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Neurons recorded in behaving animals often do not discernibly respond to sensory 24 

input and are not overtly task-modulated. These non-classically responsive neurons 25 

are difficult to interpret and are typically neglected from analysis, confounding 26 

attempts to connect neural activity to perception and behavior. Here we describe a 27 

trial-by-trial, spike-timing-based algorithm to reveal the coding capacities of these 28 

neurons in auditory and frontal cortex of behaving rats. Classically responsive and 29 

non-classically responsive cells contained significant information about sensory 30 

stimuli and behavioral decisions. Stimulus category was more accurately 31 

represented in frontal cortex than auditory cortex, via ensembles of non-classically 32 

responsive cells coordinating the behavioral meaning of spike timings on correct but 33 

not error trials. This unbiased approach allows the contribution of all recorded 34 

neurons – particularly those without obvious task-related, trial-averaged firing rate 35 

modulation – to be assessed for behavioral relevance on single trials.   36 
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Spike trains recorded from the cerebral cortex of behaving animals can be complex, 37 

highly variable from trial-to-trial, and therefore challenging to interpret. A fraction of 38 

recorded cells typically exhibit trial-averaged firing rates with obvious task-related 39 

features and can be considered ‘classically responsive’, such as neurons with tonal 40 

frequency tuning in the auditory cortex or orientation tuning in the visual cortex. Another 41 

population of responsive cells are modulated by multiple task parameters (‘mixed 42 

selectivity cells’), and have recently been shown to have computational advantages 43 

necessary for flexible behavior (Rigotti et al., 2013)
.
. However, a substantial number of 44 

cells have variable responses that fail to demonstrate firing rates with any obvious trial-45 

averaged relationship to task parameters (Jaramillo & Zador, 2010; Olshausen & Field, 46 

2006; Raposo, Kaufman, & Churchland, 2014; Rodgers & DeWeese, 2014). These ‘non-47 

classically responsive’ neurons are especially prevalent in frontal cortical regions but can 48 

also be found throughout the brain, including primary sensory cortex (Hromádka, 49 

DeWeese, Zador, & others, 2008; Jaramillo & Zador, 2010; Rodgers & DeWeese, 2014). 50 

These response categories are not fixed but can be dynamic, with some cells apparently 51 

becoming non-classically responsive during task engagement without impairing 52 

behavioral performance (Carcea, Insanally, & Froemke, 2017; Kuchibhotla et al., 2017; 53 

Otazu, Tai, Yang, & Zador, 2009). The potential contribution of these cells to behavior 54 

remains to a large extent unknown and represents a major conceptual challenge to the 55 

field (Olshausen & Field, 2006).  56 

 57 

How do these non-classically responsive cells relate to behavioral task variables on single 58 

trials? While there are sophisticated approaches for dissecting the precise correlations 59 



  p. 4 of 95   

between classically responsive cells and task structure (Erlich, Bialek, & Brody, 2011; 60 

Jaramillo & Zador, 2010; Kiani & Shadlen, 2009; Murakami, Vicente, Costa, & Mainen, 61 

2014; Raposo et al., 2014) there is still a need for complementary and straightforward 62 

analytical tools for understanding any and all activity patterns encountered (Jaramillo & 63 

Zador, 2010; Raposo et al., 2014; Rigotti et al., 2013). Moreover, most behavioral tasks 64 

produce dynamic activity patterns throughout multiple neural circuits, but we lack unified 65 

methods to compare activity across different regions, and to determine to what extent 66 

these neurons might individually or collectively perform task-relevant computations. To 67 

address these limitations, we devised a novel trial-to-trial analysis using Bayesian 68 

inference that evaluates the extent to which relative spike timing in single-unit and 69 

ensemble responses encode behavioral task variables.   70 

 71 

Results  72 

Non-classically responsive cells prevalent in auditory and frontal cortex during 73 

behavior 74 

We trained 15 rats on an audiomotor frequency recognition go/no-go task (Carcea et al., 75 

2017; Froemke et al., 2013; King, Shehu, Roland, Svirsky, & Froemke, 2016; Martins & 76 

Froemke, 2015) that required them to nose poke to a single target tone for food reward 77 

and withhold from responding to other non-target tones (Figure 1A). Tones were 100 78 

msec in duration presented sequentially once every 5-8 seconds at 70 dB sound pressure 79 

level (SPL); the target tone was 4 kHz and non-target tones ranged from 0.5-32 kHz 80 

separated by one octave intervals. After a few weeks of training, rats had high hit rates to 81 

target tones and low false alarm rates to non-targets, leading to high d' values (mean 82 
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performance shown in Figure 1B; each individual rat included in this study shown in 83 

Figure 1-figure supplement 1).  84 

 85 

To correctly perform this task, animals must first recognize the stimulus and then execute 86 

an appropriate motor response. We hypothesized that two brain regions important for this 87 

behavior are the auditory cortex (AC) and frontal cortical area 2 (FR2). Many but not all 88 

auditory cortical neurons respond to pure tones with reliable, short-latency phasic 89 

responses (Hromádka et al., 2008; Hubel, Henson, Rupert, & Galambos, 1959; Kadia & 90 

Wang, 2002; Merzenich, Knight, & Roth, 1975; Polley, Read, Storace, & Merzenich, 91 

2007; Wehr & Zador, 2003; Yaron, Hershenhoren, & Nelken, 2012). These neurons can 92 

process sound in a dynamic and context-sensitive manner, and AC cells are also 93 

modulated by expectation, attention, and reward structure, strongly suggesting that AC 94 

responses are important for auditory perception and cognition (David, Fritz, & Shamma, 95 

2012; J. Fritz, Shamma, Elhilali, & Klein, 2003; Hubel et al., 1959; Jaramillo & Zador, 96 

2010; Weinberger, 2007). Previously we found that the go/no-go tone recognition task 97 

used here is sensitive to AC neuromodulation and plasticity (Froemke et al., 2013). In 98 

contrast, FR2 is not thought to be part of the canonical central auditory pathway, but is 99 

connected to many other cortical regions including AC (Romanski, Bates, & Goldman-100 

Rakic, 1999; Schneider, Nelson, & Mooney, 2014). This region has recently been shown 101 

to be involved in orienting responses, categorization of perceptual stimuli, and in 102 

suppressing AC responses during movement (Erlich et al., 2011; Hanks et al., 2015; 103 

Schneider et al., 2014). These characteristics suggest that FR2 may be important for goal-104 

oriented behavior.  105 
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 106 

We first asked if activity in AC or FR2 is required for animals to successfully perform 107 

this audiomotor task. We implanted cannulas into AC or FR2 (Figure 1-figure 108 

supplement 2), and infused the GABA agonist muscimol bilaterally into AC or FR2, to 109 

inactivate either region prior to testing behavioral performance. We found that task 110 

performance was impaired if either of these regions was inactivated, although general 111 

motor functions, including motivation or ability to feed were not impaired (Figure 1-112 

figure supplement 3; for AC p=0.03; for FR2 p=0.009 Student’s paired two-tailed t-113 

test). Thus activity in both AC and FR2 may be important, perhaps in different ways, for 114 

successful performance on this task. We note that a previously published study (Gimenez, 115 

Lorenc, & Jaramillo, 2015) observed a more modest effect of muscimol-based 116 

inactivation of auditory cortex (although we used a separate task and higher dose of 117 

muscimol than that study which might contribute to this difference).  118 

 119 

Once animals reached behavioral criteria (hit rates ≥70% and d’ values ≥1.5), they were 120 

implanted with tetrode arrays in either AC or FR2 (Figure 1- figure supplement 4). 121 

After recovery, we made single-unit recordings from individual neurons or small 122 

ensembles of 2-8 cells during task performance. The trial-averaged responses of some 123 

cells exhibited obvious task-related features: neuronal activity was tone-modulated 124 

compared to inter-trial baseline activity (Figure 1C) or gradually changed over the 125 

course of the trial as measured by a ramping index (Figure 1D; hereafter referred to as 126 

‘ramping activity’). However, 60% of recorded cells were non-classically responsive in 127 

that they were neither tone modulated nor ramping according to statistical criteria 128 
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(Figure 1E, 1F; Figure 1-figure supplement 5; 64/103 AC cells and 43/74 FR2 cells 129 

from 15 animals had neither significant tone-modulated activity or ramping activity; pre 130 

and post-stimulus mean activity compared via subsampled bootstrapping and considered 131 

significant when p<0.05; ramping activity measured with linear regression and 132 

considered significant via subsampled bootstrapping when p<0.05 and r>0.5; for overall 133 

population statistics see Figure 1-figure supplement 6). While the fraction of non-134 

classically responsive AC neurons observed is consistent with previous studies that use 135 

different auditory stimuli or behavioral paradigms (Jaramillo & Zador, 2011; Rodgers & 136 

DeWeese, 2014), this definition does not preclude the possibility that non-classically 137 

responsive cells can be driven by other acoustic stimuli or behavioral paradigms.  138 

 139 

Novel single-trial, ISI-based algorithm for decoding non-classically responsive 140 

activity 141 

Given that the majority of our recordings were from non-classically responsive cells, we 142 

developed a general method for interpreting neural responses even when trial-averaged 143 

responses were not obviously task-modulated which allowed us to compare coding 144 

schemes across different brain regions (here, AC and FR2). The algorithm is agnostic to 145 

the putative function of neurons as well as the task variable of interest (here, stimulus 146 

category or behavioral choice).  147 

 148 

Our algorithm empirically estimates the interspike interval (ISI) distribution of individual 149 

neurons to decode the stimulus category (target or non-target) or behavioral choice (go or 150 

no-go) on each trial via Bayesian inference. The ISI was chosen because its distribution 151 
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could vary between task conditions even without changes in the firing rate – building on 152 

previous work demonstrating that the ISI distribution contains complementary 153 

information to the firing rate (Lundstrom & Fairhall, 2006; Reich, Mechler, Purpura, & 154 

Victor, 2000; Zuo et al., 2015). The distinction between the ISI distribution and trial-155 

averaged firing rate is subtle, yet important. While the ISI is obviously closely related to 156 

the instantaneous firing rate, decoding with the ISI distribution is not simply a proxy for 157 

using the time-varying, trial-averaged rate. To demonstrate this we constructed three 158 

model cells: a stimulus-evoked cell with distinct target and non-target ISI distributions 159 

(Figure 2A), a stimulus-evoked cell with identical ISI distributions (Figure 2B), and a 160 

non-classically responsive cell with distinct target and non-target ISI distributions 161 

(Figure 2C). These models clearly demonstrate that trial-averaged rate modulation can 162 

occur with or without corresponding differences in the ISI distributions and cells without 163 

apparent trial-averaged rate-modulation can nevertheless have distinct ISI distributions. 164 

Taken together, these examples demonstrate that the ISI distribution and trial-averaged 165 

firing rate capture different spike train statistics. This has important implications for 166 

decoding non-classically responsive cells that by definition do not exhibit large firing rate 167 

modulations but nevertheless may contain information latent in their ISI distributions.  168 

 169 

For each recorded neuron, we built a library of ISIs observed during target trials and a 170 

library for non-target trials from a set of ‘training trials’. Two different cells from AC are 171 

shown in Figure 3A and Figure 3-figure supplement 1A-D, and another cell from FR2 172 

is shown in Figure 3-figure supplement 1E-H. These libraries were used to infer the 173 

probability of observing an ISI during a particular trial type (Figure 3B,C; Figure 3-174 
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figure supplement 1C,G; left panels show target in red and non-target in blue). These 175 

conditional probabilities were inferred using non-parametric statistical methods to 176 

minimize assumptions about the underlying process generating the ISI distribution and 177 

better capture the heterogeneity of the observed ISI distributions (Figure 3B; Figure 3-178 

figure supplement 1C,G). We verified that our observed distributions were better 179 

modeled by non-parametric methods rather than standard parametric methods (e.g. rate-180 

modulated Poisson process; Figure 3-figure supplement 2). Specifically, we found the 181 

distributions using Kernel Density Estimation where the kernel bandwidth for each 182 

distribution was set using 10-fold cross-validation. To accommodate any non-stationarity, 183 

these ISI distributions were calculated in 1 second long sliding windows recalculated 184 

every 100 ms over the course of the trial. We then used these training set probability 185 

functions to decode a spike train from a previously unexamined individual trial from the 186 

set of remaining ‘test trials’. This process was repeated 124 times using 10-fold cross-187 

validation with randomly generated folds. 188 

 189 

Importantly, while the probabilities of observing particular ISIs on target and non-target 190 

trials were similar (Figure 3B; Figure 3-figure supplement 1C,G), small differences 191 

between the curves carried sufficient information to allow for decoding. To characterize 192 

these differences, we used the weighted log likelihood ratio (W. LLR; Figure 3C; Figure 193 

3-figure supplement 1C,G) to clearly represent which ISIs suggested target (W. LLR 194 

>0) or non-target (W. LLR <0) stimulus categories. Our algorithm relies only on 195 

statistical differences between task conditions; therefore, the W. LLR summarizes all 196 

spike timing information necessary for decoding. Similar ISI libraries were also 197 
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computed for behavioral choice categories (Figure 3B,C; Figure S3-figure supplement 198 

