
Recovery of consciousness is mediated by a network of
discrete metastable activity states
Andrew E. Hudsona,1, Diany Paola Calderonb,1, Donald W. Pfaffb,2, and Alex Proektb,c,2

aDepartment of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095; bLaboratory
for Neurobiology and Behavior, The Rockefeller University, New York, NY 10065; and cDepartment of Anesthesiology, Weill Cornell Medical College,
New York, NY 10021

Contributed by Donald W. Pfaff, May 13, 2014 (sent for review January 15, 2014)

It is not clear how, after a large perturbation, the brain explores
the vast space of potential neuronal activity states to recover
those compatible with consciousness. Here, we analyze recovery
from pharmacologically induced coma to show that neuronal
activity en route to consciousness is confined to a low-dimensional
subspace. In this subspace, neuronal activity forms discrete meta-
stable states persistent on the scale of minutes. The network of
transitions that links these metastable states is structured such
that some states form hubs that connect groups of otherwise
disconnected states. Although many paths through the network
are possible, to ultimately enter the activity state compatible with
consciousness, the brain must first pass through these hubs in an
orderly fashion. This organization of metastable states, along with
dramatic dimensionality reduction, significantly simplifies the task
of sampling the parameter space to recover the state consistent
with wakefulness on a physiologically relevant timescale.
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The brain exhibits a remarkable ability to recover normal
function associated with wakefulness, even after large per-

turbations to its activity. Two well-known examples of this are
anesthesia and brain injury (1, 2). How the brain recovers from
large perturbations currently is unknown. Given the number of
neurons involved, the potential space of activity is huge. Thus, it
is not clear how the brain samples the vast parameter space to
discover patterns of activity that are consistent with conscious-
ness after a large perturbation.
The simplest possibility for the recovery of consciousness

(ROC) is that, driven by noise inherent in many aspects of
neuronal activity (3), the brain performs a random walk through
the parameter space until it eventually enters the region that is
consistent with consciousness. An alternative possibility is that
although the motion through the parameter space is not random,
the trajectory nonetheless is smooth. Lastly, it is possible that
en route to ROC, the brain passes through a set of discrete meta-
stable states—that is, a series of jumps between long-lived activity
configurations.
The utility of metastable intermediates to the problem of ROC

is well illustrated by analogy with protein folding. Levinthal’s
paradox (4) refers to the implausibility of a denatured protein
recovering its native fold conformation by random walk alone,
as the time required to randomly explore the conformational
space will rapidly exceed the age of the universe, even for a small
number of residues. However, energetically favorable metastable
intermediate states allow denatured proteins to assume their
native conformation rapidly. Thus, we hypothesized that after
large perturbations, brain dynamics during ROC are structured
into discrete metastable intermediate states.
If metastable intermediate states do exist, transitions between

them must be considered. It is unclear a priori, for example,
whether there will be an obligate intermediate state that must
occur en route to consciousness, or if many different routes
through intermediate states enable ROC. In this work, we ap-
proximate transitions between metastable intermediate states as

Markovian–dependent only on the current state of the system—

so that characterizing the transition probabilities between states
sufficiently characterizes the network of metastable intermediate
states. Several examples of possible network structures are (i) an
ordered “chain” in which each state connects to only two others;
(ii), a “small-world” structure, in which most states are con-
nected only locally whereas a few central hub states connect
widely, allowing rapid long-distance travel through the network;
and (iii) a lattice structure, in which all states have approximately
the same connectivity, allowing multiple routes to ROC.
In this report, we demonstrate that in rats under isoflurane

anesthesia, ROC occurs after the brain traverses a series of
metastable intermediate activity configurations. We demonstrate
that the recovery process is not compatible with a random walk
or another continuous process, nor does it occur as a single jump.
A low-dimensional subspace allows visualization of key features
of the recovery process, including clusters of activity consistent
with metastable intermediates. These clusters of activity have
structured transition properties such that only certain transitions
are observed en route to ROC, suggesting that certain states
function as hubs.

