) = sup
Z∈Z

‖Z‖F = sup
x,y∈A

‖XH,T,M − YH,T ,M‖F

‖XH,T,M − YH,T ,M‖F

= 1 (see (A4)), (A6)

d2(Z) = sup
Z∈Z

‖Z‖ = sup
x,y∈A

‖XH,T,M − YH,T ,M‖
‖XH,T,M − YH,T ,M‖F

= 1√
RH,T ,M (A)

(see (16)). (A7)

Estimating the covering number of Z is more involved. From the order between norms ‖ · ‖ � ‖ · ‖F , first deduce that

#(Z,‖ · ‖,s) � #(Z,‖ · ‖F ,s), ∀ s > 0. (A8)

The covering number on the right-hand side above is easier to control, as Z ⊂ RM×P is isometric to another (more malleable)
object that we denote here with U (AH,T ,M ) and define next. Set

xH,T ,M = xH,T ,M (x) := vec(XH,T,M ) =

⎡⎢⎢⎣
H (x)

...

H
(
φ−M+1

T (x)
)
⎤⎥⎥⎦ ∈ RMP , ∀ x ∈ A (A9)

AH,T ,M := {xH,T ,M : x ∈ A} ⊂ RMP . (A10)

Then, let U (AH,T ,M ) denote the set of all directions in AH,T ,M , i.e.,

U (AH,T ,M ) :=
{

xH,T ,M − yH,T ,M

‖xH,T ,M − yH,T ,M‖2
: x,y ∈ A

}
⊂ §MP−1, (A11)

where §MP−1 is the unit sphere in RMP . Recalling (A4), we observe that the pair (Z,‖ · ‖F ) is isometric to the pair (U (AH,T ,M ),
‖ · ‖2). Thanks to this isometry, we may continue to simplify (A8) by writing that

#(Z,‖ · ‖,s) � #(Z,‖ · ‖F ,s) = #(U (AH,T ,M ),‖ · ‖2,s). (A12)

Next, we estimate the covering number of U (AH,T ,M ). Recall that the attractor A ⊂ RN is a well-behaved manifold and the flow
φT (·) is a diffeomorphism on A. Not surprisingly, then, AH,T ,M (defined in Eq. (A10)) too is a well-behaved manifold whose
geometrical attributes can be expressed in terms of those of A. This observation is formalized next and proved in Appendix B.

Lemma 3: Recall the attractor A ⊂ RN , and the flow φT : A → A, which by assumption is a diffeomorphism on A. Let
DφT (x) : TxA → TφT (x)A be the derivative of the flow at x ∈ A (see Sec. II C). The linear map DφT (x) may be identified with
a dim(A) × dim(A) matrix. Assume that the singular values of this matrix belong to some interval [σmin,σmax] ⊂ (0,∞). Lastly,
recall the properties of the map H (·) listed in Sec. III A.

Then, AH,T ,M ⊂ RMP , as specified in Eq. (A10), is a bounded, boundaryless, and smooth submanifold of RMP with
dim(AH,T ,M ) = dim(A) . Moreover,

η
dim(A)
min

√
σ

−2M dim(A)
max − 1

σ
−2 dim(A)
max − 1

vol(A) � vol(AH,T ,M ) � ηdim(A)
max

√√√√σ
−2M dim(A)
min − 1

σ
−2 dim(A)
min − 1

vol(A).

The above lemma controls the geometric properties of U (AH,T ,M ): its dimension and volume. By substituting these estimates
into Lemma 15 of [33], we can in turn control the covering number of U (AH,T ,M ) by writing that

#(U (AH,T ,M ),‖ · ‖2,s) � 2

(
6.12

√
dim(AH,T ,M )

s2

)2 dim(AH,T ,M )(
vol(AH,T ,M )

rch(AH,T ,M )dim(AH,T ,M )

)2

(invoke [33, Lemma 15])

� 2

(
6.12

√
dim(A)

s2

)2 dim(A)

η2 dim(A)
max

σ
−2M dim(A)
min − 1

σ
−2 dim(A)
min − 1

(
vol(A)

rch(AH,T ,M )dim(A)

)2

(invoke Lemma 3),
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which holds for any s � 1
2 , and under the mild assumption that the volume of A is sufficiently large:

vol(AH,T ,M )

rch(AH,T ,M )dim(AH,T ,M )
� η

dim(A)
min

√
σ

−2M dim(A)
max − 1

σ
−2 dim(A)
max − 1

vol(A)

rch(AH,T ,M )dim(A)
�

(
21

2
√

dim(AH,T ,M )

)dim(AH,T ,M )

=
(

21

2
√

dim(A)

)dim(A)

.