1C,G; right panels show go decision in green and no-go in purple). These examples 199 

clearly illustrate that the relationship between the ISIs and task variables cannot simply 200 

be approximated by an ISI or firing rate threshold where short ISIs imply a one task 201 

variable and longer ISIs imply another: in the cell shown in Figure 3, short ISIs (ISI <50 202 

msec) indicated non-target, medium ISIs (50 msec < ISI < 100 msec) indicated target, 203 

and longer ISIs indicated non-target (100 msec < ISI).  204 

 205 

The algorithm uses the statistical prevalence of certain ISI values under particular task 206 

conditions (in this case the ISIs accompanying stimulus category or behavioral choice), to 207 

infer the task condition for each trial. Each trial begins with equally uncertain 208 

probabilities about the stimulus categories (i.e., p(target) = p(non-target) = 50%). As each 209 

ISI is observed sequentially within the trial, the algorithm applies Bayes’ rule to update 210 

p(target|ISI) and p(non-target|ISI) using the likelihood of the ISI under each stimulus 211 

category (p(ISI|target) and p(ISI|non-target) (Figure 3B-D). As these functions were 212 

estimated in 1 second long sliding windows, each ISI was assessed using the distribution 213 

that placed the final spike closest to the center of the sliding window. As shown for one 214 

trial of the example cell in Figure 3D, ISIs observed between 0-1.0 seconds consistently 215 

suggested the presence of the target tone, whereas ISIs observed between 1.0-1.4 seconds 216 

suggested the non-target category thereby also necessarily reducing the belief that a target 217 

tone was played (Figure 3D, top trace). These ISI likelihood functions consider each ISI 218 

to be independent of previous ISIs and therefore ignore correlations between ISIs. After 219 

this process was completed for all ISIs in the particular trial, we obtained the probability 220 
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of a non-target tone and a target tone as a function of time during the trial (Figure 3D). 221 

Because it is particularly challenging to dissociate choice from motor execution or 222 

preparatory motor activity in this task paradigm, the prediction for the entire trial 223 

p(target|ISI) is evaluated at the end of the trial (in the example trial, p(target|ISI) = 61%; 224 

Figure 3D). This process is repeated for the behavioral choice (Figure 3B-D; right 225 

panels; trials separated according to go, no-go; probabilities of ISIs in each condition 226 

generated; conditional probabilities used as likelihood function to predict behavioral 227 

choice on a given trial). The single-trial decoding performance of each neuron is then 228 

averaged over all trials as a measure of the overall ability of each neuron to distinguish 229 

behavioral conditions (Figure 4A). Note that this measure not only takes into account 230 

whether the algorithm was correct on individual trials (i.e. target vs. non-target), but also 231 

its prediction certainty.  232 

 233 

Non-classically responsive cells contain spike-timing-based task information 234 

Can we uncover task information from non-classically responsive cells? We found that 235 

non-classically responsive cells in both AC and FR2 provided significant spike-timing-236 

based information about each task variable (Figure 4A,B, red; Figure 4-figure 237 

supplement 1). The ability to decode was poorly explained by the average firing rate 238 

(Figure 4-figure supplement 2A-F, 0.30 < r
 

< 0.46), z-score (Figure 4-figure 239 

supplement 2G-I, -0.05 < r
  
< 0.05), and ramping activity (Figure 4-figure supplement 240 

2J, -0.02 < r
  
< 0.28). Stimulus decoding performance was also independent of receptive 241 

field properties including best frequency and tuning curve bandwidth for AC neurons 242 

(Figure 4-figure supplement 3).  243 
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 244 

We also observed that task information was distributed across both AC and FR2, and 245 

neural spike trains from individual units were multiplexed in that they often encoded 246 

information about both stimulus category and choice simultaneously (Figure 4B, Table 247 

1). Given the strong correlation between stimulus and choice variables in the task design, 248 

it is difficult to fully separate information about one variable from information about the 249 

other. To establish that multiplexing was not simply a byproduct of this correlation, an 250 

independent measure of multiplexing relying on multiple regression was applied (Figure 251 

4-figure supplement 4). This analysis confirmed that the information revealed by our 252 

algorithm about a behavioral variable was primarily a reflection of that variable and not 253 

simply an indirect measure of the other, correlated variable. This analysis establishes that 254 

a certain degree of separability is possible and demonstrates that the multiplexing 255 

observed in our decoding results is unlikely to be a trivial byproduct of correlations in the 256 

task variables.  257 

 258 

Despite the broad sharing of information about behavioral conditions, there were notable 259 

systematic differences between AC and FR2. Surprisingly, neurons in FR2 were more 260 

informative about stimulus category than AC, and AC neurons were more informative 261 

about choice than stimulus category (Figure 4A, pAC=0.016, pstim=0.0013, Mann-262 

Whitney U test, two-sided). Both of these observations would not have been detected at 263 

the level of the PSTH, as most cells in AC were non-classically responsive for behavioral 264 

choice (no ramping activity, 91/103), yet our decoder revealed that these same cells were 265 

as informative as choice classically responsive cells (Figure 4C, p=0.32 Mann-Whitney 266 
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U test, two-sided; red circles indicate cells non-classically responsive for both variables, 267 

dark-red cells are choice non-classically responsive, and black cells are classically 268 

responsive). Similarly, most cells in FR2 were sensory non-classically responsive (not 269 

tone modulated, 60/74), yet contained comparable stimulus information to sensory 270 

classically responsive cells (Figure 4D, p=0.29 Mann-Whitney U test, two-sided; red 271 

cells are non-classically responsive for both variables, dark-red cells are sensory non-272 

classically responsive, black cells are classically responsive).  273 

 274 

To assess the statistical significance of these results, we tested our algorithm on two 275 

shuffled data sets. First, we ran our analysis using synthetically-generated trials that 276 

preserved trial length but randomly sampled ISIs with replacement from those observed 277 

during a session without regard to condition (Figure 4E). Second, we left trial activity 278 

intact, but permuted the stimulus category and choice for each trial (Figure 4F). We 279 

restricted analysis to cells with decoding performance significantly different from 280 

synthetic spike trains (all cells in Figure 4A-D significantly different from synthetic 281 

condition shown in Figure 4E, p<0.05, bootstrapped 1240 times).  282 

 283 

To directly assess the extent to which information captured by the ISI distributions in our 284 

data set was distinct from the time-varying rate, we compared the performance from our 285 

ISI-based decoder to a conventional rate-modulated (inhomogeneous) Poisson decoder 286 

(Rieke, Warland, de de Ruyter van Steveninck, & Bialek, 1999)  which assumes that 287 

spikes are produced randomly with an instantaneous probability equal to the time-varying 288 

firing rate. As our model cells illustrate (Figure 2), it is possible to decode using the ISI 289 
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distributions even when firing rates are uninformative (Figure 5A). When applied to our 290 

dataset, the ISI-based decoder generally outperformed this conventional rate-based 291 

decoder confirming that ISIs capture information distinct from that of the firing rate 292 

(Figure 5B; Overall stimulus decoding performance: pAC=0.0001, pFR2=8×10
-6

; Overall 293 

choice decoding performance pAC=0.0057, pFR2=0.02, Mann-Whitney U test, two-sided). 294 

Moreover, comparing single trial decoding outcomes demonstrated weak to no 295 

correlations between the ISI-based decoder and the conventional rate decoder, further 296 

underscoring that these two methods rely on different features of the spike train to decode 297 

(Figure 5C; stimulus medians: AC=0.10 FR2=0.11; choice medians: AC=0.07, 298 

FR2=0.08).  299 

 300 

We hypothesize that ISI-based decoding is biologically plausible. Short-term synaptic 301 

plasticity and synaptic integration provide powerful mechanisms for differential and 302 

specific spike-timing-based coding. We illustrated this capacity by making whole-cell 303 

recordings from AC neurons in vivo and in brain slices (Figure 5-figure supplement 304 

1A,B), as well as in FR2 brain slices (Figure 5-figure supplement 1C). In each case, 305 

different cells could have distinct response profiles to the same input pattern, with similar 306 

overall rates but different spike timings.  307 

 308 

Moreover, we note that this type of coding scheme requires few assumptions about 309 

implementation, and does not require additional separate integrative processes to 310 

compute rates or form generative models. Thus ISI-based decoding coding could be 311 

generally applicable across brain areas, as demonstrated here for AC and FR2.  312 
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 313 

Non-classically responsive cells encode selection rule information in a novel task-314 

switching paradigm 315 

To further demonstrate the generalizability and utility of our approach, we applied our 316 

decoding algorithm to neurons that were found to be non-classically responsive in a 317 

previously published study (Rodgers & DeWeese, 2014). In this study, rats were trained 318 

on a novel auditory stimulus selection task where depending on the context animals had 319 

to respond to one of two cues while ignoring the other. Rats were presented with two 320 

simultaneous sounds (a white noise burst and a warble). In the “localization” context the 321 

animal was trained to ignore the warble and respond to the location of the white noise 322 

burst and in the “pitch” context it was trained to ignore the location of the white noise 323 

burst and respond to the pitch of the warble (Figure 6A). Using our algorithm, we found 324 

significant stimulus and choice-related information in the activity of non-classically 325 

responsive cells that displayed no stimulus modulation nor ramping activity in the firing 326 

rate (Figure 6B-D). The main finding of the study is that the pre-stimulus activity in both 327 

primary auditory cortex and prefrontal cortex encodes the selection rule (i.e. activity 328 

reflects whether the animal is in the localization or pitch context). This conclusion was 329 

entirely based on a difference in pre-stimulus firing rate between the two contexts. The 330 

authors reported, but did not further analyze, cells that did not modulate their pre-331 

stimulus firing rate. In our nomenclature these cells are “non-classically responsive for 332 

the selection rule”. Using our algorithm we found that the ISI distributions of these cells 333 

encoded the selection rule and were significantly more informative than the classically 334 

responsive cells (Figure 6E, pAC=5×10
-6

, pPFC<0.0002, Mann-Whitney U test, two-335 
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sided). This surprising result demonstrates that our algorithm generalizes to novel 336 

datasets, and may be used to uncover coding for cognitive variables beyond those 337 

apparent from conventional trial-averaged, rate-based analyses. Furthermore, these 338 

results indicate that as task complexity increases non-classically responsive cells are 339 

differentially recruited for successful task execution.  340 

 341 

Non-classically responsive ensembles are better predictors of behavioral errors   342 

Downstream brain regions must integrate the activity of many neurons and this ISI-based 343 

approach naturally extends to simultaneously recorded ensembles. We therefore asked 344 

whether using small ensembles would change or improve decoding. To decode from 345 

ensembles, likelihood functions from each cell were calculated independently as before, 346 

but were used to simultaneously update the task condition probabilities (p(target | ISI) 347 

and p(go | ISI)) on each trial (Figure 7A). Analyzing ensembles of 2-8 neurons in AC 348 

and FR2 significantly improved decoding for both variables in FR2 and stimulus 349 

decoding in AC (Figure 7B, pAC stim=0.04, pFR2 stim=1×10
-5

, pAC=0.29, pFR2 choice=7×10
-5

, 350 

Mann-Whitney U test, two-sided). This was not a trivial consequence of using more 351 

neurons, as the information provided by individual ISIs on single trials can be 352 

contradictory (e.g., compare LLR functions in Figure 3C and Figure S3-figure 353 

supplement 1C for 50 ms < ISIs < 120 ms). For ensemble decoding to improve upon 354 

single neuron decoding, the ISIs of each member of the ensemble must indicate the same 355 

task variable.  356 

 357 
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Can our decoding method predict errors on a trial-by-trial basis? In general, trial-358 

averaged PSTHs did not reveal systematic differences between correct and error trials 359 

(Figure 7-figure supplement 1). However, when we examined single-trial performance 360 

with our algorithm, ensembles of neurons in AC and FR2 predicted behavioral errors 361 

(Figure 7C). In general, ensembles in AC predicted behavioral errors significantly better 362 

than those in FR2 (Figure 7C, for 3-member ensembles: p=1.2×10
-5

, for 4-member 363 

ensembles: p=0.03, Mann-Whitney U test, two-sided). Interestingly, decoding with an 364 

increasing number of non-classically responsive cells improved error prediction in both 365 

AC and FR2 (Figure 7D, (pAC=0.013, pFR2=0.046, Welch’s t-test).  366 

 367 

Timing-dependent ensemble consensus-building dynamics underlie task information 368 

While improvements were seen in decoding performance with increasing ensemble size, 369 

the ISI distributions/ISI-based likelihood functions were highly variable across individual 370 

ensemble members. Thus, we wondered if there was task-related structure in the timing 371 

of population activity that evolved over the course of the trial to instantiate behavior. To 372 

answer this question, we examined whether local ensembles share the same 373 

representation of task variables over the course of the trial. Do they “reach consensus” on 374 

how to represent task variables using the ISI (Figure 8A)? Without consensus, a 375 

downstream area would need to interpret ensemble activity using multiple disparate 376 

representations rather than one unified code (Figure 8B). The firing rates and ISI 377 

distributions of simultaneously-recorded units were generally variable across cells 378 

requiring an exploratory approach to answer this question (Figure 8C, example three-379 

member ensemble with heterogeneous conditional ISI distributions). Therefore, we 380 
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examined changes in the distributions of ISIs across task conditions, asking how the 381 

moment-to-moment changes in the log-likelihood ratio (LLR) of each cell were 382 

coordinated to encode task variables (Figure 8C). We focused on the LLR because it 383 

quantifies how the ISI represents task variables for a given cell and summarizes all spike 384 

timing information needed by our algorithm (or a hypothetical downstream cell) to 385 

decode.   386 

 387 

We examined how ensembles coordinate their activity moment-to-moment over the 388 

course of the trial by quantifying the similarity of the LLRs across cells in a sliding 389 

window. Similarity was assessed by summing the LLRs of ensemble members, 390 

calculating the total area underneath the resulting curve, and normalizing this value by 391 

the sum of the areas of each individual LLR. We refer to this quantified similarity as 392 