Results
To analyze the dynamics of ROC, we simultaneously recorded
local field potentials (LFPs) from the anterior cingulate and
retrosplenial cortices and the intralaminar thalamus (Fig. S1) in
rats (n = 6) during recovery from general anesthesia induced
with isoflurane. These interconnected areas are involved in brain
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arousal and anesthesia (5, 6). The power spectra of the LFPs
quantify the distribution of signal power among different fre-
quencies and provide a convenient and statistically robust (7)
description of patterns of activity that has been used extensively
(e.g., refs. 8, 9) to distinguish neuronal activity in the awake and
inactivated brain (e.g., Fig. 1). Thus, in what follows, we chose to
quantify brain activity in terms of its spectrum.
We used isoflurane to elicit burst suppression, because its slow

pharmacokinetics (10) allowed us to focus on the intrinsic brain
dynamics rather than on the kinetics of anesthetic washout.
To ensure that all of our experiments began with comparable
magnitude perturbation to brain activity, we began each series of
experiments with an isoflurane concentration of 1.75%, which
reliably produced burst suppression, a pathological pattern of
activity seen after trauma (2), anesthesia (11), hypothermia (12),
encephalopathy (13), hypoxia (14), and others (e.g., Fig. 1A, blue
trace). Burst suppression is defined by episodic low-frequency
oscillations (bursts) punctuated by periods of quiescence (sup-
pression) in the electroencephalogram (EEG) and LFPs that
correlate with synchronous depolarization of cortical neurons
and electrical silence of neuronal membranes (15), respectively.
Any further inactivation of the brain results in persistent elec-
trical quiescence. In the awake brain, conversely, persistent high-
frequency low-amplitude oscillations (e.g., Fig. 1A, red trace) cor-
responding to asynchronous neuronal firing (16, 17) are observed.
Animals were maintained at a fixed anesthetic concentration

for at least 1 h, after which the concentration was decreased by
0.25% until ROC (usually occurring at 0.75%), defined as the
onset of spontaneous movement of the limbs and postural
muscles (SI Materials and Methods). Although the onset of
movement is an imperfect measure, we chose it as an endpoint
for several reasons: (i) Onset of limb movement can be detected

readily. (ii) The anesthetic concentration at which humans lose
consciousness is correlated closely with the anesthetic concen-
tration at which experimental animals lose their righting reflex
(reviewed in ref. 18). (iii) There is no single accepted measure
that reliably detects onset of consciousness based on brain ac-
tivity. (iv) Onset of movement is a conservative estimate of the
onset of consciousness in that in the absence of brainstem lesion,
it is unlikely that the animal will be awake and not moving during
emergence from a pure volatile anesthetic (note that use of an
opiate would complicate this, as the animal might be awake but
not moving).
The slow titration of isoflurane allowed a prolonged sampling

of each anesthetic concentration at steady state. While we con-
trolled inspired anesthetic concentration to make sure that fluc-
tuations in the respiratory dynamics did not result in fluctuations
in the brain anesthetic concentration, we monitored respiratory
rate (SI Materials and Methods). We could not detect statistically
significant changes in respiratory rate during fixed anesthetic ex-
posure (repeated measures ANOVA, df = 19, F = 0.672, P =
0.830). Thus, given no change in tidal volume, the brain anesthetic
concentration likely will remain constant for a large fraction of the
time exposed to a fixed inspired anesthetic concentration.

ROC Is Not Consistent with a Random Walk—Even with Constraints.
Although the characteristics of neuronal activity in the anes-
thetized and awake brain are well known, how the brain navi-
gates between these states is less clear. Many aspects of neuronal
dynamics are stochastic (3). Unsurprisingly, changes in the spec-
trum from one temporal window to the next are well approxi-
mated by multidimensional uncorrelated noise (Fig. S2). This is
consistent with the simplest null hypothesis that on a fast time
scale (1-s step between consecutive spectral windows), neuronal
dynamics perform a random walk. However, even a constrained
random walk using the observed pairwise differences between
spectra as steps (SI Materials and Methods) fails to reliably reach
patterns of activity consistent with wakefulness (Fig. 1C). Con-
sidering more aspects of neuronal activity exacerbates this prob-
lem, as the return of a random walker is guaranteed in only two
dimensions at most (19). Thus, to attain ROC on a physiologically
relevant time scale, the neuronal activity must be structured.
Indeed, while the anesthetic was decreased slowly and mono-

tonically, neuronal activity switched abruptly between several
distinct modes that persisted on the scale of minutes (Fig. 2
spectra; Fig. S3 traces). These fluctuations, evidenced by abrupt
changes in power, appear simultaneously in anatomically sepa-
rated brain regions, signifying a global change in the dynamics of
the extended thalamocortical networks. Remarkably, there is no
one-to-one correspondence between brain activity and anesthetic
concentration—several patterns are seen at a single concentra-
tion. These state transitions reveal the essential metastable
intermediates produced by the brain en route to ROC.