In light of (A12), we conclude that

#(Z,‖ · ‖,s) � 2

(
6.12

√
dim(A)

s2

)2 dim(A)

η2 dim(A)
max

σ
−2M dim(A)
min − 1

σ
−2 dim(A)
min − 1

(
vol(A)

rch(AH,T ,M )dim(A)

)2

,

and we denote the right-hand side by (
�

s

)4 dim(A)

. (A13)

The above bound holds for every s � 1
2 , and as long as

vol(A)
1

dim(A)

rch(AH,T ,M )
� η−1

min

(
σ−2M dim(A)

max − 1

σ
−2 dim(A)
max − 1

)− 1
2 dim(A) 21

2
√

dim(A)
. (A14)

With the covering number of Z at hand, we now use (A5) to control the Gaussian width of Z:

γ2(Z,‖ · ‖) �
∫ ∞

0

√
ln(#(Z,‖ · ‖,s)) ds

=
∫ 2d2(Z)

0

√
ln(#(Z,‖ · ‖,s)) ds (from (A7): s � 2d2(Z) =⇒ #(Z,‖ · ‖,s) = 1)

�
∫ 2√

RH,T ,M (A)

0

√
ln(#(Z,‖ · ‖,s)) ds (see (A7))

�
√

4 dim(A)
∫ 2√

RH,T ,M (A)

0

√
ln

(
�

s

)
ds (see (A13))

�
√

4 dim(A)

(
4

RH,T ,M (A)

) 1
4

√∫ 2√
RH,T ,M (A)

0
ln

(
�

s

)
ds

(∫ a

0

√
f (s) ds �

√
a

∫ a

0
f (s) ds

)

�
√

4 dim(A)

(
4

RH,T ,M (A)

) 1
4

√∫ 2√
RH,T ,M (A)

0
ln

(
1 + �

s

)
ds

�
√

4 dim(A)

(
4

RH,T ,M (A)

) 1
4

√
4√

RH,T ,M (A)

√√√√ ln

(
1 + �

√
RH,T ,M (A)

2

)
(∫ a

0
ln

(
1 + b

s

)
ds � 2a ln

(
1 + b

a

)
, if a � b

)

� 8

√
dim(A)

RH,T ,M (A)
ln(�

√
RH,T ,M (A)) (ln(1 + a) � 2 ln(a),∀ a � 2) (A15)

and, by simplifying the last line,

γ2(Z,‖ · ‖) �
√

dim(A)

RH,T ,M (A)

√√√√√ ln

⎛⎝√
dim(A)ηmax

(
σ

−2M dim(A)
min − 1

σ
−2 dim(A)
min − 1

) 1
2 dim(A) vol(A)

1
dim(A)

rch(AH,T ,M )
RH,T ,M (A)

⎞⎠ (see (A13)). (A16)

For the fourth and seventh lines to hold, we must impose that

RH,T ,M (A) � 16 max(1,�−2). (A17)

For (A17) to hold, it actually suffices to assume that

RH,T ,M (A) � 1, (A18)
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√
dim(A)ηmax

(
σ

−2M dim(A)
min − 1

σ
−2 dim(A)
min − 1

) 1
2 dim(A) vol(A)

1
dim(A)

rch(AH,T ,M )
� 1 (see (A13)). (A19)

We note that (A19) is guaranteed to hold if (A14) (which appears in the theorem statement as (19)) holds. Given the estimates
of dF (Z), d2(Z), and γ2(Z,‖ · ‖) (see (A6), (A7), and (A16)), we are now in position to apply Proposition 1 to Z (specified in
Eq. (A4)). For δ,ρ ∈ (0,1), assume that

RH,T ,M (A) � δ−2 dim(A) ln
(√

dim(A)ηmax

(
σ

−2M dim(A)
min − 1

σ
−2 dim(A)
min − 1

) 1
2 dim(A) vol(A)

1
dim(A)

rch(AH,T ,M )
RH,T ,M (A)

)
+ δ−2 ln

(
1

ρ

)
. (A20)

Under this assumption, we obtain that

dF (Z) = 1 (see (A6)), d2(Z) = 1√
RH,T ,M (A)

� δ

(
ln

(
1

ρ

))− 1
2

(see (A7)), γ2(Z,‖ · ‖) � δ (see (A16)).

Subsequently, the quantities E1, E2, and E3 in Proposition 1 may be bounded as

E1 � δ(δ + 1) + δ

(
ln

(
1

ρ

))− 1
2

� δ (ρ < 1), E2 � δ2
(

ln

(
1

ρ

))−1

,

E3 � δ

(
ln

(
1

ρ

))− 1
2

(δ + 1) � δ

(
ln

(
1

ρ

))− 1
2

.