‘consensus’; a high consensus value indicates that ensemble members have similar LLRs 393 

and therefore have a similar representation of task variables (Figure 8D). We should 394 

emphasize that successful ensemble decoding (Figure 7) does not require the LLRs of 395 

ensemble members to be related in any way; therefore, structured LLR dynamics (Figure 396 

8) are not simply a consequence of how our algorithm is constructed.  397 

 398 

While the conventional trial-averaged PSTH of non-classically responsive ensembles 399 

recorded in AC and FR2 showed no task-related modulation, our analysis revealed 400 

structured temporal dynamics of the LLRs (captured by the consensus value). On correct 401 

trials, we observe a trajectory of increasing consensus at specific moments during the trial 402 

signifying a dynamically created, shared ISI representation of task variables. In FR2, 403 
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sensory non-classically responsive ensembles (ensembles in which at least two out of 404 

three cells were not tone-modulated) encode stimulus information using temporally-405 

precise stimulus-related dynamics on correct trials. The stimulus representation of 406 

sensory non-classically responsive ensembles reached consensus rapidly after stimulus 407 

onset followed by divergence (Figure 8E, stimulus-aligned, solid line, consensus, t = 0 408 

to 0.42 s, pSNR = 3.9×10
-4

 Wilcoxon test with Bonferroni correction, two-sided). Sensory 409 

classically responsive ensembles in AC increased consensus beyond stimulus 410 

presentation, reaching a maximum ~750 ms after tone onset on correct trials (Figure 8E 411 

stimulus-aligned, dotted line, consensus, t = 0 to 0.81 s, pSR = 0.14 Wilcoxon test with 412 

Bonferroni correction, two-sided). For choice-related activity, choice non-classically 413 

responsive ensembles in both regions as well as choice classically responsive ensembles 414 

in FR2 each reached consensus within 500 ms of the behavioral response (Figure 8E, 415 

response-aligned, consensus, t = -1.0 to 0.0 s, pCNR = 2.0×10
-5

, pCR = 0.12 Wilcoxon test 416 

with Bonferroni correction, two-sided). Importantly, this temporally precise pattern of 417 

consensus building is not present on error trials. On error trials, stimulus consensus 418 

dynamics decreased over the course of the trial whereas choice dynamics did not display 419 

a systematic increase with the exception of choice non-classically responsive ensembles 420 

in AC which remained systematically lower than correct trials (Figure 8F, consensus, 421 

correct trials vs. error trials, stimulus: pSNR= 0.007, pSR = 0.065, choice: pCNR = 0.0048, 422 

pCR = 0.065 Mann-Whitney U test, two-sided, consensus on error trials, t = 0 to 0.42 s, 423 

pSNR = 1.3×10
-33

, t = -1.0 to 0 s, pCNR = 0.032, pCR = 0.14 Wilcoxon test with Bonferroni 424 

correction, two-sided). The observed increases in ensemble consensus on correct trials 425 
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(while failing do so on error trials) suggests that achieving a shared ISI representation of 426 

task variables may be relevant for successful task execution. 427 

 428 

These results reveal that consensus-building and divergence occur at key moments during 429 

the trial for successful execution of behavior in a manner that is invisible at the level of 430 

the PSTH. As sensory and choice non-classically responsive ensembles participated in 431 

these dynamics, changes in the consensus value cannot simply be a byproduct of 432 

correlated firing rate modulation due to tone-evoked responses or ramping. While 433 

consensus-building can only indicate a shared representation, divergence can indicate one 434 

of two things: (1) the LLRs of each cell within an ensemble are completely dissimilar or 435 

(2) they are ‘out of phase’ with one another – the LLRs partition the ISIs the same way 436 

(Figure 8D, dotted lines), but the same ISIs code for opposite behavioral variables. This 437 

distinction is important because (2) implies coordinated structure of ensemble activity 438 

(the partitions of the ISI align) whereas (1) does not. To distinguish between these two 439 

possibilities we used the ‘unsigned consensus’, a second measure sensitive to the ISI 440 

partitions but insensitive to the sign of the LLR. Both ‘in phase’ and perfectly ‘out of 441 

phase’ LLRs would produce an unsigned consensus of 1 whereas unrelated LLRs would 442 

be closer to 0 (Figure 8D). For example, in the second row of Figure 8D, both cells 443 

agree that ISIs < 100 ms indicate one stimulus category and ISIs > 100 ms indicate 444 

another, but they disagree about which set of ISIs mean target and which mean non-445 

target. This results in a consensus value of 0 (out of phase) but an unsigned consensus 446 

value of 1.  447 

 448 
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Using this metric, we found that the unsigned consensus pattern for non-classically 449 

responsive ensembles (ensembles with two or more non-classically responsive members) 450 

were shared between AC and FR2 – increasing until ~750 ms after tone onset on correct 451 

trials (Figure 8G, stimulus-aligned, consensus, t = 0 to 0.89 s, p = 1.7×10
-5

 Wilcoxon 452 

test, two-sided). Non-classically responsive ensembles in AC and FR2 also increased 453 

their unsigned consensus immediately before behavioral response (although values in AC 454 

were lower overall; Figure 8G, response-aligned, consensus, t = -1.0 to 0.0 s, p = 455 

0.0011 Wilcoxon test, two-sided). This pattern of consensus-building was only present on 456 

correct trials. On error trials unsigned consensus values did not systematically increase 457 

(Figure 8H, consensus compared to error trials, p = 1.9×10
-9

 Mann-Whitney U test, 458 

two-sided) suggesting that behavioral errors might result from a general lack of 459 

consensus between ensemble members. In summary, we have shown that cells which 460 

appear unmodulated during behavior do not encode task information independently, but 461 

do so by synchronizing their representation of behavioral variables dynamically during 462 

the trial.  463 

 464 

Discussion 465 

Using a straightforward, single-trial, ISI decoding algorithm that makes few assumptions 466 

about the proper model for neural activity, we found task-specific information 467 

extensively represented by non-classically responsive neurons in both AC and FR2 that 468 

lacked conventional task-related, trial-averaged firing rate modulation. The complexity of 469 

single-trial spiking patterns and the apparent variability between trials led to the 470 

development of this novel decoding method. Furthermore, the heterogeneity in the 471 
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observed ISI distributions within and across brain regions precluded a straightforward 472 

interpretation of these distributions and instead suggested an approach which focused on 473 

whether and when these distributions are shared in local ensembles via consensus-474 

building.   475 

 476 

The degree to which single neurons were task-modulated was uncorrelated with 477 

conventional response properties including frequency tuning. AC and FR2 each represent 478 

both task-variables; furthermore, in both regions we identified many multiplexed neurons 479 

that simultaneously represented the sensory input and the upcoming behavioral choice 480 

including non-classically responsive cells. This highlights that the cortical circuits that 481 

generate behavior exist in a distributed network – blurring the traditional modular view of 482 

sensory and frontal cortical regions.  483 

 484 

Most notably, FR2 has a better representation of task-relevant auditory stimuli than AC. 485 

The prevalence of stimulus information in FR2 might be surprising given that AC 486 

reliably responds to pure tones in untrained animals; however, when tones take on 487 

behavioral significance, this information is encoded more robustly in frontal cortex, 488 

suggesting that this region is critical for identifying the appropriate sensory-motor 489 

association. Furthermore, the stark improvement in stimulus encoding for small 490 

ensembles in FR2 suggests that task-relevant stimulus information is reflected more 491 

homogeneously in local firing activity across FR2 (perhaps through large scale ensemble 492 

consensus-building) while this information is reflected in a more complex and distributed 493 

manner throughout AC.  494 
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 495 

We have identified task-informative non-classically responsive neurons recorded while 496 

animals performed a frequency recognition task or a task-switching paradigm. This does 497 

not preclude the possibility that these cells are driven by other acoustic stimuli or in other 498 

behavioral contexts; however, determining the significance of non-classically responsive 499 

activity must ultimately be considered in the specific behavioral context in question, as 500 

their role may be dynamic and context dependent.  501 

 502 

The finding that the ISI-based approach of our algorithm is not reducible to rate despite 503 

their close mathematical relationship raises the question of how downstream regions 504 

could respond preferentially to specific ISIs. Our whole-cell recordings from both AC 505 

and FR2 demonstrate that different postsynaptic cells can respond differently to the same 506 

input pattern with a fixed overall rate, emphasizing the importance of considering a code 507 

sensitive to precise spike-timing perhaps via mechanisms of differential short-term 508 

plasticity such as depression and facilitation (Figure 5-figure supplement 1). 509 

Furthermore, this is supported by experimental and theoretical work showing that single 510 

neurons can act as resonators tuned to a certain periodicity of firing input (Izhikevich, 511 

2000). This view could also be expanded to larger neuronal populations comprised of 512 

feedback loops that would resonate in response to particular ISIs. In this case, cholinergic 513 

neuromodulation could offer a mechanism for adjusting the sensitivities of such a 514 

network during behavior on short time-scales by providing rapid phasic signals (Hangya, 515 

Ranade, Lorenc, & Kepecs, 2015).   516 

 517 
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Our consensus results reveal dynamic changes in the relationship between the LLRs of 518 

ensemble members. How might such a downstream resonator interpret a given ISI in the 519 

context of these dynamics? Our consensus analysis provides one possible answer: 520 

downstream neurons may be attuned to the ISIs specified by the consensus LLR of an 521 

ensemble. In such a model, an ensemble would have the strongest influence on 522 

downstream activity when they reach high consensus. We additionally hypothesize that 523 

mechanisms of long-term synaptic plasticity such as spike-timing-dependent plasticity 524 

can redistribute synaptic efficacy, essentially changing the dynamics of short-term 525 

plasticity independent from overall changes in amplitudes (Markram & Tsodyks, 1996). 526 

Thus, after training, downstream neurons do not need to continually change the readout 527 

mechanism- rather, the upstream and downstream components might be modified 528 

together by cortical plasticity during initial phases of behavioral training. This would set 529 

the ISI distributions appropriate for firing of task-relevant downstream neurons, which 530 

would ensure that ensemble consensus is reached for correct sensory processing in 531 

highly-trained animals. 532 

 533 

It is still unclear what the relevant timescales of decoding might be in relation to 534 

phenomena such as membrane time constants, periods of oscillatory activity, and 535 

behavioral timescales. Given that our ISI-based decoder and conventional rate-modulated 536 

decoders reveal distinct information, future approaches might hybridize these rate-based 537 

and temporal-based decoding methods to span multiple timescales. Other recent studies 538 

have also contributed to our understanding of non-classically responsive activity, by 539 

evaluating firing rates or responses from calcium imaging to demonstrate how 540 
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correlations with classically responsive activity may contribute to the linear separability 541 

of ensemble responses (Leavitt, Pieper, Sachs, & Martinez-Trujillo, 2017; Zylberberg, 542 

2018). 543 

 544 

We have shown that underlying the task-relevant information encoded by each ensemble 545 

is a rich set of consensus-building dynamics that is invisible at the level of the PSTH. 546 

Ensembles in both FR2 and AC underwent stimulus and choice-related consensus 547 

building that was only observed when the animal correctly executed the task. Moreover, 548 

non-classically responsive cells demonstrated temporal dynamics synchronized across 549 

regions which were distinct from classically responsive ensembles. These results 550 

underscore the importance of measuring neural activity in behaving animals and using 551 

unbiased and generally-applicable analytical methods, as the response properties of 552 

cortical neurons in a behavioral context become complex in ways that challenge our 553 

conventional assumptions (Carcea et al., 2017; J. B. Fritz, David, Radtke-Schuller, Yin, 554 

& Shamma, 2010; Kuchibhotla et al., 2017; Otazu et al., 2009).     555 

556 
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Methods 557 

Key resources table 558 

Reagent type 

(species) or resource 
Designation 

Source 

or 

reference 

Identifiers Additional information 

strain, strain 

background (Rattus 

norvegicus 

domesticus, males and 

females) 

Sprague-

Dawley, rats 

Charles 

River, 

Taconic 

NTac:SD   

chemical compound, 

drug 
Muscimol 

Sigma-

Aldrich 

InChi:ZJQHPWUVQPJPQT-

UHFFFAOYSA-N; 

SID:24896662 

  

software, algorithm 

Single-trial 

Bayesian 

decoding 

algorithm 

newly 

created 
N/A https://github.com/badralbanna/Insanally2017 

other 

Rodgers & 

DeWeese 

2014 dataset 

CRCNS pfc-1 http://crcns.org/data-sets/pfc/pfc-1 

 559 

Behavior 560 

All animal procedures were performed in accordance with National Institutes of Health 561 

standards and were conducted under a protocol approved by the New York University 562 

School of Medicine Institutional Animal Care and Use Committee. We used 23 adult 563 

Sprague-Dawley male and female rats (Charles River) in the behavioral studies. Animals 564 

were food restricted and kept at 85% of their initial body weight, and maintained at a 12 565 

hr light/12 hr dark cycle.  566 

Animals were trained on a go/no-go audiomotor task (Carcea et al., 2017; 567 

Froemke et al., 2013). Operant conditioning was performed within 12” L x 10” W x 568 