A Low-Dimensional Subspace Captures Significant Dynamics of ROC.
Correlated fluctuations in spectral power at different anatomical
locations suggest that the dynamics of recovery are embedded in
a low-dimensional subspace. To analyze this subspace, we first
encoded brain activity at time t as point X(t)={x1,... xn} in a
multidimensional space where each element xi corresponds to
the fraction of power contained at ith frequency concatenated
across multiple simultaneously recorded channels during a time
window centered at t (SI Materials and Methods). We then per-
formed dimensionality reduction of the matrix containing the
evolution of brain activity encoded in this fashion using principal
component analysis (PCA; SI Materials and Methods). PCA
exploits the covariance structure of the variables, in this case
distribution of power among different frequencies in different
anatomical regions, to identify mutually orthogonal directions —
principal components (PCs)— formed by linear combinations of
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Fig. 1. ROC is not attainable by random walk. (A) Cortical LFP exemplifying
burst suppression (blue) observed in pathological states (e.g., coma, anes-
thesia). LFP observed in the awake brain is shown in red. (B) The power
spectra for the traces in A and B (blue and red, respectively) distinguish these
activity patterns in the frequency domain. Power contained at each fre-
quency is expressed as the fraction of total power. Differences between the
spectra are distributed among many frequencies. (C) Cumulative distribution
of recovery times of random walk simulations (SI Materials and Methods)
shows the improbability of recovery by random walk alone. Red arrows show
the experimentally observed recovery times.
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the original variables along which most of the fluctuations occur.
Using this approach, we captured ∼70% of the variance in just
three dimensions (a reduction from 1,245 dimensions; SI Materials
and Methods) (Fig. 2C). This dimensionality reduction greatly
simplifies the recovery from a perturbation.
The position of the data in the 3D subspace spanned by the

first three PCs is determined by the similarity of the spectrum to
each of the three PCs. For example, the spectrum most similar
in shape to PC1 will have the highest coordinate along that

dimension. The shapes of the PCs (Fig. 3A), therefore, indicate
the ranges of frequencies in which correlated fluctuations occur
in different layers of the cortex and in the thalamus.
Consistent with the laminar architecture of the cortex, PCs

demonstrate a laminar pattern (Fig. 3A)—superficial and deep
cortical layers form two distinct groups. Although the intra-
laminar thalamus contains neurons that project to the superficial
cortical layers (20), the behavior of the thalamus is distinct from
that of superficial cortical layers. For example, the second PC
in the thalamus closely resembles the third PC in the superficial
cortical layers in that it emphasizes an increase in the power of
high-frequency oscillations usually associated with increased
arousal. The fact that this increase in high-frequency activity is
present in orthogonal PCs implies that activation of the thalamus
is separable from activation of the cortex.
Dimensionality reduction (Figs. 2 and 3) was performed on

the dataset concatenated across all animals (Materials and
Methods). To make sure the observed dimensionality reduc-
tion was not an artifact of the concatenation, we subjected the
data from each animal taken individually to PCA in the same
way as for Figs. 2 and 3 (Fig. S4). The dimensionality re-
duction in each animal is comparable to that in the concate-
nated dataset. The PCs obtained in each animal and those in
the concatenated dataset are not expected to be identical. Fur-
thermore, truncation of the PCA after the first three dimensions
is a highly nonlinear operator. Thus, to make sure the con-
catenation did not introduce dramatic differences in the
structure of the data obtained in each experiment, we corre-
lated distances between points in the animal-based and com-
bined PCA (Fig. S4 B and C). In all cases, the distances in the
animal-based and combined PCAs were highly correlated.
Thus, although concatenation may result in the rotation or
stretching of the dataset, it does not strongly affect the in-
terrelationship between points obtained in each experiment
individually.
Note the key distinction between the results in Figs. 2C and 3

and those in Fig. S2. To characterize the dynamics of recovery
from anesthesia, both position—i.e., activity—and velocity—i.e.,
change in activity—must be considered. Whereas in Figs. 2C and 3