We now recall (A3), substitute the above quantities into Proposition 1 with an arbitrary v > 0, and finally find that

P

(
sup

x,y∈A

∣∣∣∣∣
∥∥Fhα,T ,M (x) − Fhα,T ,M (y)

∥∥2
2

‖XH,T,M − YH,T ,M‖2
F

− 1

∣∣∣∣∣ > C2(θ )δ + v

)

= P

(
sup
Z∈Z

∣∣‖Zα‖2
2 − E

(‖Zα‖2
2

)∣∣ > C2(θ )δ + v

)
(see (A3))

� P

(
sup
Z∈Z

∣∣‖Zα‖2
2 − E

(‖Zα‖2
2

)∣∣ > C2(θ )E1 + v

)
(see (A21))

� 2 exp
(

− C3(θ ) min

(
v

E2
,
v2

E2
3

))
(see Proposition 1)

� 2 exp
(

− C3(θ )

δ2
ln

(
1

ρ

)
min(v2,v)

)
(see (A21)). (A21)

By assigning v = δ above, we conclude that

P

(
sup

x,y∈A

∣∣∣∣∣
∥∥Fhα,T ,M (x) − Fhα,T ,M (y)

∥∥2
2

‖XH,T,M − YH,T ,M‖2
F

− 1

∣∣∣∣∣ > C4(θ )δ

)
� 2 exp

(
− C3(θ )

δ2
ln

(
1

ρ

)
min(δ2,δ)

)
� C5(θ )ρ (δ < 1) (A22)

for C4(θ ) and C5(θ ) that depend only on θ . Equivalently, if we replace � in Eq. (A20) with �θ , we can further simplify the above
inequality to read as

P

(
sup

x,y∈A

∣∣∣∣∣
∥∥Fhα,T ,M (x) − Fhα,T ,M (y)

∥∥2
2

‖XH,T,M − YH,T ,M‖2
F

− 1

∣∣∣∣∣ > δ

)
� C6(θ )ρ, (A23)

for C6(θ ) that depends only on θ . Here, �θ hides the explicit dependence on θ for convenience. This proves the version of
Theorem 2 that appears in Remark 6.

Fix x,y ∈ A. We can in fact replace ‖XH,T,M − YH,T ,M‖F above with a more approachable quantity as follows. From (A1),
recall that

‖XH,T,M − YH,T ,M‖2
F =

M−1∑
m=0

∥∥H (
φ−m

T (x)
) − H

(
φ−m

T (y)
)∥∥2

2, (A24)

which suggests that we should find a more convenient expression for each summand above. Invoking the assumption in Theorem 2
that the spectrum of DφT (·) (the derivative of the flow) belongs to some interval [σmin,σmax] ∈ (0,∞), we may easily verify that

σ−m
maxdA(x,y) � dA

(
φ−m

T (x),φ−m
T (y)

)
� σ−m

min dA(x,y), (A25)
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where dA(·,·) returns the geodesic distance between a pair of points on A (see Sec. II C). To relate the geodesic metric on A to
the Euclidean metric in RN , we recall the regularity condition (5), from which it follows that

geo(A)−1σ−m
max‖x − y‖2 �

∥∥φ−m
T (x) − φ−m

T (y)
∥∥

2 � geo(A)σ−m
min ‖x − y‖2. (A26)

Next, recalling the bi-Lipschitz property of H (·) in Sec. III A allows us to update the above relation to read as

lH geo(A)−1σ−m
max‖x − y‖2 �

∥∥H (
φ−m

T (x)
) − H

(
φ−m

T (y)
)∥∥

2 � uH geo(A)σ−m
min ‖x − y‖2. (A27)

From (A24), it then follows that

l2
H geo(A)−2 σ−2M

max − 1

σ−2
max − 1

‖x − y‖2
2 � ‖XH,T,M − YH,T ,M‖2

F � u2
H geo(A)2 σ−2M

min − 1

σ 2
min − 1

‖x − y‖2
2. (A28)

In turn, (A23) now implies that

(1 − δ)l2
H geo(A)−2 σ−2M

max − 1

σ−2
max − 1

�
∥∥Fhα,T ,M (x) − Fhα,T ,M (y)

∥∥2
2

‖x − y‖2
2

� (1 + δ)u2
H geo(A)2 σ−2M

min − 1

σ−2
min − 1

, (A29)

except with a probability of at most C6(θ )ρ. To reiterate, the above relation holds under (A20) (with �θ rather than �), and under
the mild assumption that

vol(A)
1

dim(A)

rch(AH,T ,M )
� 1

ηmin
√

dim(A)

(
σ−2M dim(A)

max − 1

σ
−2 dim(A)
max − 1

)− 1
2 dim(A)

. (A30)

As our last step, we now remove the stable rank from the right-hand side of (A20). To accomplish that, we focus on the
requirement that

RH,T ,M (A) �θ δ−2 dim(A) ln(RH,T ,M (A)). (A31)

The Lambert W function W (·) [[67], Sec. 4.13] is defined through the relation W (z)eW (z) = z. Strictly speaking, the Lambert W

function is not a function, as it is multivalued when z < 0. In this case, W (z) denotes the preimage of W (z)eW (z) = z. Then, it is
not difficult to verify that the requirement above is equivalent to

RH,T ,M (A) �θ e
− min W (− δ2

dim(A) )
. (A32)

This allows us to rewrite (A20) as

RH,T ,M (A) �θ max

⎛⎝δ−2 dim(A) ln

⎛⎝ηmax

√
dim(A)

(
σ

−2M dim(A)
min − 1

σ
−2 dim(A)
min − 1

) 1
2 dim(A) vol(A)

1
dim(A)

rch(AH,T ,M )

⎞⎠, e
− min W ( −δ2

dim(A) )
,δ−2 ln

(
1

ρ

)⎞⎠.