10.5” H test chambers with stainless steel floors and clear polycarbonate walls (Med 569 

Associates), enclosed in a sound attenuation cubicle and lined with soundproofing 570 

acoustic foam (Med Associates). The nose and reward ports were both arranged on one of 571 
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the walls with the speaker on the opposite wall. The nose port, reward port, and the 572 

speaker were controlled and monitored with a custom-programmed microcontroller. Nose 573 

port entries were detected with an infrared beam break detector. Auditory stimuli were 574 

delivered through an electromagnetic dynamic speaker (Med Associates) calibrated using 575 

a pressure field microphone (ACO Pacific).  576 

Animals were rewarded with food for nose poking within 2.5 seconds of 577 

presentation of the target tone (4 kHz) and given a short 7-second time-out for incorrectly 578 

responding to non-target tones (0.5, 1, 2, 8, 16, 32 kHz). Incorrect responses include 579 

either failure to enter the nose port after target tone presentation (miss trials) or entering 580 

the nose port after non-target tone presentation (false alarms). Tones were 100 msec in 581 

duration and sound intensity was set to 70 dB SPL. Tones were presented randomly with 582 

equal probability such that each stimulus category was presented. The inter-trial interval 583 

delays used were 5, 6, 7, or 8 seconds.  584 
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For experiments involving muscimol, we implanted bilateral cannulas in either 585 

FR2 (+2.0 to +4.0 mm AP, ±1.3 mm ML from Bregma) of 7 animals or AC (-5.0 to -5.8 586 

mm AP, 6.5-7.0 mm ML from Bregma) of 3 animals. We infused 1 μL of muscimol per 587 

side into FR2 or infused 2 μL of muscimol per side into AC, at a concentration of 1 588 

mg/mL. For saline controls, equivalent volumes of saline were infused in each region. 589 

Behavioral testing was performed 30-60 minutes after infusions. Power analysis was 590 

performed to determine sample size for statistical significance with a power of : 0.8; 591 

these studies required at least 3 animals, satisfied in the experiments of Figure 1-figure 592 

supplement 3B,E. For motor control study, animals could freely nose poke for food 593 

reward without presentation of auditory stimuli after muscimol and saline infusion.  594 

 595 

Implant preparation and surgery 596 

Animals were implanted with microdrive arrays (Versadrive-8 Neuralynx) in either AC 597 

(8 animals) or FR2 (7 animals) after reaching behavioral criteria of d’ ≥ 1.0. For surgery, 598 

animals were anesthetized with ketamine (40 mg/kg) and dexmedetomidine (0.125 599 

mg/kg). Stainless steel screws and dental cement were used to secure the microdrive to 600 

the skull, and one screw was used as ground. Each drive consisted of 8 independently 601 

adjustable tetrodes. The tetrodes were made by twisting and fusing four polyimide-coated 602 

nichrome wires (Sandvik Kanthal HP Reid Precision Fine Tetrode Wire; wire diameter 603 

12.5 μm). The tip of each tetrode was gold-plated to an impedance of 300-400 kOhms at 604 

1 kHz (NanoZ, Neuralynx).  605 

 606 
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Electrophysiological recordings & unit isolation 607 

Recordings in behaving rats were performed as previously described(Carcea et al., 2017). 608 

After the animal recovered from surgery (~7 days) recordings began once performance 609 

returned to pre-surgery levels. Tetrodes were advanced ~60 μm 12 hours prior to each 610 

recording session, to a maximum of 2.5mm (for FR2) or 2.0 mm (for AC) from the pial 611 

surface. For recording, signals were first amplified onboard using a small 16-bit unity-612 

gain preamplifier array (CerePlex M, Blackrock Microsystems) before reaching the 613 

acquisition system. Spikes were sampled at 30 kS/sec and bandpass filtered between 250 614 

Hz and 5 kHz. Data were digitized and all above-threshold events with signal to noise 615 

ratios > 3:1 were stored for offline spike sorting. Single-units were identified on each 616 

tetrode using OfflineSorter (Plexon Inc.) by manually classifying spikes projected as 617 

points in 2D or 3D feature space. The parameters used for sorting included the 618 

waveforms projection onto the first two principal components, energy, and nonlinear 619 

energy. Artifacts were rejected based on refractory period violations (< 1 msec). 620 

Clustering quality was assessed based on the Isolation Distance and Lratio sorting quality 621 

metrics. To be initially included for analysis, cells had to have > 3 spikes per trial for 622 

80% of trials to ensure that there were enough ISIs to reliably estimate the ISI probability 623 

density functions.  624 

 625 

Statistical tests for non-classical responsiveness 626 

We used two positive statistical tests for non-classical responsiveness: one to establish a 627 

lack of tone-modulation, the other to establish a lack of ramping activity. To 628 

accommodate the possibility of tone onset and offset responses, we performed our tone-629 
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modulation test on a 100 ms long tone presentation window as well as the 100 ms 630 

window immediately after tone presentation. The test compared the number of spikes 631 

during each of these windows to inter-trial baseline activity as measured by three 632 

sequential 100 ms windows preceding tone onset. Three windows were chosen to account 633 

for variability in spontaneous spike counts. Given that spike counts are discrete, bounded, 634 

and non-normal, we used subsampled bootstrapping to evaluate whether the mean change 635 

in spikes during tone presentation was sufficiently close to zero (in our case 0.1 spikes). 636 

We subsampled 90% of the spike count changes from baseline, calculated the mean of 637 

these values, and repeated this process 5000 times to construct a distribution of means. If 638 

95% of the subsampled means values were between -0.1 and 0.1 we considered the cell 639 

sensory non-classically responsive (p<0.05). The range of mean values from -0.1 to 0.1 640 

were included to account for both tone-evoked (increases in spike count) and tone-641 

suppressed (decreases in spike count) activity. The value of 0.1 spikes was chosen to be 642 

conservative as it is equivalent to an expected change of 1 spike every 10 trials. This is a 643 

conservative, rigorous method for establishing sensory non-classical responsiveness that 644 

is commensurate with more standard approaches for establishing tone responsiveness 645 

such as the z-score.  646 

To quantify the observed sustained increase or decrease in firing rate preceding 647 

the behavioral response a ramp index was calculated adapted from the ‘build-up rate’ 648 

used in previous literature
31

. First, the trial averaged firing rate was determined in 50 649 

msec bins leading up to the behavioral response. We then calculated the slope of a linear 650 

regression in a 500 msec long sliding window beginning 850 msec before behavioral 651 

response. The maximum value of these slopes was used as the ‘ramp index’ for each cell. 652 
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Cells were classified as choice non-classically responsive if the ramp index did not 653 

indicate an appreciable change in the firing rate (less than 50% change) established via 654 

subsampled bootstrapping. Cells that were shown to be both sensory and choice non-655 

classically responsive were considered non-classically responsive overall (Figure 4A,B, 656 

red circles). 657 

 658 

Additional firing statistics 659 

Spontaneous average firing rate was established by averaging spikes in a 100 msec time 660 

window immediately prior to tone onset on each trial. To quantify tone modulated 661 

responses observed during stimulus presentation, we calculated z-scores of changes in 662 

spike count from 100 msec before tone onset to 100 msec during tone presentation: 663 

𝑧 =  
𝜇

𝜎
 

where 𝜇 is the mean change in spike count and 𝜎 is the standard deviation of the change 664 

in spike count.  665 

 666 

Analysis of receptive field properties 667 

Receptive fields were constructed by calculating the average change in firing rate from 668 

50 ms before tone onset to 50 ms during tone presentation. The window used during tone 669 

presentation was identical to that used to calculate the z-score. Best frequency was 670 

defined as the frequency where the largest positive deviation in the evoked firing rate was 671 
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observed. Tuning curve bandwidth was determined by calculating the width of the tuning 672 

curve measured at the mean of the maximum and minimum observed evoked firing rates.   673 

 674 

In vivo whole-cell recordings 675 

Sprague-Dawley rats 3-5 months old were anesthetized with pentobarbital. Experiments 676 

were carried out in a sound-attenuating chamber. Series of pure tones (70 dB SPL, 0.5-32 677 

kHz, 50 msec, 3 msec cosine on/off ramps, inter-tone intervals between 50-500 msec) 678 

were delivered in pseudo-random sequence. Primary AC location was determined by 679 

mapping multiunit responses 500-700 µm below the surface using tungsten electrodes. In 680 

vivo whole-cell voltage-clamp recordings were then obtained from neurons located 400-681 

1100 µm below the pial surface. Recordings were made with an AxoClamp 2B 682 

(Molecular Devices). Whole-cell pipettes (5-9 MΩ) contained (in mM): 125 Cs-683 

gluconate, 5 TEACl, 4 MgATP, 0.3 GTP, 10 phosphocreatine, 10 HEPES, 0.5 EGTA, 3.5 684 

QX-314, 2 CsCl, pH 7.2. Data were filtered at 2 kHz, digitized at 10 kHz, and analyzed 685 

with Clampfit 10 (Molecular Devices). Tone-evoked excitatory postsynaptic currents 686 

were recorded at –70 mV. 687 

 688 

In vitro whole-cell recordings  689 

Acute brain slices of AC or FR2 were prepared from 2-5 month old Sprague-Dawley rats. 690 

Animals were deeply anesthetized with a 1:1 ketamine/xylazine cocktail and decapitated. 691 

The brain was rapidly placed in ice-cold dissection buffer containing (in mM): 87 NaCl, 692 

75 sucrose, 2.5 KCl, 1.25 NaH2PO4, 0.5 CaCl2, 7 MgCl2, 25 NaHCO3, 1.3 ascorbic 693 
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acid, and 10 dextrose, bubbled with 95%/5% O2/CO2 (pH 7.4). Slices (300–400 µm 694 

thick) were prepared with a vibratome (Leica), placed in warm dissection buffer (32-695 

35C) for 10 min, then transferred to a holding chamber containing artificial 696 

cerebrospinal fluid at room temperature (ACSF, in mM: 124 NaCl, 2.5 KCl, 1.5 MgSO4, 697 

1.25 NaH2PO4, 2.5 CaCl2, and 26 NaHCO3,). Slices were kept at room temperature (22-698 

24°C) for at least 30 minutes before use. For experiments, slices were transferred to the 699 

recording chamber and perfused (2–2.5 ml min
1

) with oxygenated ACSF at 33C. 700 

Somatic whole-cell current-clamp recordings were made from layer 5 pyramidal cells 701 

with a Multiclamp 700B amplifier (Molecular Devices) using IR-DIC video microscopy 702 

(Olympus). Patch pipettes (3-8 M) were filled with intracellular solution containing (in 703 

mM): 120 K-gluconate, 5 NaCl, 10 HEPES, 5 MgATP, 10 phosphocreatine, and 0.3 704 

GTP. Data were filtered at 2 kHz, digitized at 10 kHz, and analyzed with Clampfit 10 705 

(Molecular Devices). Focal extracellular stimulation was applied with a bipolar glass 706 

electrode (AMPI Master-9, stimulation strengths of 0.1-10 V for 0.3 msec). Spike trains 707 

recorded from AC and FR2 units during behavior were then divided into 150-1000 msec 708 

fragments, and used as extracellular input patterns for these recordings. 709 

 710 

ISI-based single-trial Bayesian decoding 711 

Our decoding method was motivated by the following general principles: First, single-712 

trial spike timing is one of the only variables available to downstream neurons. Any 713 

observations about trial-averaged activity must ultimately be useful for single-trial 714 

decoding, in order to have behavioral significance. Second, there may not be obvious 715 

structure in the trial-averaged activity to suggest how non-classically responsive cells 716 
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participate in behaviorally-important computations. This consideration distinguishes our 717 

method from other approaches that rely explicitly or implicitly on the PSTH for 718 

interpretation or decoding (Churchland, Kiani, & Shadlen, 2008; Erlich et al., 2011; 719 

Jaramillo, Borges, & Zador, 2014; Jaramillo & Zador, 2010; Murakami et al., 2014; 720 

Wiener & Richmond, 2003). Third, we required a unified approach capable of decoding 721 

from both classically responsive and non-classically responsive cells in sensory and 722 

frontal areas with potentially different response profiles. Fourth, our model should 723 

contain as few parameters as possible to account for all relevant behavioral variables 724 

(stimulus category and behavioral choice). This model-free approach also distinguishes 725 

our method from others that rely on parametric models of neural activity.  726 

These requirements motivated our use of ISIs to characterize neuronal activity. 727 

For non-classically responsive cells with PSTHs that displayed no systematic changes 728 

over trials or between task conditions, the ISI distributions can be variable. The ISI 729 

defines spike timing relative to the previous spike and thus does not require reference to 730 

an external task variable such as tone onset or behavioral response. In modeling the 731 

distribution of ISIs, we use a non-parametric Kernel Density Estimator that avoids 732 

assumptions about whether or not firing occurs according to a Poisson (or another) 733 

parameterized distribution. We used 10-fold cross validation to estimate the bandwidth of 734 

the Gaussian kernel in a data-driven manner. Finally, the use of the ISI was also 735 

motivated by previous work demonstrating that the ISI can encode sensory information 736 

(Lundstrom & Fairhall, 2006; Reich et al., 2000; Zuo et al., 2015) and that precise spike 737 

timing has been shown to be important for sensory processing in rat auditory cortex 738 