Fig. 2. Time-resolved spectrograms reveal state transitions (A) Diagram of
the multielectrode array used to record simultaneous activity in the anterior
cingulate (C) and retrosplenial (R) cortices, as well as the intralaminar thal-
amus (T), superimposed on the sagittal brain section. (B) Time–frequency
spectrograms at different anatomical locations during ROC. The power
spectral density at each point in time–frequency space indicates the de-
viation from the mean spectrum on a decibel color scale as the anesthetic
concentration is decreased (Bottom) from 1.75% to 0.75% in 0.25% incre-
ments until ROC. (C) Data of the kind shown in B pooled across all animals
and all anesthetic concentrations were subjected to PCA (SI Materials and
Methods). Percent of variance is plotted as a function of the number of PCs.
Dynamics of ROC largely are confined to a 3D subspace.

Fig. 3. ROC is characterized by individually stabilized,
discrete activity patterns. (A) PC1, -2, and -3 (gray, bur-
gundy, and orange) plotted as a function of frequency
and projected onto the corresponding anatomical sites.
PCs reveal laminar cortical architecture whereby su-
perficial and deep cortical layers form two distinct
groups.High-frequency oscillations are capturedbyPC2
in the thalamusandPC3 in the superficial cortical layers.
Thus, activation of neuronal activity in the thalamus is
separable from that in the cortex. D.C., deep cingulate;
D.R., deep retrosplenial; S.C., superficial cingulate; S.R.,
superficial retrosplenial; T. thalamus. (B) Probability
density of data from all animals projected onto the
plane spanned by PC1 and PC2 (red shows increased
probability) shows multiple distinct peaks that change
in prevalence and location, depending on anesthetic
concentration. (C) In the space spanned by the first
three PCs, data form eight distinct clusters (SI Materials
and Methods). The approximate location of each clus-
ter is shown by an ellipsoid centered at the cluster
centroid. The radius of the ellipsoid along each di-
mension is the 90th percentile of the distance of all
points in the cluster to the centroid along that di-
mension. Ellipsoids are colored according to the domi-
nant spectral feature (Fig. 4; also seeMovie S1 forbetter
3D visualization). These ellipsoids are analogous to 3D
error bars that help visualize the approximate location
of the clusters in the PCA space.
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we characterize the space of activity X(t), in Fig. S2 we charac-
terize the space of velocities approximated as X(t + 1) − X(t).
Taken together, the results in Fig. S2 and Fig. 2C imply that the
space of activity is low dimensional, whereas the fluctuations
essentially are multidimensional noise. This suggests that some
locations in the activity space are stabilized.

Brain Activity During ROC Exhibits Clusters Consistent with Metastable
Intermediate States. Brain activity during ROC does not evenly
occupy the volume spanned by the first three PCs, as evidenced by
distinct peaks in the probability distribution shown in Fig. 3B.
Consistent with abrupt fluctuations in spectral power (Fig. 2B), the
data projected onto the first three PCs form eight distinct clusters
(SI Materials and Methods), the approximate locations of which are
shown in Fig. 3C. Although clustering was performed on the data
concatenated across all experiments, the distribution of data from
each experiment taken individually also was multimodal (Fig. S5 A
and B). Furthermore, the concordance of clustering between in-
dividual experiments is statistically significant (SI Materials
and Methods, Figs. S5 and S6). Thus, the clusters represent
reproducible and distinct states distinguished by the distri-
bution of spectral power across brain regions.
Three lines of evidence indicate that these clusters represent

attractor states of the thalamocortical dynamics: (i) The tran-
sitions between states are abrupt (e.g., Fig. S3), and the paucity
of points between the peaks of the probability distribution (Fig.
3B group data, Fig. S5 individual experiments) suggests that the
system does not spend a significant amount of time between the
densely occupied states. (ii) Dwell times within each state may
last up to several minutes (Fig. S7A). (iii) Fluctuations die down
when the system arrives into the clusters and increase between
clusters (Fig. S8). The decrease in the amplitude of fluctuations
associated with the arrival into densely populated regions of the
parameter space suggests stabilization of neuronal activity. In
this view, the multimodal distribution of brain activity in PCA