(A33)

The proof of Theorem 2 is now complete.

Remark 6: (Poor geodesic regularity). If the geodesic regularity of the attractor is poor [i.e., if geo(A) in Eq. (5) is large], also,
if the singular values have a high ratio (as in a chaotic system), then perhaps the following slightly weaker result is more useful.
Theorem 2 holds verbatim but with the following replacing (20):

1 − δ �
∥∥Fhα,T ,M (x) − Fhα,T ,M (y)

∥∥2
F∑M−1

m=0

∥∥H (
φ−m

T (x)
) − H

(
φ−m

T (y)
)∥∥2

2

� 1 + δ, ∀ x,y ∈ A. (A34)

APPENDIX B: PROOF OF LEMMA 3

Recall that A ⊂ RN is a bounded, boundaryless, and smooth manifold. Also, both φT : A → A and H : A → H (A) are
diffeomorphisms. It follows that AH,T ,M ⊂ RMP [defined in Eq. (A10)] too is a bounded, boundaryless, and smooth manifold,
and that dim(AH,T ,M ) = dim(A).

As for vol(AH,T ,M ), we argue as follows. For x ∈ A, let DH (x) : TxA → TH (x)H (A) be the derivative of H (·) at x ∈ A (see
Sec. II C). Each tangent space may be identified withRdim(A) and, consequently, DH (x) may be identified with a dim(A) × dim(A)
matrix. By assumption, the singular spectrum of DH (x) belongs to the interval [ηmin,ηmax] ⊂ (0,∞) (see Sec. III A). Then, the
volume element of A under H (·) deforms as

η
dim(A)
min d vol(x) � d vol (H (x)) � ηdim(A)

max d vol(x), ∀ x ∈ A. (B1)

Similarly, let DφT (x) : TxA → Tφ(x)A be the derivative of the flow at x ∈ A. By assumption, the singular spectrum of Dφ(x)
belongs to the interval [σmin,σmax] ⊂ (0,∞). Then, the volume element of A under φ−1

T (·) deforms as

σ− dim(A)
max d vol(x) � d vol

(
φ−1

T (x)
)
� σ

− dim(A)
min d vol(x), ∀ x ∈ A. (B2)
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Predicated on the above observations, we have that

vol(AH,T ,M ) =
∫

x∈A
d vol(xH,T ,M ) (see (A10))

=
∫

x∈A

√√√√M−1∑
m=0

d vol
(
H
(
φ−m

T (x)
))2

(see (A9))

�
∫

x∈A

√√√√η
2 dim(A)
max

M−1∑
m=0

σ
−2m dim(A)
min d vol (x) (see (B1) and (B2))

= ηdim(A)
max

∫
x∈A

√√√√σ
−2M dim(A)
min − 1

σ
−2 dim(A)
min − 1

d vol (x) = ηdim(A)
max

√√√√σ
−2M dim(A)
min − 1

σ
−2 dim(A)
min − 1

vol(A).

A similar argument establishes that

vol(AH,T ,M ) � η
dim(A)
min

√
σ

−2M dim(A)
max − 1

σ
−2 dim(A)
max − 1

vol(A).

APPENDIX C: PROOF OF THEOREM 3 (STABLE TAKENS’ THEOREM FOR STRANGE ATTRACTORS)

The proof follows the same arguments as outlined in Appendix A. We define the set Z as in Eq. (A4), and we aim to control
the supremum in Eq. (A3) by invoking Proposition 1. To invoke this proposition, we must compute dF (Z), d2(Z), and γ2(Z,‖ · ‖).
As in Eq. (A6), we have

dF (Z) = 1,

and as in Eq. (A7), we have

d2(Z) = 1√
RH,T ,M (A)

.

To bound γ2(Z,‖ · ‖), we have

γ2(Z,‖ · ‖) �
∫ ∞

0

√
ln(#(Z,‖ · ‖,s)) ds (see (A5))

=
∫ 2d2(Z)

0

√
ln(#(Z,‖ · ‖,s)) ds (from (A7): s � 2d2(Z) =⇒ #(Z,‖ · ‖,s) = 1)

�
∫ 2√

RH,T ,M (A)

0

√
ln(#(Z,‖ · ‖,s)) ds (see (A7))

�
∫ 2√

RH,T ,M (A)

0

√
ln(#(U (AH,T ,M ),‖ · ‖2,s)) ds (see (A12)). (C1)

This allows us to focus on estimating the covering number of U (AH,T ,M ). The following lemma is proved in Appendix D.