(DeWeese, Wehr, & Zador, 2003; Lu & Wang, 2004). Our data-driven method combines 739 
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1) non-parametric statistical procedures (Kernel Density Estimation), 2) use of the ISI as 740 

the response variable of interest (rather than an estimate of the instantaneous firing rate 741 

locked to an external task variable), and 3) single-trial decoding via Bayesian inference 742 

rendering it a novel decoder capable of decoding responsive as well as non-classically 743 

responsive activity from any brain region.  744 

Training probabilistic model: Individual trials were defined as the time from 745 

stimulus onset to the response time of the animal (or average response time in the case of 746 

no-go trials). Trials were divided into four categories corresponding to each of the four 747 

possible variable combinations (target/go, target/no-go, non-target/go, non-target/no-go). 748 

Approximately 90% of each category was set aside as a training set in order to determine 749 

the statistical relationship between the ISI and the two task variables (stimulus category, 750 

behavioral choice).   751 

Each ISI observed was sorted into libraries according to the stimulus category and 752 

behavioral choice of the trial. The continuous probability distribution of finding a 753 

particular ISI given the task condition of interest (target or non-target, go or no-go) was 754 

then inferred using nonparametric Kernel Density Estimation with a Gaussian kernel of 755 

bandwidth set using a 10-fold cross-validation (Jones, Marron, & Sheather, 1996). 756 

Because the domain of the distribution of ISIs is by definition positive (ISI > 0), the 757 

logarithm of the ISI was used to transform the domain to all real numbers. In the end, we 758 

produced four continuous probability distributions quantifying the probability of 759 

observing an ISI on a trial of a given type: p(ISI|target), p(ISI|non-target),  p(ISI|go), and 760 

p(ISI|no-go). These distributions were estimated in a 1 second long sliding window 761 

(recalculated every 100 ms) starting at the beginning of the trial and ending at the end of 762 
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the trial to account for dynamic changes in the ISI distributions over the course of the 763 

trial. These likelihood functions assume that the observed ISIs are independent of the 764 

previous spiking history of the cell. While this assumption is violated in practice, 765 

estimation of the joint probability of an ISI and previous ISIs using non-parametric 766 

methods was infeasible given to the limited number of ISI combinations observed over 767 

the session without including additional assumptions about the correlation structure 768 

between ISIs.   769 

Decoding: The remaining 10% of trials in the test set are then decoded using the 770 

ISI likelihood function described in the previous section. Each trial begins with agnostic 771 

beliefs about the stimulus category and the upcoming behavioral choice (p(target) = 772 

p(non-target) = 50%). Each time an ISI was observed, beliefs were updated according to 773 

Bayes’ rule with the four probability distributions obtained in the previous section 774 

serving as the likelihood function. To update beliefs in the probability of the target tone 775 

when a particular ISI has been observed we used the following relationship: 776 

p(target|ISI, t) =  
p(ISI|target, t)p(target, t)

p(ISI|target, t)p(target, t) + p(ISI|non-target, t)p(non-target, t)
 

On the left hand side are the updated beliefs about the probability of a target. When the 777 

next ISI is observed this value would be inserted as p(target, t) on the right side of the 778 

equation and updated once more. Using the probability normalization, p(non-target, t) can 779 

be determined, 780 

p(target, t) + p(non-target, t) = 1 

Similarly, for choice, 781 
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p(go|ISI, t) =  
p(ISI|go, t)p(go, t)

p(ISI|go, t)p(go, t) + p(ISI|no-go, t)p(no-go, t)
 

and 782 

p(go, t) + p(no-go, t) = 1 

As the likelihood functions were estimated in 1 second long sliding windows recalculated 783 

every 100 ms, Each ISI was assessed using the likelihood function that placed the final 784 

spike closest to the center of the sliding window. 785 

Continuing this process over the course of the trial, we obtain four probabilities – 786 

one for each of the variable outcomes – as a function of time during the trial: p(target, t),  787 

p(non-target, t),  p(go, t),  and p(no-go, t). At each moment, the total probability of both 788 

stimuli and both choices are 1. The prediction for the entire trial was assessed at the end 789 

of the trial, using the overall likelihood function. Given our independence assumption, 790 

the overall likelihood for a spike train is simply equal to product of the likelihoods for 791 

each ISI observed over the course of the trial,   792 

p({ISI𝑖} | target) = ∏ p(ISI𝑖 | target, t𝑖)

𝑛

𝑖=1

. 

We used 10-fold cross-validation, meaning the trials in the four stimulus 793 

categories were randomly divided into ten parts and each part took a turn acting as the 794 

test set with the remaining 90% of trials acting as a training set. To estimate the statistical 795 

certainty of these results we used bootstrapping with 124 repetitions (except in the case of 796 

the null hypotheses where 1240 repetitions were used).   797 
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Ensemble decoding: Ensemble decoding proceeded very similarly to the single-798 

unit case. The ISI probability distributions for each neuron in the ensemble were 799 

calculated independently as described above. However, while decoding a given trial, the 800 

spike trains of all neurons in the ensemble were used to simultaneously update the beliefs 801 

about stimulus category and behavioral choice. In other words, p(stimulus, t) and 802 

p(choice, t) were shared for the entire ensemble but each neuron updated them 803 

independently using Bayes’ rule whenever a new ISI was encountered. Correlations 804 

between neurons were ignored and each of the ISIs from each cell were assumed to were 805 

assumed to be independent. For example, if an ISI is observed at time t from neuron j 806 

with a likelihood pj:  807 

p(target|ISI, t) =  
p𝑗(ISI|target, t)p(target, t)

p𝑗(ISI|target, t)p(target, t) + p𝑗(ISI|non-target, t)p(non-target, t)
 

This process is repeated every time a new ISI is encountered from any cell in the 808 

ensemble. 809 

The joint likelihood of observing a set of ISIs during a trial is then the product of 810 

the likelihoods of each neuron independently. For example, for a two neuron ensemble, 811 

the combined likelihood, p12, of observing the set {ISI𝑖}1 from neuron 1 and  {ISI𝑖}2 from 812 

neuron 2 is 813 

p12({ISI𝑖}1, {ISI𝑖}2| target) = p1({ISI𝑖}1 | target) p2({ISI𝑖}2 | target) 

where pj is the likelihood of observing a given set of ISIs from neuron j. 814 

 815 

Synthetic spike trains  816 
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To test the null hypothesis that the ISI-based single-trial Bayesian decoder performance 817 

was indistinguishable from chance, synthetic spike trains were constructed for each trial 818 

of a given unit by randomly sampling with replacement from the set of all observed ISIs 819 

regardless of the original task variable values (synthetic spike trains, Figure 4E). In 820 

principle under this condition, ISIs should no longer bear any relationship to the task 821 

variables and decoding performance should be close to 50%. For single-unit responses, 822 

this randomization was completed 1240 times. Significance from the null was assessed 823 

by a direct comparison to the 124 bootstrapped values observed from the true data to the 824 

1240 values observed under the null hypotheses. The p-value was determined as the 825 

probability of finding a value from this synthetic condition that produced better decoding 826 

performance than the values actually observed as in a standard permutation test.  827 

As a secondary control, we used a traditional permutation test whereby observed 828 

spike trains were left intact, but the task variables that correspond to each spike train were 829 

randomly permuted (condition permutation, Figure 4F). This process was completed 830 

1240 times.    831 

 832 

Rate-modulated Poisson decoding 833 

To decode using the trial-averaged firing rate, we implemented a standard method(Rieke 834 

et al., 1999) which uses the probability of observing a set of n spikes at times t1, … , tn 835 

assuming those spikes were generated by a rate-modulated Poisson process (Figure 4-836 

figure supplement 4). Just as with this ISI-based decoder, we decoded activity from the 837 

entire trial. First, we use a training set comprising 90% of trials to estimate the time-838 

varying firing rate for each condition from the PSTH 839 
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( 𝑟target(𝑡), 𝑟non-target(𝑡), 𝑟go(𝑡), 𝑟no-go(𝑡))  by Kernel Density Estimation with 10-fold 840 

cross-validation. The remaining 10% of spike trains are then decoded using the 841 

probability of observing each spike train on each condition assuming they were generated 842 

according to a rate-modulated Poisson process 843 

p({𝑡𝑖} | target) =
1

𝑁!
(𝑟target(𝑡1) 𝑟target(𝑡2) … 𝑟target(𝑡𝑛)) exp (− ∫ 𝑟target(𝑡) 𝑑𝑡

𝑇𝑓

𝑇𝑖

) , 

where 𝑇𝑖  and 𝑇𝑓  are the beginning and end of the trial respectively. This likelihood 844 

function is straightforward to interpret: the first product is the probability of observing 845 

spikes the spikes at the times they were observed (where the 1/N! term serves to divide 846 

out by the number of permutations of spike labels) and the exponential term represents 847 

the probability of silence in the periods between spikes. For comparison with our method, 848 

we can reformulate this equation using interspike intervals, if we first break up the 849 

exponential integral into domains that span the observed interspike intervals.  850 

p({𝑡𝑖}  | target)

=
1

𝑁!
(𝑟target(𝑡1) exp (− ∫ 𝑟target(𝑡) 𝑑𝑡

𝑡1

𝑇𝑖

))

× (𝑟target(𝑡2) exp (− ∫ 𝑟target(𝑡) 𝑑𝑡
𝑡2

𝑡1

)) … × (exp (− ∫ 𝑟target(𝑡) 𝑑𝑡
𝑇𝑓

𝑡𝑛

) ). 

Collecting the first and last terms relating to trial start and trial end as  851 

𝐿𝑖(𝑡1, 𝑇𝑖) ≡ 𝑟target(𝑡1) exp (− ∫ 𝑟target(𝑡) 𝑑𝑡
𝑡1

𝑇𝑖

) 

𝐿𝑓(𝑡𝑛, 𝑇𝑓) ≡ exp (− ∫ 𝑟target(𝑡) 𝑑𝑡
𝑇𝑓

𝑡𝑛

) , 

this becomes  852 
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p({𝑡𝑖}  | target)  =
1

𝑁!
𝐿𝑖 (∏ 𝑟target(𝑡𝑖 + Δ𝑡𝑖)

𝑛−1

𝑖=1

 exp (− ∫ 𝑟target(𝑡) 𝑑𝑡
𝑡𝑖+Δ𝑡𝑖

𝑡𝑖

)) 𝐿𝑓 , 

where Δti is the time difference between spikes ti and ti+1. The interpretation of each term 853 

in the product is straightforward: it is the infinitesimal probability of observing a spike a 854 

time Δt after a spike at time t  multiplied by the probability of observing no spikes in the 855 

intervening time. In other words, it is simply p(ISI | target, 𝑡), the probability of 856 

observing an ISI conditioned on observing the first spike at time t, as predicted by the 857 

assumption of a rate-modulated Poisson process. We can easily verify that this term is 858 

normalized which allows us to write,  859 

p(ISI | target, 𝑡) = 𝑟target(𝑡 + ISI) exp (− ∫ 𝑟target(𝑡) 𝑑𝑡
𝑡+ISI

𝑡

). 

With the exception of the terms relating to trial start and end, we can then view the 860 

likelihood of a spike train as resulting from the likelihood of the individual ISIs (just as 861 

with our ISI-decoder),  862 

p({𝑡𝑖}  | target) =
1

𝑁!
𝐿𝑖 𝐿𝑓 (∏ p(ISI𝑖 | target, 𝑡𝑖)

𝑛−1

𝑖=1

), 

with the key difference that these ISI probabilities are inferred from the firing rate rather 863 

than estimated directly using non-parametric methods.  864 

 865 

Inferring the ISI distribution predicted by a rate-modulated Poisson process 866 

To compare the ISI distribution inferred using non-parametric methods to one predicted 867 

by a rate-modulated Poisson process we use the relationship above to calculate the 868 

predicted probability of observing an ISI of given length within the 1 second window 869 

used for our non-parametric estimates. The formula above assumes a spike has already 870 
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occurred at time t, so we multiply by the probability of observing a spike at time t, 871 

p(𝑡 | target) = 𝑟target(𝑡), to obtain the total probability of finding an ISI at any given 872 

point in the trial.    873 

p(ISI, 𝑡 | target) = p(ISI | target, t) p(t | target)  

=  𝑟target(𝑡) 𝑟target(𝑡 + ISI) exp (− ∫ 𝑟target(𝑡) 𝑑𝑡
𝑡+ISI

𝑡

). 

In other words, the probability of observing an ISI beginning at time t is simply the 874 

probability of observing spikes at times t and t + ISI with silence in between.   875 

The probability of observing an ISI at any time within a time window spanning wi 876 

to wf is simply the integral of this ISI probability as a function of time across the window. 877 

To ensure the final spike occurs before wf the integral spans wi to (wf  - ISI),   878 

p(ISI | 𝑤𝑖 , 𝑤𝑓 , target) = 𝐶−1 ∫ p(ISI, 𝑡 | target) 𝑑𝑡
𝑤𝑓−ISI

𝑤𝑖

 

where C is a normalization constant which ensures p(ISI | wi, wf, target) integrates to 1,   879 

C = ∫ (∫ p(ISI, 𝑡 | target) 𝑑𝑡
𝑤𝑓−ISI

𝑤𝑖

)  𝑑ISI
𝑤𝑓−𝑤𝑖

0

 . 