space may be seen as an anesthetic–concentration-dependent
energy landscape in which the location of local energy minima
gives rise to densely occupied states and local maxima demarcate
boundaries between them. Note that the stabilization is not
enough to trap the brain in any one state permanently, and
spontaneous state transitions are observed readily at many an-
esthetic concentrations. Thus, we refer to the densely occupied
regions of the parameter space as metastable states.
The characteristic spectral profile for each state (Fig. 4A)

reveals that they can be grouped further into three distinct cat-
egories. Although each group of states exhibits a consistent in-
crease in power at distinct frequency bands observed across all
anatomical sites, individual members of each group are distin-
guished by the anatomical distribution of power in the high-fre-
quency range. This suggests that fluctuations observed between
clusters within the same group correspond to state-dependent
fluctuations in thalamocortical coupling en route to awakening.
Clustering allows us to simplify ROC further as a sequence of

states, starting from burst suppression and ultimately leading to
wakefulness (Fig. 4B). The observed sequences of states reveal an
additional element of the structure—some state transitions appear
more frequently than others. Note, for instance, that although
burst suppression is exhibited in all blue states, transitions to
δ-dominant states (green) are observed from only one of them.
Likewise, transitions to θ-dominant states (red) are observed
from a single δ-dominant state. Although certain transitions
appeared more frequently than others, to a good approxima-
tion the specific sequence of states appears stochastic. Thus,
we assumed that the system is Markovian and computed tran-
sition probabilities between all pairs of states.

State Transition Probabilities Are Not Uniform; Rather, a Few States
Are Hubs.Consistent with these observations, the network formed
by state transitions linking the metastable states is highly struc-
tured—some states (blue and green asterisks) form hubs—arrival
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Fig. 4. The network linking the metastable states
contains hubs; arrival into the hubs is essential for
ROC. (A) Characteristic spectral density for each
cluster (labels as in Fig. 3C). Clusters are grouped
based upon the frequency range [blue, burst sup-
pression; green, δ (1–4 Hz); red, θ (4–8 Hz)] that has
consistently increased power in all electrodes. (B)
The trajectory of a single experiment through the
clusters suggests that certain state transitions are
more likely than others. (C) A sphere centered at
the cluster centroid shows each cluster. The radius
of the sphere is proportional to the total time spent
in the cluster. Arrow color shows transition proba-
bility. The network of transition probabilities reveals
two hubs (blue and green asterisks inA–C) defined as
the targets of multiple convergent transitions.
Awakening was observed in the cluster shown by
red asterisks ∼95% of the time. Note that all paths
into the “awake” cluster (red asterisks) from burst
suppression (any one of the blue spheres) must in-
volve passage first through the burst suppression
hub state (blue asterisk) then through the δ-domi-
nant hub (green asterisk). See also Movie S2 for
better visualization of the network structure.
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into which is a prerequisite for further progression to wakeful-
ness, which was observed when the animal was in the cluster
marked with the red asterisk ∼95% of the time (Fig. 4C). This
observation is confirmed by a formal analysis of centrality (SI
Materials and Methods and Fig. S9). Note that by following the
links in the network, the system starting out from any one of the
burst suppression states must necessarily first arrive into
the burst suppression hub (blue asterisk) and then the δ-domi-
nant hub (green asterisk). Furthermore, although fluctuations
between several δ-dominant states exist, transition to the awake
cluster (red asterisk) occurs from the δ-dominant hub. Thus, the
structure of the network that links the different metastable states
gives rise to an orderly progression from burst suppression to
consciousness.
It has been argued based on pharmacologic manipulations

(21, 22), functional brain imaging (23), and deep brain stimula-
tion (24) that activation of intralaminar thalamic structures is
essential for ROC. Indeed, we find that the unifying character-
istic of the θ-dominant states (red, Fig. 4 A–C and Fig. 3C) is an
increase in high-frequency oscillations in the intralaminar thal-
amus, signifying increased neuronal firing. Note, however, that
although the two θ-dominant clusters exhibit similar degrees
of thalamic activation, they are distinguished by the degree of
cortical recruitment. Thus, although activation of the thalamus is
an essential feature of brain activity associated with ROC, its
presence is not sufficient to predict activation of the cortex.
The greater prevalence of hub states is attributable to more

frequent arrivals into the hub rather than to longer dwell times (Fig.
S7). This is consistent with convergent transitions into the hubs from
multiple states. Together with the dimensionality reduction and
clustering, the structure of the network that links different meta-
stable states tremendously simplifies the problem of ROC after
a drastic anesthetic-induced perturbation to brain activity.