Lemma 4. Under the assumptions of Theorem 3, for all 0 < s < 2,

#(U (AH,T ,M ),‖ · ‖2,s) �
(

�

s

)7 tandim(AH,T ,M )

, (C2)

where

� =
√

24
√

MP tancov(AH,T ,M )(cov(AH,T ,M ))1/ boxdim(AH,T ,M ).

Now, with (C2), we may further bound the right-hand side of (C1). Omitting some intermediate steps, we conclude that

γ2(Z,‖ · ‖) �
√

7 tandim(AH,T ,M )

RH,T ,M (A)
ln(�2 RH,T ,M (A)) (C3)

as long as RH,T ,M (A) � 16�−2. (This is guaranteed since � � 4.) Then, if we assume that

RH,T ,M (A) �θ δ−27 tandim(AH,T ,M ) ln(�2 RH,T ,M (A)) + δ−2 ln

(
1

ρ

)
, (C4)
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we can guarantee that the following inequalities hold:

d2(Z) = 1√
RH,T ,M (A)

�θ δ

(
ln

(
1

ρ

))− 1
2

(C5)

and

γ2(Z,‖ · ‖) �θ δ. (C6)

Subsequently, the quantities E1, E2, and E3 may be bounded as in Eq. (A21) (with � replaced by �θ throughout), and finally
applying Proposition 1 with v = δ yields

P

(
sup

x,y∈A

∣∣∣∣∣
∥∥Fhα,T ,M (x) − Fhα,T ,M (y)

∥∥2
2

‖XH,T,M − YH,T ,M‖2
F

− 1

∣∣∣∣∣ > δ

)
� C7(θ )ρ, (C7)

for C7(θ ) that depends only on θ . This gives one conclusion (analogous to Remark 6), which may be of some value: with
probability at least 1 − ρ, (24) holds for all x,y ∈ A with x �= y.

We may further strengthen this conclusion by following the remaining steps in Appendix A. If we suppose that (25) holds,
then we can use the bi-Lipschitz property of H (·) in Sec. III A to conclude (A27), (A28), and thus (26).

Finally, as in Appendix A, we can remove the stable rank from the right-hand side of (C4) using the Lambert W function to
obtain (23).

APPENDIX D: PROOF OF LEMMA 4

To bound the covering number of U (AH,T ,M ), we start by defining the sets of long and short chords as

Ul
γ =

{
a − b

‖a − b‖2
: a,b ∈ U (AH,T ,M ),‖a − b‖2 > γ

}
,

Us
γ =

{
a − b

‖a − b‖2
: a,b ∈ U (AH,T ,M ),‖a − b‖2 � γ

}
,

where γ > 0 is a parameter to be set below. Noting that U (AH,T ,M ) = Ul
γ ∪ Us

γ , it suffices to bound the covering numbers of Ul
γ

and Us
γ separately.

We first bound the covering number of Ul
γ . Let K ′ denote a ( γ s

8 ,‖ · ‖2) cover of AH,T ,M . To each point in K ′ (which has
distance γ s

4 or less from AH,T ,M ), we may associate its closest point that belongs to AH,T ,M . Gathering these points, we obtain a
new covering we will denote by K such that #K � #K ′, K ⊂ AH,T ,M , and K is a ( γ s

4 ,‖ · ‖2) cover of AH,T ,M .
Now, for an arbitrary a−b

‖a−b‖2
∈ Ul

γ , we have ‖a − b‖2 > γ by the definition of Ul
γ . Also, by the covering construction above,

there exist points a′,b′ ∈ K such that

‖a − a′‖2 � γ s

4
and ‖b − b′‖2 � γ s

4
.

Now, consider the Euclidean distance between a−b
‖a−b‖2

and a′−b′
‖a′−b′‖2

. Following the proof techniques of Lemma 4.1 in Ref. [34],
we have ∥∥∥∥ a − b

‖a − b‖2
− a′ − b′

‖a′ − b′‖2

∥∥∥∥
2

�
∥∥∥∥ a − b

‖a − b‖2
− a′ − b′

‖a − b‖2

∥∥∥∥
2

+
∥∥∥∥ a′ − b′

‖a − b‖2
− a′ − b′

‖a′ − b′‖2

∥∥∥∥
2

= ‖(a − a′) − (b − b′)‖2

‖a − b‖2
+ |‖a′ − b′‖2 − ‖a − b‖2|

‖a − b‖2‖a′ − b′‖2
‖a′ − b′‖2

� ‖(a − a′) − (b − b′)‖2

‖a − b‖2
+ |‖a′ − b′‖2 − ‖a − b‖2|

‖a − b‖2

� ‖(a − a′) − (b − b′)‖2

‖a − b‖2
+ ‖(a − a′) − (b − b′)‖2

‖a − b‖2

� 2
(‖a − a′‖2 + ‖b − b′‖2)