 880 

Regression based method for verifying multiplexing 881 

For each cell, we fit a Logit model for both the stimulus and choice decoding 882 

probabilities on individual trials with the true stimulus category and behavioral choice as 883 

regressors. We then calculated the extent to which the stimulus decoding probability was 884 

determined by true stimulus category by subtracting the regression coefficient for 885 

stimulus from that of choice (Figure 4-figure supplement 3A, x-axis, stimulus 886 

selectivity index); when this number is positive it indicates that stimulus was a stronger 887 
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predictor of stimulus decoding on a trial-by-trial basis. The same process was repeated 888 

for choice (Figure 4-figure supplement 3A, y-axis, choice selectivity index). According 889 

to this analysis we took multiplexed cells to be those that were positive for both measures 890 

(Figure 4-figure supplement 3A, orange symbols, 19/90 cells). In other words, 891 

multiplexed cells were cells for which stimulus decoding probabilities were primarily a 892 

result of true stimulus category and choice decoding probabilities were primarily a result 893 

of true behavioral choice.  894 

 Given the moderate negative correlation for these indices we projected each of 895 

these points onto their linear regression to create a one-dimensional regression-based 896 

uniplexing index. Cells with a value near zero are the multiplexed cells described above 897 

and cells with positive or negative values are primarily stimulus or choice selective 898 

(Figure 4-figure supplement 3A).   899 

 We compared the uniplexing values produced by this regression method to those 900 

produced by examining only the average decoding performance for stimulus and choice 901 

(Figure 4-figure supplement 3B). A decoding-based uniplexing index was defined as 902 

the difference between average stimulus and choice decoding for each cell. When these 903 

two values are comparable this measure returns a value close to zero and the cell is 904 

considered multiplexed; moreover, cells that are uniplexed for stimulus or choice receive 905 

positive and negative values respectively just as with the regression based measure. 906 

While the overall magnitude of these two measures need not be related, both measures of 907 

multi/uniplexing rank cells on a one-dimensional axis from choice uniplexed to 908 

multiplexed to stimulus uniplexed centered on zero.  909 

 910 
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 911 

Weighted log likelihood ratio 912 

The log likelihood ratio (LLR) was calculated by first calculating the conditional ISI 913 

probabilities and then taking the difference of the logarithm of these distributions. For 914 

stimulus, 915 

LLRstimulus(ISI) =  log2(p(ISI|target)) − log2(p(ISI|non-target)), 

and for choice, 916 

LLRchoice(ISI) =  log2(p(ISI|go)) − log2(p(ISI|no-go)). 

The weighted LLR weights the LLR according to the prevalence of a given ISI. For 917 

stimulus, 918 

W. LLRstimulus(ISI) =  p(ISI)[log2(p(ISI|target)) − log2(p(ISI|non-target))], 

and for choice, 919 

W. LLRchoice(ISI) =  p(ISI)[log2(p(ISI|go)) − log2(p(ISI|no-go))]. 

 920 

Consensus and unsigned consensus 921 

The consensus value evaluates the extent to which the LLR (or weighted LLR) is shared 922 

across an ensemble. It is the norm of the sum of the LLRs (W. LLRs) divided by the sum 923 

of the norms. In principle, the functional norm can be anything but in this case we used 924 

the ℓ1 norm (the absolute area under the curve),  925 

‖𝑓‖1 ≡ ∫|𝑓(𝑥)| 𝑑𝑥. 

The for an n-member ensemble, the consensus is then 926 

Consensus ≡ 
‖∑ LLR𝑖

𝑛
𝑖=1 ‖1

∑ ‖LLR𝑖‖𝑛
𝑖=1 1

. 
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For the unsigned consensus, we first generate every permutation of the LLRs used and 927 

their inverses, -LLR, up to an overall sign. For example, for a pair of LLRs there are only 928 

two options,  929 

(LLR1, LLR2) or (LLR1, -LLR2),  930 

and for three LLRs there are four options,  931 

(LLR1, LLR2, LLR3), (-LLR1, LLR2, LLR3), (LLR1, -LLR2, LLR3),  932 

or (LLR1, LLR2, -LLR3).  933 

The consensus is then calculated over each these sets and the maximum value is taken to 934 

be the value of the unsigned consensus.  935 

 To generate the consensus curves in Figure 8, LLRs are calculated using a 750 936 

ms sliding window recalculated every 100 ms. The resulting consensus value is assigned 937 

to the center of the 500 ms window. For visual clarity, these values were interpolated by a 938 

third-degree univariate spline calculated using the python package 939 

scipy.interpolate.InterpolatedUnivariateSpline (this technique is guaranteed to intercept 940 

the measured values).  941 

 942 

Analysis of Rodgers & DeWeese 2014 dataset 943 

Using our novel ISI-based decoding algorithm, we analyzed cells found to be non-944 

classically responsive in a previously published study (Rodgers & DeWeese, 2014). 945 

Briefly, rats were trained on a novel auditory stimulus selection task where animals had 946 

to respond to one of two cues while ignoring the other depending on the context. Rats 947 

held their nose in a center port for 250 to 350 ms and were then presented with two 948 

simultaneous sounds (a white noise burst played from only the left or right speaker and a 949 
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high or low pitched warble played from both speakers). In the “localization” context 950 

animals were trained to ignore the warble and respond to the location of the white noise 951 

burst and in the “pitch” context they were trained to ignore the location of the white noise 952 

burst and respond to the pitch of the warble. Cells recorded from both primary auditory 953 

cortex and prefrontal cortex (prelimbic region) were shown to be classically responsive to 954 

the selection rule during the pre-stimulus period (i.e. firing rates differed between the two 955 

contexts). Non-classically responsive cells were reported but not further analyzed. 956 

 We established that cells were non-classically responsive for the stimulus location 957 

or pitch using our own positive statistical criteria for non-classical responsiveness 958 

(described above) by comparing the average spiking activity in the 250 ms stimulus 959 

period and the 250 ms following stimulus to inter-trial baseline activity. Cells were also 960 

determined to be non-classically responsive for ramping using the same criteria as with 961 

our own data. We confirmed that cells were non-classically responsive for the selection 962 

rule by comparing their average spiking activity in the 100 ms immediately preceding 963 

stimulus onset across contexts. 964 

To determine whether non-classically responsive cells also encoded task 965 

information (stimulus location, stimulus pitch, behavioral choice, and the selection rule), 966 

we decoded each variable on single-trials using our ISI-based decoding algorithm. 967 

Selection rule information was only assessed in the pre-stimulus hold period whereas 968 

stimulus and choice information was assessed in the period after stimulus onset prior to 969 

behavioral response (as with our own data). Cells shown in Figure 5B were deemed 970 

statistically significant when compared to the decoding performance of a control using 971 

synthetically generated data (p<0.05).   972 
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  973 

Statistical analysis 974 

All statistical analyses were performed in Python, MATLAB, or GraphPad Prism 6. 975 

Datasets were tested for normality, and appropriate statistical tests applied as described in 976 

the text (e.g., Student’s paired t-test for normally distributed data, Mann-Whitney U test 977 

for unmatched non-parametric data, and Wilcoxon matched-pairs signed rank test for 978 

matched non-parametric data).  979 
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 980 

Code and sample data availability: https://github.com/badralbanna/Insanally2017 981 
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 1118 

 1119 

Figure 1. Recording from AC or FR2 during go/no-go audiomotor task. (A) 1120 

Behavioral schematic for the go/no-go frequency recognition task. Animals were 1121 

rewarded with food for entering the nose port within 2.5 seconds after presentation of a 1122 

target tone (4 kHz) or given a 7- second time-out if they incorrectly responded to non-1123 

target tones (0.5, 1, 2, 8,16, or 32 kHz). (B) Behavioral responses (nose pokes) to target 1124 

and non-target tones (hit rates: 88 ± 7%, false alarms: 7 ± 5%, N=15 rats). (C) Left, AC 1125 
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unit with significant tone modulated responses during target trials (red; top panel, average 1126 

evoked spikes = 0.55) and non-target trials (blue; bottom panel, average evoked spikes = 1127 

0.92). Rasters of individual trials as well as the firing rate histogram and moving average 1128 

are shown. Histograms of average firing rate during a trial were constructed using 25 ms 1129 

time bins. A moving average of the firing rate was constructed using a Gaussian kernel 1130 

with a 20 ms standard deviation. Black circles represent behavioral responses. Right, 1131 

population averages for all target (n=23) or nontarget (n=34) classically responsive singe-1132 

units from AC. (D) Left, FR2 unit with ramping activity (green; ramp index = 2.82). 1133 

Trials here are aligned to response time. Diamonds indicate stimulus onset. Right, 1134 

population average for all ramping single-units from FR2 (n=21). (E) Left, FR2 unit that 1135 

was not significantly modulated during target trials (red; average evoked spikes = .041, 1136 

p<.001, 2,000 bootstraps). Black circles here represent behavioral responses. Right, 1137 

population averages for all target (n=44) or non-target (n=44) non-classically responsive 1138 

single-units from FR2 (F) Left, FR2 unit lacking ramping activity (green, ramp index = -1139 

1.0, p<.001, 2,000 bootstraps). Right, population average for all non-ramping single-units 1140 

from FR2 (n=44).  1141 
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 1142 

Figure 2. ISIs capture information distinct from trial-averaged rate. Three simulated 1143 

example neurons demonstrating that differences in the ISI are not necessary for 1144 

differences in the trial-averaged firing rate to occur (and vice versa). Each trial was 1145 

generated by randomly sampling from the appropriate conditional ISI distribution. 1146 

Evoked responses were generated by shifting trials without altering the ISI distributions 1147 

such that one spike during stimulus presentation is found at approximately 30 ms (with a 1148 
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variance of 10 ms). (A) Example neuron with both an evoked target response and a 1149 

difference in the conditional ISI distributions on target and non-target trials. (B) Example 1150 

neuron with an evoked target response but identical conditional ISI distributions. 1151 

(C) Example non-classically responsive neuron with no distinct trial-averaged activity 1152 

relative to the pre-stimulus period that nevertheless is generated by distinct ISI 1153 

distributions. 1154 

 1155 

Source data has been provided in the spreadsheet titled ‘figure_2.csv’.  1156 
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1157 

Figure 3. ISI-based algorithm for decoding behavioral variables from AC and FR2 1158 

single-units. (A) Single-unit activity was first sorted by task condition, here for target 1159 

trials (red) and non-target trials (blue). All ISIs following stimulus onset and before 1160 

behavioral choice were aggregated into libraries for each condition (average response 1161 

time is used on no-go trials) as shown for a sample trial. (B) Probability of observing a 1162 

given ISI on each condition was generated via Kernel Density Estimation on libraries 1163 

from (A). Left, target (red) and non-target (blue) probabilities. Right, go (green) and no-1164 

go (purple). (C) Relative differences between the two stimulus conditions (or choice 1165 

conditions) was used to infer the actual stimulus category (or choice) from an observed 1166 

spike train, in terms of weighted log likelihood ratio (W. LLR) for stimulus category 1167 

(p(ISI)*(log2p(ISI|target) - log2(ISI|non-target)); on left) and behavioral choice 1168 

(p(ISI)*(log p2(ISI|go) - log2(ISI|no-go)); on right). When curve is above zero the ISI 1169 

suggests target (go) and when below zero the ISI suggests non-target (no-go). (D) 1170 
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Probability functions from c were used as the likelihood function to estimate the 1171 

prediction of a spike train on an individual trial (bottom). Bayes’ rule was used to update 1172 

the probability of a stimulus (top) or choice (bottom) as the trial progressed and more 1173 

ISIs were observed. The prediction for the trial was assessed at the end of the trial.   1174 
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1175 

Figure 4. Decoding performance of single-units recorded from AC or FR2. (A) 1176 

Decoding performance of single-units for stimulus category and behavioral choice in AC 1177 

(open circles) and FR2 (filled circles) restricted to those statistically significant relative to 1178 

synthetically-generated spike trains (p<0.05, permutation test, two-sided). Note that 1179 

decoding performance values reflect the algorithm’s prediction certainty on individual 1180 

trials. Central symbol with error bars represents group medians and top and bottom 1181 

quartiles (*p=0.02, **p=0.001, Mann-Whitney U test, two-sided). Black symbols, 1182 

classically responsive cells; red symbols, non-classically responsive cells. (B) Decoding 1183 

performance for choice versus stimulus, restricted to those statistically significant relative 1184 

to synthetically-generated spike trains for either stimulus, choice, or both (p<0.05, 1185 

permutation test, two-sided). Black symbols, classically responsive cells; red symbols, 1186 
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non-classically responsive cells. (C) Choice decoding performance in AC of non-1187 

classically responsive cells (red) and choice non-classically responsive (dark-red) versus 1188 

choice classically responsive cells (black; i.e. ramping cells). Decoding performance was 1189 

not statistically different (p=0.32 Mann-Whitney U test, two-sided). Central symbol with 1190 

error bars represents group medians and top and bottom quartiles. (D) Stimulus decoding 1191 

performance in FR2 for non-classically responsive cells (red) and sensory non-classically 1192 

responsive (dark-red) versus choice responsive cells (black; i.e. ramping cells). Decoding 1193 

performance was not statistically different (p=0.29, Mann-Whitney U test, two-sided). 1194 

Central symbol with error bars represents group medians and top and bottom quartiles. 1195 