Discussion
Here, we demonstrate that ROC involves discrete, individually
stabilized patterns of neuronal activity. Furthermore, the net-
work that links them gives rise to an orderly progression through
these activity patterns toward eventual ROC. Because transitions
toward the patterns of neuronal activity consistent with con-
sciousness are observed from only a small subset of available
states that we identify as hubs, arrival into the hubs may be used
to suggest the possibility of impending ROC.

ROC from Isoflurane Anesthesia Is a Series of Transitions Between
Discrete Metastable Intermediate States. It has been known since
the 1930s that for most anesthetic agents, increasing depth of
anesthesia correlates with lower-frequency, higher-power EEG
oscillations until the onset of burst suppression (25). As a result,
many depth-of-anesthesia measures, including multiple commer-
cially available options, depend upon the frequency range that
contains the dominant power. Previous work, however, was silent
on whether this represents a continuum or discrete states. We
show here that it is possible to detect a few discrete metastable
intermediate states in multiple animals emerging from isoflurane
anesthesia. Moreover, certain of these intermediate states func-
tion as hubs during ROC, such that transitions between groups of
intermediate states necessitate transiting through the hub.
Certain aspects of the dynamics of ROC may in fact explain

some of the difficulties faced by current depth-of-anesthesia
monitors. For example, one consequence of the “stickiness” of
the intermediates might be the relatively poor correlation between
the depth-of-anesthesia monitor and the end-tidal anesthetic
concentration in the B-Unaware trial (26). Another common
feature when working with the available depth-of-anesthesia
monitors is the occasional large jump with no apparent stimula-
tion or change in anesthesia level, which might accord with
a sudden state change with no precursor. Finally, several of the

current commercial systems output a number in a range from
0 to 100 to indicate depth of anesthesia; it is unclear whether the
implied continuity of a 0–100 scale is optimal if ROC is char-
acterized by a series of a few discrete states.

Generalizability of Particular Metastable Intermediate States. Al-
though the consistency of clustering is statistically significant (Figs.
S5 and S6) and suggests some common activity patterns observed
across animals, there are clear differences in the distribution of
activity among animals (e.g., Fig. S5). This variability may arise from
biological factors, such as intrinsic differences between animals, that
may reflect genetic, environmental, and developmental differences,
as well as differences in the sensitivity to anesthetics. Other sources
of variability may be experimental, such as differences in the precise
location of the electrodes, as well as differences in the properties of
the electrodes, such as impedance. Furthermore, some variability
may be imposed onto the data by the analysis technique, such as
truncation of the PCA after three PCs.
That being said, some of the observed variability may be a

consequence of the stochastic nature of the state transitions.
Indeed, although five of six animals visit each of the eight clus-
ters, Fig. S10 shows that in some cases, a particular animal may
contribute a disproportional amount of data to a cluster. One
reason for this is that the transition probabilities differ somewhat
among different animals. Given that transition probabilities are
relatively rare events, full quantification of the variability among
animals will require much larger dataset. However, another
reason for the observed variability is that although transitions
between clusters are rare (Fig. S10B), the probability of staying
in a cluster is high. Thus, a small difference in the number of
visits to a particular cluster may translate into a large difference
in the total time spent in the cluster.