‖a − b‖2
< 2γ −1 γ s

2
= s,

where the triangle and inverse triangle inequality were used several times. Since the choice of a−b
‖a−b‖2

∈ Ul
γ was arbitrary, it follows

that the set {
a′ − b′

‖a′ − b′‖2
: a′,b′ ∈ K

}
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is an (s,‖ · ‖2) cover of Ul
γ . Therefore, #(Ul

γ ,‖ · ‖2,s) � (#K)2 � (#K ′)2, where it remains to bound #K ′. Recalling the definitions
of box-counting dimension and covering regularity, we know that AH,T ,M can be covered with cubes such that

N (AH,T ,M,ζ ) � cov(AH,T ,M )ζ− boxdim(AH,T ,M ),

where we use N (AH,T ,M,ζ ) to denote the number of boxes or cubes of size ζ that intersect AH,T ,M ⊂ RMP . To construct a
covering with Euclidean balls of radius r , one can begin with a covering of cubes with sidelength 2r√

MP
and inscribe each of these

cubes in a ball of radius r . Thus, there exists a ( γ s

8 ,‖ · ‖2) cover K ′ of AH,T ,M with

#K ′ � N
(
AH,T ,M,

γ s

4
√

MP

)
� cov(AH,T ,M )

(
γ s

4
√

MP

)− boxdim(AH,T ,M )

. (D1)

Finally,

#
(
Ul

γ ,‖ · ‖2,s
)
� (#K ′)2 � (cov(AH,T ,M ))2

(
γ s

4
√

MP

)−2 boxdim(AH,T ,M )

.

We now bound the covering number of Us
γ . The idea is to use the generalized tangent vectors of AH,T ,M to form a cover of

Us
γ . For every d ∈ K , let Sd denote the unit sphere in the generalized tangent space of AH,T ,M at d, TdAH,T ,M . Let Cd denote a

( s
2 ,‖ · ‖2) cover for Sd , and consider the finite set

C :=
⋃
d∈K

Cd .

Observe that

#C � (#K) sup
d∈K

#Cd � cov(AH,T ,M )

(
γ s

4
√

MP

)− boxdim(AH,T ,M )

sup
d∈K

(
1 + 4

s

)dim(TdAH,T ,M )

� cov(AH,T ,M )

(
γ s

4
√

MP

)− boxdim(AH,T ,M )(
1 + 4

s

)tandim(AH,T ,M )

,

where the second inequality uses #K � #K ′, (D1), and a well-known bound on the covering number of the Euclidean ball (see,
e.g., [[65], Lemma 1]). The third inequality holds by the definition of the tangent dimension tandim(AH,T ,M ).

Now, for an arbitrary a−b
‖a−b‖2

∈ Us
γ , we have ‖a − b‖2 � γ by the definition of Us

γ . Pick d ∈ K such that ‖d − a‖2 � γ s

4 .
Using the triangle inequality, it follows that ‖d − b‖2 � γ (1 + s/4). Thus, both a and b are within a distance of γ (1 + s/4) from
d. By the definition of tangent covering regularity, it follows that there exists v ∈ TdAH,T ,M such that∥∥∥∥v − a − b

‖a − b‖2

∥∥∥∥
2

� tancov(AH,T ,M )γ (1 + s/4).

To achieve an (s,‖ · ‖2) cover for Us
γ , we must keep the right-hand side of the above smaller than s. Since s < 2, this is guaranteed

by choosing

γ = γ (s) = s

3 tancov(AH,T ,M )
.

With this choice of γ , we have that C is an (s,‖ · ‖2) cover for Us
γ .

Adding the covering numbers for Ul
γ and Us

γ completes the proof: for 0 < s < 2,

#(U (AH,T ,M ),‖ · ‖2,s) � (cov(AH,T ,M ))2

(
12

√
MP tancov(AH,T ,M )

s2

)2 boxdim(AH,T ,M )

+ cov(AH,T ,M )

(
12

√
MP tancov(AH,T ,M )

s2

)boxdim(AH,T ,M )(
1 + 4

s

)tandim(AH,T ,M )

� (cov(AH,T ,M ))2

(
12

√
MP tancov(AH,T ,M )

s2

)2 tandim(AH,T ,M )

+ cov(AH,T ,M )

(
12

√
MP tancov(AH,T ,M )

s2

)tandim(AH,T ,M )(
6

s

)tandim(AH,T ,M )