(E) Decoding performance for choice versus stimulus, applied to spike trains 1196 

synthetically generated from sampling (with replacement) over all ISIs observed without 1197 

regard to stimulus category or behavioral choice. Black, classically responsive cells; red, 1198 

non-classically responsive cells. Error bars represent standard deviation. (F) Decoding 1199 

performance for choice versus stimulus, applied to spike trains left intact but trial 1200 

conditions (stimulus category and behavioral choice) were randomly permuted (1000 1201 

permutations per unit). Error bars represent standard deviation. 1202 

  1203 
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1204 

Figure 5. Information captured by ISI-based decoder distinct from conventional 1205 

rate-modulated (inhomogeneous) Poisson decoder. (A) Decoding performance 1206 
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comparison for example neurons shown in Figure 2. Left, Both the trial-averaged firing 1207 

rate and the ISI distributions can be used to decode stimulus category for this example 1208 

neuron. Middle, Only the firing rate can be used to decode this example. Right, In this 1209 

case, the ISI distributions can be used to decode even when the trial-averaged firing rate 1210 

cannot. (B) Comparison of decoding performance for conventional rate-modulated 1211 

decoder to our ISI-based decoder. Top row, stimulus decoding, bottom row, choice 1212 

decoding. Left, Overall comparison for all cells. Right, Comparison for classically 1213 

responsive and non-classically responsive cells (Stimulus Overall: ***pAC=0.0001, 1214 

***pFR2=8×10
-6

, Stimulus Repsonsive: *pAC=0.031, ***pFR2=4×10
-5

, Stimulus non-1215 

classically responsive:  **pAC=0.0019, n.s. pFR2=0.096, Choice Overall: **pAC=0.0057, 1216 

*pFR2=0.02, Choice Repsonsive: n.s. pAC=0.031, n.s. pFR2=0.08, Choice non-classically 1217 

responsive:  *pAC=0.004, n.s. pFR2=0.19, Wilcoxon signed-rank test). Individual cells 1218 

shown and median with error bars designating bottom and top quartiles superimposed. 1219 

(C) Left, Matthews correlation coefficient (MCC) between correct predictions of our ISI-1220 

based decoder and a conventional rate-modulated firing rate decoder. A MCC value of 1 1221 

indicates each decoder correctly decodes exactly the same set of trials whereas -1 1222 

indicates each decoder is correct on complementary trials. Values close to 0 indicate that 1223 

that the relationship between the decoders is close to chance. Typically, values from -0.5 1224 

to 0.5 are considered evidence for weak to no correlation (stimulus median & 1225 

interquartile range: AC=0.10, 0.09, FR2=0.11, 0.12; choice median & interquartile range: 1226 

AC=0.06,  0.15, FR2=0.08, 0.17). Right, Matthews correlation coefficient (MCC) 1227 

rescaled by the maximum possible correlation given the decoding performance of each 1228 

method remains fixed. This control demonstrates that the correlation values are not a 1229 
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result of weak decoding performance for one of the decoding methods (stimulus median 1230 

& interquartile range: AC=0.11, 0.11, FR2=0.12, 0.15; choice median & interquartile 1231 

range: AC=0.08,  0.17, FR2=0.11, 0.19). 1232 

 1233 

Source data has been provided in the spreadsheet titled ‘figure_5.csv’. 1234 

  1235 
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 1236 

Figure 6. Non-classically responsive cells in both auditory cortex and prefrontal 1237 

cortex (PFC) encode behavioral variables including the selection rule in a task 1238 

switching paradigm. (A) Schematic of novel auditory stimulus selection task. Animals 1239 

were presented with two simultaneous tones (a white noise burst and warble) and trained 1240 

to respond to the location of the sound in the  “localization” context while ignoring pitch 1241 

and respond to the pitch while ignoring the location in the “pitch” context (figure adapted 1242 

from Rodgers & DeWeese 2014, Neuron). Decoding performance for (B) stimulus 1243 

localization on localization trials (pAC=0.24, pPFC=0.21, Mann-Whitney U test, two-1244 

sided), (C) stimulus pitch on pitch trials (pAC=0.48, pPFC=0.47, Mann-Whitney U test, 1245 

two-sided), and (D) choice (**pAC=0.0064, pPFC=0.22, Mann-Whitney U test, two-sided) 1246 

for classically responsive cells (black) and non-classically responsive cells (red; no 1247 
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stimulus modulation or ramping activity) in auditory (open symbols) and prefrontal 1248 

cortex (closed symbols) previously reported but not further analyzed in this study. (E) 1249 

Decoding performance for the selection rule for classically responsive (black) and non-1250 

classically responsive cells (red; similar pre-stimulus firing rates for both pitch and 1251 

localization blocks; ***pAC=5×10
-6

, ***pPFC<0.0002, Mann-Whitney U test, two-sided).  1252 
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1253 

Figure 7. Decoding performance of neuronal ensembles recorded in AC or FR2. (A) 1254 

Schematic of ensemble decoding. Left, conditional ISI distributions and corresponding 1255 

weighted LLR shown for two simultaneously recorded neurons. Right, an example trial 1256 

where each neuron’s ISIs and LLRs are used to independently update stimulus category 1257 

according to Bayes’ rule. Arrows indicate the first updates from each neuron. (B) 1258 

Stimulus and choice decoding performance for ensembles in AC and FR2 for ensembles 1259 

of increasing size (Comparing smallest with largest ensembles. Stimulus: *pAC=0.04, 1260 

***pFR2=1×10
-5

, Choice: pAC=0.29, ***pFR2=7×10
-5

, Mann-Whitney U test, two-sided). 1261 
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(C) Error prediction performance in AC and FR2 as a function of ensemble size 1262 

(*pAC=0.03, **pFR2=0.002; comparison between AC and FR2, for 3-member ensembles: 1263 

p=1.2×10
-5

, for 4-member ensembles: p=0.03, Mann-Whitney U test, two-sided). Chance 1264 

performance is 50%. (D) Error prediction performance in AC and FR2 as a function of 1265 

the number of non-classically responsive cells in the ensemble (*pAC=0.037, Welch’s t-1266 

test with Bonferroni correction for multiple comparisons; *pFR2=0.015, Student’s t-test 1267 

with Bonferroni correction), 3 and 5 member ensembles in c. shown for AC and FR2 1268 

respectively. Chance performance is 50%.   1269 
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1270 

Figure 8. Ensemble consensus-building during behavior. (A) Schematic of consensus 1271 

building in a three-member ensemble. When the LLRs of ensemble members are similar 1272 

the meaning of any ISI is unambiguous to a downstream neuron. (B) Schematic of a 1273 

three-member ensemble without consensus. The meaning of an ISI depends on the 1274 
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upstream neuron it originates from. (C) ISI distributions, and LLRs for three members of 1275 

a sample ensemble. Note that despite differences in ISI distributions, neuron #1 and 1276 

neuron #2 have similar weighted log-likelihood ratios (ISIs > 200 ms indicate target, ISIs 1277 

< 200 ms indicate non-target). (D) Consensus values for three illustrative two-member 1278 

ensembles. Ensemble 1 members have identical LLRs, agreeing on the meaning of all 1279 

ISIs (consensus = 1) and on how the ISIs should be partitioned (unsigned consensus = 1). 1280 

Ensemble 2 contains cells with LLRs where the ISI meanings are reversed, disagreeing 1281 

on meaning of the ISIs (consensus = 0) but still agree on how the ISIs should be 1282 

partitioned (unsigned consensus = 1). Ensemble 3 contains two cells with moderate 1283 

agreement about the ISI meanings and partitioning, leading to intermediate consensus and 1284 

unsigned consensus values (0.5 for each). (E) Left, mean consensus as a function of time 1285 

from tone onset (stimulus-aligned) on correct trials for three-member sensory classically 1286 

responsive ensembles in AC (two or more members sensory classically responsive; black 1287 

dotted line; n=11 ensembles) and sensory non-classically responsive ensembles in FR2 1288 

(two or more members sensory non-classically responsive; dark red solid line; n=101 1289 

ensembles). Standard deviation shown around each mean trendline. Thin solid and dotted 1290 

line represent an individual consensus trajectory from FR2 and AC respectively. FR2 1291 

sensory non-classically responsive cells consistently reached consensus and then 1292 

diverged immediately after stimulus presentation (consensus, t = 0 to 0.42 s, pSNR = 1293 

3.9×10
-4

 Wilcoxon test with Bonferroni correction, two-sided). AC classically responsive 1294 

ensembles (black) increase consensus until 750 ms (Δconsensus, t = 0 to 0.81 s, pSR = 1295 

0.14 Wilcoxon test with Bonferroni correction, two-sided). Right, mean consensus as a 1296 

function of time to behavioral response (response-aligned) on correct trials for three-1297 
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member choice classically responsive ensembles (two or more members choice 1298 

classically responsive; black) in FR2 (solid line; n=47 ensembles) and choice non-1299 

classically responsive (two or more members choice non-classically responsive; dark red) 1300 

in AC (dotted line; n=11 ensembles) and FR2 (solid line; n=57 ensembles). Standard 1301 

deviation shown around each mean trendline. On correct trials, choice classically 1302 

responsive (black) and choice non-classically responsive ensembles (dark red) in both 1303 

regions reached high consensus values ~500 ms before response (Δconsensus, t = -1.0 to 1304 

0.0 s, pCNR = 2.0×10
-5

, pCR = 0.12 Wilcoxon test with Bonferroni correction, two-sided). 1305 

(F) As in e, but for error trials (Δconsensus, correct vs. error trials, stimulus: pSNR= 0.007, 1306 

pSR = 0.065, choice: pCNR = 0.0048, pCR = 0.065 Mann-Whitney U test, two-sided). (G) 1307 

Unsigned consensus index for non-classically responsive ensembles (two or more 1308 

members non-classically responsive) in AC (dotted line; n=13 ensembles) and FR2 (solid 1309 

line; n=36 ensembles), stimulus-aligned (left, Δconsensus, t = 0 to 0.89 s, p = 5.1×10
-5

 1310 

Wilcoxon test with Bonferroni correction, two-sided) and response-aligned (right, 1311 

Δconsensus, t = -1.0 to 0.0 s, p = 0.0033 Wilcoxon test with Bonferroni correction, two-1312 

sided). On correct trials, ensembles reach high values of unsigned consensus ~750 ms 1313 

after tone onset and within 500 ms of behavioral response. (H) As in (G), but for error 1314 

trials (Δconsensus, correct vs. error trials, p = 1.9×10
-9

 Mann-Whitney U test, two-sided). 1315 

(E) – (G) Combinations analyzed and shown are those for which there are significant 1316 

numbers in our dataset.   1317 
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Supplementary Figures  1318 

 1319 
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Figure 1-figure supplement 1. Individual response curves from 15 animals included 1320 

in this study. Each panel shows data from a different animal including behavioral d' for 1321 

distinguishing target from non-target tones. We used a criteria of d' ≥1 for inclusion in 1322 

this study. Response curves here are for an average of 3-4 sessions. Error bars represent 1323 

S.E.M.  1324 
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 1325 

Figure 1-figure supplement 2. Histological placement of cannulas in AC and FR2. 1326 

(A) Example of a coronal section of a rat implanted with cannulas in primary auditory 1327 

cortex (AC). The white lines represent the borders of AC
38

. (B) Example of a coronal 1328 

section of a rat implanted with cannulas in FR2. The white lines represent the borders of 1329 

FR2
38

.  1330 
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 1331 

Figure 1-figure supplement 3. Bilateral infusion of muscimol into either AC or FR2 1332 

significantly impairs task performance. (A) Behavioral performance after muscimol 1333 

infusion (red) or saline control (black) in AC from two individual animals. (B) Summary 1334 

of performance on day before infusion, after muscimol infusion into AC, and after saline 1335 

control infusion (N=3 animals). Performance was impaired after muscimol infusion 1336 

(p=0.03 Student’s paired two-tailed t-test, *p <0.05). (C) Behavior of one animal allowed 1337 

to freely nose poke for food without tones being presented. This behavior was not 1338 

affected by muscimol inactivation (average of 3 sessions, p>0.99 Wilcoxon matched-1339 

pairs signed rank test). Error bars represent S.E.M. (D) Behavioral performance for two 1340 

animals infused bilaterally with muscimol into FR2. (E) Summary of performance before, 1341 

during, and after muscimol infusion into FR2 (N=5 animals). Performance was impaired 1342 

after muscimol infusion (p=0.009 Student’s paired two-tailed t-test, **p<0.01). (F) 1343 

Muscimol in FR2 did not impair free nose poking for food without tones being presented 1344 

in two animals (average of 4 sessions, p=0.62, Wilcoxon matched-pairs signed rank test).  1345 
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 1346 

Figure 1-figure supplement 4. Histological placement of electrodes in AC and FR2. 1347 

(A) Example of electrode tracks and electrolytic lesions in AC. The white lines represent 1348 

the borders of AC. (B) Example of an electrode track in FR2. The white lines represent 1349 

the borders of FR2. Left, section imaged at 10X. Right, the same section imaged at 40X.  1350 
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1351 

Figure 1-figure supplement 5. Examples of tone evoked, ramping, and non-1352 

classically responsive cells from AC and FR2. (A) Two example tone-evoked cells 1353 

recorded from AC. Rasters and PSTHs of target (red) and non-target (blue) trials shown. 1354 
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Stimulus shown as grey bar and black circles represent behavioral response. (Example 1355 