Anesthetic Inertia. ROC after anesthesia is not simply an issue of
drug washout kinetics (27); rather, it is impeded by previously
unknown neuronal processes that give rise to inertia—a phe-
nomenon conserved across evolution and independent of the
specific choice of anesthetic (28). The most compelling evidence
for this inertia is that the dose–response curve for ROC is left-
shifted with respect to that for induction of anesthesia (28).
Although this hysteresis implies that ROC cannot be explained
solely in terms of pharmacologic actions of the anesthetic
agent—to predict whether one is anesthetized or awake, the in-
ternal state of the brain also must be known—it does not imply any
specific class of neuronal mechanism. Although the metastable
states we report here trap the brain in an unconscious state and
may give rise to hysteresis, by significantly decreasing the number
of available activity configurations, they allow eventual recovery.

Generalizability of ROC from Anesthesia. It is likely that recovery
from other brain perturbations is similarly characterized by
abrupt state transitions. For instance, it has been suggested that
recovery from a brain injury resulting in a minimally conscious
state is characterized by the emergence of abrupt state tran-
sitions evident on the EEG (29). It is well known that natural
sleep is characterized by abrupt state transitions (e.g., ref. 9).
Although there is overlap in terms of both the activity patterns
and neuronal networks involved in sleep and anesthesia (e.g.,
refs. 2, 27, 29), the metastable configurations identified herein
are fundamentally distinct from those observed in sleep. For
instance, burst suppression never is observed naturally. Here, we
focused on recovery from anesthesia because of the advantages
afforded by the ability to parametrically control brain inactivation.
This allowed us to directly relate the degree of brain inactivation
to the energy landscape that defines the available neuronal ac-
tivity patterns and the topology of transitions between them.
These results exemplify a general solution to the problem of re-

covering from a strong perturbation. Even relatively simple nonlinear
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dynamical systems exhibit complex behaviors characterized by mul-
tiple attractor states and bifurcations (30). Thus, a strong perturba-
tion may result in the system being permanently trapped it in
a different attractor. Biological systems capable of recovery, such as
the brain, therefore must possess some self-tuning mechanisms by
which the system traverses the state space to recover from a pertur-
bation. Although the details of the metastable states encountered en
route to ROC may differ as a function of the specific perturbation
and species, the need for dimensionality reduction, together with
stabilization of individual activity patterns, is almost unavoidable
given the potential complexity of brain dynamics.
Finally, for the purposes of this paper, we have assumed that

brain activity under anesthesia is Markovian. However, the brain is
not a memoryless system, and it is entirely possible that ongoing
brain activity under anesthesia may result in slow destabilization
of the current state, eventually resulting in an abrupt transition.
Understanding both the topology of neuronal dynamics underlying
ROC and the mechanisms that drive transitions between these
states offers a new avenue to explore the substrates necessary for
consciousness and a new set of constraints for any mechanistic
theory of consciousness.

Materials and Methods
Surgery and Animal Care. All use of laboratory animals was consistent with
Guide for the Care and Use of Laboratory Animals and approved by The
Rockefeller University’s Institutional Animal Care and Use Committee (SI
Materials and Methods).

Data Acquisition. Wideband cortical and thalamic activity sampled at 40 kHz,
with synchronous electrocardiography sampled at 1 kHz, was recorded to
hard drive using a commercially available multichannel op-amp system
(Plexon). Twenty-four simultaneous neuronal recordings were made with
a custom linear microarray manufactured by Alpha Omega with three
“prongs” separated by 1 mm. The two cortical prongs had eight leads spaced
at 250 μm (roughly corresponding to the cortical layers) and a thalamic
prong with eight leads spaced at 100 μm beginning 3.5 mm below the
deepest cortical electrode. The diameter of all contacts was 25 μm. This array
was inserted parallel to the anterior–posterior axis. The most posterior
prong was inserted at 3.6 mm posterior and 1.2 mm lateral to the bregma
and advanced along the dorsal–ventral axis (∼5.2 mm) such that the tha-
lamic electrodes spanned the centrolateral nucleus.

Spectral Analysis. All analysis was performed offline using custom-written
software in MATLAB (MathWorks). LFPs were extracted using an acausal
fourth-order Butterworth filter with a low pass frequency of 500 Hz to
minimize phase distortion and down-sampled to 1 kHz. Evolving spectral
activity was determined by using the Thomson multitaper method (31) using
a sliding 60-s window with a window step of 1 s using 17 tapers, yielding
a frequency resolution of 0.15 Hz. Two hundred forty-nine power estimates
were computed for a frequency range between 0.15 and 300 Hz for
each channel.
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