�

⎛⎝
√

12
√

MP tancov(AH,T ,M )(cov(AH,T ,M ))1/ boxdim(AH,T ,M )

s

⎞⎠6 tandim(AH,T ,M )(
6

s

)tandim(AH,T ,M )
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�

⎛⎝
√

24
√

MP tancov(AH,T ,M )(cov(AH,T ,M ))1/ boxdim(AH,T ,M )

s

⎞⎠7 tandim(AH,T ,M )

,

where the second inequality follows because tandim(AH,T ,M ) � boxdim(AH,T ,M ), because s < 2, and because we assume
tancov(AH,T ,M ) > 3√

MP
. The third inequality follows from multiplying the two summands from the second inequality, both

of which are greater than or equal to 2. The fourth inequality follows because we assume tancov(AH,T ,M ) > 3√
MP

and
cov(AH,T ,M ) > 1.

APPENDIX E: PROOF OF LEMMA 1

We begin by calculating the Euclidean distances on A. For t1,t2 ∈ [0,1), note that

‖γ (t1) − γ (t2)‖2
2 =

N−1∑
n=0

∣∣ei2πnt1 − ei2πnt2
∣∣2
2 (see (27))

= 4
N−1∑
n=0

sin2 (πn(t1 − t2)) = (2N − 1)

(
1 − Dirichlet2N−1(t1 − t2)

2N − 1

)
(trigonometric identity). (E1)

Above, for integer N ′, DirichletN ′ (·) is the Dirichlet kernel of width ∼ 2
N ′ , that is,

DirichletN ′ (t) := sin(πN ′t)
sin(πt)

, ∀ t ∈ R. (E2)

We recall an elementary property of the Dirichlet kernel.

Lemma 5: [[33], Lemma 13]. For an integer N ′, let DirichletN ′ (·) be the Dirichlet kernel as defined in Eq. (E2). Then, it holds
that

|DirichletN ′ (t)|
N ′ �

{
β1,

2
N ′ < |t | � 1

2(
1 − (πN ′t)2

40

) + β3t
2 |t | � 2

N ′ ,
∀ N ′ > Nm (E3)

for (small) universal constants β1,β3 > 0. Here, Nm = Nm(β3) is a sufficiently large integer.

In light of this lemma, we may compare the geodesic and Euclidean distances between γ (t1),γ (t2) ∈ A by writing that

1 � dA(γ (t1),γ (t2))2

‖γ (t1) − γ (t2)‖2
2

� 2π2

3
N (N − 1)

(t1 − t2)2

1 − Dirichlet2N−1(t1−t2)
2N−1

(see (30) and (E1))

and, consequently,

1 � dA(γ (t1),γ (t2))2

‖γ (t1) − γ (t2)‖2
2

� 2π2

3
N (N − 1)

⎧⎨⎩
(t1−t2)2

1−β1
, |t1 − t2| > 2

2N−1
(t1−t2)2

[π(2N−1)(t1−t2)]2

40 −β3(t1−t2)2
, |t1 − t2| � 2

2N−1

= 2π2

3
N (N − 1)

{ 1
1−β1

, |t1 − t2| > 2
2N−1

1
π2(2N−1)2

40 −β3

, |t1 − t2| � 2
2N−1

� 2π2

3
N (N − 1) max

(
1

1 − β1
,

1
π2(2N−1)2

40 − β3

)

= 2π2

3(1 − β1)
N (N − 1),

(
when N is large enough: N > Nm

)
. (E4)

Above, Nm is a sufficiently large integer. This completes the proof of Lemma 1.

APPENDIX F: PROOF OF LEMMA 2

From (16), observe that

RH,T ,M (A) = inf
t,t ′�0

‖Gt,T ,M − Gt ′,T ,M‖2
F

‖Gt,T ,M − Gt ′,T ,M‖2
,

Gt,T ,M − Gt ′,T ,M := [γ (t) − γ (t ′) γ (t − T ) − γ (t ′ − T ) · · · γ (t − (M − 1)T ) − γ (t ′ − (M − 1)T )] ∈ CN×M, (F1)
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where we have dropped H from the notation since H (·) is the identity operator throughout Sec. IV A. Let us first compute the
Frobenius norm in Eq. (F1). Note that

‖Gt,T ,M − Gt ′,T ,M‖2
F =

M−1∑
m=0

‖γ (t − mT ) − γ (t ′ − mT )‖2
2

and, consequently,

‖Gt,T ,M − Gt ′,T ,M‖2
F = 4M

N−1∑
n=0

sin2(πn(t − t ′)) (see (E1)). (F2)

Computing the spectral norm in Eq. (F1) requires a more elaborate argument. Using (27), we may verify that

Gt,T ,M − Gt ′,T ,M = diag[γ (t) − γ (t ′)][γ (0) γ (−T ) · · · γ (−MT )]︸ ︷︷ ︸
H̃∈CN×M