#1: average evoked spikes on target tones = 0.55, on non-target = 0.92. Example #2: 1356 

average evoked spikes on target tones = 0.096, on non-target = 0.12; note that example 1357 

#2 is only non-target tone evoked). (B) Example target tone-evoked cell recorded from 1358 

FR2. Rasters and PSTHs of target (red) and non-target (blue) trials shown (average 1359 

evoked spikes on target tones = 0.37, on non-target = 0.20). (C) Example ramping cell 1360 

recorded from AC. Rasters and PSTH of go trials (green) shown (ramp index = 2.8). (D) 1361 

Example ramping cell recorded from FR2 (ramp index = 4.9). Rasters and PSTH of go 1362 

trials (green) shown. (E) Two example non-classically responsive cells recorded from 1363 

AC. Rasters and PSTH of target (red), non-target (blue), and go (green) trials shown. 1364 

(Example #1: average evoked spikes on target tones = 0.12, on non-target = -0.12, ramp 1365 

index = -0.85; ptone<0.001, pramp=0.010, 2,000 bootstraps; Example #2: average evoked 1366 

spikes on target tones = -0.020, on non-target = -0.038, ramp index = 1.1; ptone<0.001, 1367 

pramp=0.004, 2,000 bootstraps). (F) Two example non-classically responsive cells 1368 

recorded from FR2 (Example #1: average evoked spikes on target tones = 0.081, on non-1369 

target = -0.15, ramp index = 1.4; ptone<0.001, pramp=0.019, 2,000 bootstraps; Example #2: 1370 

average evoked spikes on target tones = 0.046, on non-target = -0.070, ramp index = 1.8; 1371 

ptone<0.001, pramp=0.033, 2,000 bootstraps). Rasters and PSTH of target (red), non-target 1372 

(blue), and go (green) trials shown.   1373 
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 1374 

Figure 1-figure supplement 6. Summary statistics. Histograms of (A) spontaneous 1375 

firing rate, (B) average number of tone-evoked spikes for preferred stimulus category, 1376 

and (C) ramp index for AC (top) and FR2 (bottom).     1377 
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1378 

Figure 3-figure supplement 1. Decoding algorithm to determine stimulus category 1379 
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and choice in single-unit ISIs from AC and FR2 for two additional neurons. (A-D) 1380 

Decoding algorithm applied to a sample neuron in AC. (A) Single-unit activity sorted by 1381 

stimulus condition: target trials (red) and non-target trials (blue). Black circles represent 1382 

the behavioral response. (B) Trials aligned to behavioral response: go (green) and no-go 1383 

(purple). Black diamonds in both go and no-go trials represent stimulus onset. (C) All 1384 

ISIs during the trial (following stimulus onset and before behavioral choice) are 1385 

aggregated into libraries for each condition (average response time is used on no-go 1386 

trials). Probability of observing a given ISI on each condition was generated by using 1387 

Kernel Density Estimation on the libraries from (A). Top left are target (red) and non-1388 

target (blue) probabilities and on right are go (green) and no-go (purple). Below left 1389 

(right) are the log likelihood ratios (LLR) for the ISIs conditioned on stimulus category 1390 

(behavioral choice). When curve is above zero the ISI suggests target (go); when it is 1391 

below zero the ISI suggests non-target (no-go). (D) Probability functions from c. were 1392 

used as the likelihood function to estimate the prediction of a spike train on an individual 1393 

trial (bottom). Bayes’ rule was used to update the probability of a stimulus (top) or choice 1394 

(bottom) as the trial progresses and more ISIs were observed. Prediction for the trial was 1395 

assessed at the end of the trial as depicted by the highlighted dot. (E-H) as in (A-D) 1396 

except the decoding algorithm is applied to a neuron from FR2.  1397 
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 1398 

 1399 

Figure 3-figure supplement 2. Empirical ISI distributions are better modeled using 1400 

non-parametric methods. (A) ISI histograms from two example cells on target trials 1401 

with the corresponding non-parametric Kernel Density Estimate (KDE) distribution 1402 

(solid lines) and the distribution derived from a rate-modulated Poisson process (dashed 1403 

lines). Above each example is the Kullback-Leibler divergence (DKL) quantifying the 1404 

difference between these two distributions, and the difference in the average log-1405 

likelihood of the data (ΔLL) where positive values indicate that the data is better 1406 
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described by the non-parametric KDE distribution. (B) Constructed examples of the KL 1407 

divergence for four pairs of normal distributions with equal standard deviations and 1408 

various mean offsets as a visual reference (C) Summary of all KL divergence values for 1409 

both stimulus and choice in AC (white) and FR2 (grey). Bar indicates median and error 1410 

bars indicate bottom and top quartiles. (D) Summary of difference between log-likelihood 1411 

of observed data under non-parametric KDE and rate-modulated Poisson distributions. 1412 

Positive values indicate KDE distributions are generically a superior fit for the data (AC: 1413 

p = 1.1×10
-15

 FR2: p = 1.2×10
-16

, Wilcoxon signed-rank test).   1414 
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 1415 

1416 

Figure 4-figure supplement 1: Decoding performance of single cells on individual 1417 

trials. Median decoding performance on individual trials with error bars denoting top and 1418 

bottom quartiles. Neurons ordered according to median performance for each region and 1419 

task variable. Black symbols, classically responsive units; red symbols, non-classically 1420 

responsive units.   1421 
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1422 

 Figure 4-figure supplement 2. Lack of correlations between classical firing rate 1423 
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metrics and stimulus or choice decoding performance. (A) Stimulus and choice 1424 

decoding performance versus the spontaneous firing rate for both target and non-target 1425 

trials, (rAC = 0.37, 0.35; slopeAC=2.3⨉10-3, 2.2⨉10-3; pAC=1.7⨉10-4, 4.1⨉10-4; rFR2 = 1426 

0.38, 0.30; slopeFR2=8.9⨉10-3, 4.6⨉10-3; pFR2=8.2⨉10-4, 6.6⨉10-3). (B) Stimulus and 1427 

choice decoding performance versus average firing rate for both target and non-target 1428 

trials, (rAC = 0.39, 0.36; slopeAC=2.3⨉10-3, 2.1⨉10-3; pAC=7.8⨉10-5, 3.0⨉10-4; rFR2 = 1429 

0.42, 0.33; slopeFR2=8.7⨉10-3, 4.5⨉10-3; pFR2=2.3⨉10-4, 3.8⨉10-3). (C) Stimulus and 1430 

choice decoding performance versus average firing rate for target trials only, (rAC = 0.38, 1431 

0.35; slopeAC=1.9⨉10-3, 1.8⨉10-3; pAC=1.0⨉10-4, 4.2⨉10-4; rFR2 = 0.34, 0.30; 1432 

slopeFR2=5.4⨉10-3, 3.0⨉10-3; pFR2=3.2⨉10-3, 0.011). (D) Stimulus and choice decoding 1433 

performance versus average firing rate for non-target trials only, (rAC = 0.40, 0.35; 1434 

slopeAC=2.2⨉10-3, 1.9⨉10-3; pAC=4.0⨉10-5, 6.6⨉10-4; rFR2 = 0.39, 0.30; 1435 

slopeFR2=5.3⨉10-3, 2.5⨉10-3; pFR2=2.9⨉10-4, 0.010). (E) Stimulus and choice decoding 1436 

performance versus average firing rate for go trials only, (rAC = 0.38, 0.37; 1437 

slopeAC=1.9⨉10-3, 1.9⨉10-3; pAC=1.4⨉10-4, 2.3⨉10-4; rFR2 = 0.46, 0.36; 1438 

slopeFR2=7.6⨉10-3, 3.8⨉10-3; pFR2=3.6⨉10-5, 2.0⨉10-3). (F) Stimulus and choice 1439 

decoding performance versus average firing rate for no-go trials only, (rAC = 0.40, 0.35; 1440 

slopeAC=2.1⨉10-3, 1.9⨉10-3; pAC=6.1⨉10-5, 4.7⨉10-4; rFR2 = 0.39, 0.30; 1441 

slopeFR2=7.5⨉10-3, 3.7⨉10-3; pFR2=5.9⨉10-4, 9.2⨉10-3). (G) Stimulus and choice 1442 

decoding performance versus z-score for all trials, (rAC = 0.01, -0.02; slopeAC=1.3⨉10-3,  1443 

-2.4⨉10-3; pAC=0.91, 0.83; rFR2 = 0.01, -0.01; slopeFR2=-2.3⨉10-3, -1.8⨉10-3; pFR2=0.95, 1444 

0.94). (H) Stimulus and choice decoding performance versus z-score for target trials only, 1445 

(rAC = -0.04, -0.01; slopeAC=-5.1⨉10-3, -1.6⨉10-3; pAC=0.72, 0.91; rFR2 = -0.03, -0.002; 1446 
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slopeFR2=-6.7⨉10-3, -1.9⨉10-4; pFR2=0.81, 0.99). (I) Stimulus and choice decoding 1447 

performance versus z-score for non-target trials only, (rAC = 0.01, -0.05; slopeAC= 1448 

1.0⨉10-3, -4.3⨉10-3; pAC=0.90, 0.61; rFR2 = 0.05, 0.02; slopeFR2=0.017, 4.3⨉10-3; 1449 

pFR2=0.68, 0.87). (J) Stimulus and choice decoding performance versus ramp index, (rAC 1450 

= 0.28, 0.07; slopeAC=5.1⨉10-4, 1.3⨉10-4; pAC=5.9⨉10-3, 0.49; rFR2 = 0.18, 0.09; 1451 

slopeFR2=4.5⨉10-4, 1.4⨉10-4; pFR2=0.13, 0.47).  1452 
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1453 

Figure 4-figure supplement 3. Stimulus decoding in AC independent of receptive 1454 

field properties. (A) Examples of tuning curves from four different neurons constructed 1455 

from responses in AC. Gray regions represent S.E.M. (B) Stimulus decoding 1456 

performance as a function of best frequency as measured relative to the target tone 1457 

frequency. No significant differences were found between groups (p>0.2, Mann Whitney 1458 
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U test, two-sided). (C) Stimulus decoding performance as a function of receptive field 1459 

bandwidth tuning. No significant differences were found between groups (p>0.1, Mann 1460 

Whitney U test, two-sided).   1461 
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1462 

Figure 4-figure supplement 4. Decoding performance is a sufficient measure of 1463 

uni/multiplexing. Given the correlation between stimulus category and behavioral choice 1464 

we used a regression based analysis to determine whether decoding performance alone 1465 

was sufficient to establish whether cells were multiplexed for both behavioral variables. 1466 

We used multiple regression to create an alternative definition of multiplexing and 1467 

uniplexing and then demonstrated this definition coincides with the one used in the paper 1468 

based solely on decoding performance. (A) Choice selectivity index versus stimulus 1469 

selectivity index for single cells. Each index quantifies the extent to which the 1470 

corresponding variable was predictive of decoding performance. Multiplexed cells 1471 

(orange symbols) have positive values on both indices. Uniplexed cells (blue symbols) 1472 
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are only positive for one of the two indices. Each cell was projected on the linear 1473 

regression (grey line) to construct a regression-based uniplexing index. Multiplexed cells 1474 

were close to zero on this measure and cells uniplexed for stimulus or choice were 1475 

positive or negative respectively. (B) The decoding-based uniplexing index (difference 1476 

between stimulus and choice decoding performance) versus the regression-based index 1477 

defined in a for AC (left, open symbols) and FR2 (right, filled symbols). In both regions, 1478 

these two measures of uni/multiplexing were correlated. (C) Overall decoding 1479 

performance (average of stimulus and choice decoding) for multiplexed cells versus 1480 

uniplexed cells in AC (left) and FR2 (right). There were no systematic differences in 1481 

decoding performance between multiplexed and uniplexed units (n.s. pAC=0.22, 1482 

pFR2=0.11, Mann-Whitney U test, two-sided).  1483 
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1484 

Figure 5-figure supplement 1. Whole-cell recordings from AC and FR2 neurons 1485 

showing that different cells can have distinct responses to the same input pattern- 1486 

necessary for ISI-based decoding by biological networks. In each case, note the 1487 

reliability of response across trials but differences in response patterns across cells. (A) 1488 

Two of eight in vivo whole-cell recordings from anesthetized adult rat primary AC, 1489 

presenting trains of pure tones at the best frequency for each cell (top, ‘Stim’). (B) Two 1490 

of nine whole-cell recordings from adult rat AC in brain slices. Extracellular stimulation 1491 

was used to present input patterns previously recorded from cortex with tetrode 1492 

recordings in behaving rats during the auditory task used here, and responses recorded in 1493 
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current-clamp near spike threshold. (C) Two of 11 whole-cell recordings from adult rat 1494 

FR2 in brain slices.  1495 



  p. 94 of 95   

 1496 

Figure 7-figure supplement 1. PSTHs from two example cells recorded in either AC 1497 

or FR2 separated by correct (top) and error (bottom) trials. All PSTHs are stimulus-1498 

aligned. The grey bar indicates stimulus presentation and circles represent behavioral 1499 

response.  1500 

  1501 
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  # stimulus sig.  # choice sig.  Total # 

AC 
CR 19 21 39 

NCR 18 21 64 

FR2 
CR 20 22 31 

NCR 10 11 43 

 1502 

Table 1. Number of classically responsive (CR) or non-classically responsive (NCR) 1503 

neurons in AC and FR2 with significant stimulus or choice information.  1504 
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