, (F3)

from which it immediately follows that

‖Gt,T ,M − Gt ′,T ,M‖ � ‖γ (t) − γ (t ′)‖∞‖H̃‖ = max
n∈[0:N−1]

| sin(πn(t − t ′))|‖H̃‖ (see (27)). (F4)

Next, we bound the spectral norm of the Vandermonde matrix H̃ ∈ CN×M . In particular, if T = 1
N

and M � N , then H̃ simply
consists of the first M columns of the (unnormalized) N × N Fourier matrix. Consequently, ‖H̃‖ = √

N .
In general, we bound the spectral norm of H̃ as follows. After some algebraic manipulation, one recognizes that the

corresponding Grammian matrix G ∈ CM×M is both Hermitian and Toeplitz, and that (the magnitude of) its entries are specified
as

|G[m,m′]| := |[H̃ ∗H̃ ][m,m′]| = |DirichletN ((m − m′)T )|, ∀ m,m′ ∈ [0 : M − 1]. (F5)

Above, DirichletN (·) stands for the Dirichlet kernel of width ∼ 2
N

(see (E2)). Using the Gershgorin disk theorem, it then follows
that

‖H̃‖2 �
M−1∑
m=0

|DirichletN (mT )| = N +
M−1∑
m=1

|DirichletN (mT )|. (F6)

Assuming that MT � 1, we may use the bound sin(πNt) � 1 to further simplify (F6) as

‖H̃‖2 = N +
M−1∑
m=1

|DirichletN (mT )| � N + 2
∑

mT� 1
2

1

sin(πmT )
(see (E2))

and, consequently,

‖H̃‖2 � N + 2

sin(πT )
+ 2

T

∫ 1
2

T

1

sin(πt)
dt

(
sin(πt) is increasing on [0,1/2]

)
= N + 2

sin(πT )
− 2

πT
ln

(
tan

(
πT

2

))
� N + 2

sin(πT )
ln

(
e/ tan

(
πT

2

))
(sin(πT ) � πT ).

After substituting the estimate above back into (F4), we obtain that

‖Gt,T ,M − Gt ′,T ,M‖2 � max
n∈[0:N−1]

sin2(πn(t − t ′))‖H̃‖2

� max
n∈[0:N−1]

sin2(πn(t − t ′))
(

N + 2

sin(πT )
ln

(
e/ tan

(
πT

2

)))
. (F7)

With the estimates in Eqs. (F2) and (F7) in hand, we finally find that

RH,T ,M (A) = inf
t,t ′�0

‖Gt,T ,M − Gt ′,T ,M‖2
F

‖Gt,T ,M − Gt ′,T ,M‖2
(see (F1))

� inf
t,t ′�0

1
N

∑N−1
n=0 sin2(πn(t − t ′))

maxn∈[0:N−1] sin2 (πn(t − t ′))
4MN

N + 2
sin(πT ) ln

(
e/ tan

(
πT
2

))
= inf

|t |� 1
2

1
N

∑N−1
n=0 sin2 (πnt)

maxn∈[0:N−1] sin2 (πnt)

M
1
4 + 1

2N sin(πT ) ln
(
e/ tan

(
πT
2

)) . (F8)
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We are now left with the task of controlling the infimum in the last line above. For a fixed t ∈ [− 1
2 , 1

2 ], observe that

1
N

∑N−1
n=0 sin2 (πnt)

maxn∈[0:N−1] sin2 (πnt)
= 2N − 1

N

1 − Dirichlet2N−1(t)
2N−1

maxn∈[0:N−1] sin2 (πnt)
(trigonometric identity)

�
1 − Dirichlet2N−1(t)

2N−1

min(1,(πNt)2)
� 1

min(1,(πNt)2)

{
1 − β1, |t | > 2

2N−1
[π(2N−1)t]2

40 − β3t
2, |t | � 2

2N−1

(see Lemma 5)

and, consequently,

1
N

∑N−1
n=0 sin2 (πnt)

maxn∈[0:N−1] sin2 (πnt)
�

⎧⎨⎩1 − β1, |t | > 2
2N−1

[π(2N−1)t]2

40 −β3t
2

(πNt)2 , |t | � 2
2N−1

�
{

1 − β1, |t | > 2
2N−1

1
40 − β3

π2N2 , |t | � 2
2N−1

� min

(
1 − β1,

1

40
− β3

π2N2

)
� min

(
1 − β1,

1

80

)
= 1

80
(β1 ≈ 0.23),

(F9)

where β1,β3 > 0 are (small) absolute constants and, in particular, β1 ≈ 0.23. The fourth and last two lines above hold for
sufficiently large N : N > Nm = Nm(β3). The above estimate is independent of t and, by substituting in Eq. (F8), leads us to

RH,T ,M (A) � 1

80

M
1
4 + 1

2N sin(πT ) ln
(
e/ tan

(
πT
2

)) .
This completes the proof of Lemma 2.
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