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Inference of neuronal functional circuitry with
spike-triggered non-negative matrix factorization
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Neurons in sensory systems often pool inputs over arrays of presynaptic cells, giving rise to

functional subunits inside a neuron’s receptive field. The organization of these subunits

provides a signature of the neuron’s presynaptic functional connectivity and determines how

the neuron integrates sensory stimuli. Here we introduce the method of spike-triggered non-

negative matrix factorization for detecting the layout of subunits within a neuron’s receptive

field. The method only requires the neuron’s spiking responses under finely structured

sensory stimulation and is therefore applicable to large populations of simultaneously

recorded neurons. Applied to recordings from ganglion cells in the salamander retina, the

method retrieves the receptive fields of presynaptic bipolar cells, as verified by simultaneous

bipolar and ganglion cell recordings. The identified subunit layouts allow improved predic-

tions of ganglion cell responses to natural stimuli and reveal shared bipolar cell input into

distinct types of ganglion cells.
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Sensory systems often display strong signal convergence,
with individual neurons pooling information over arrays of
presynaptic connections. The characteristics of this signal

pooling determine how the neuron responds to sensory stimu-
lation and what type of computational role the neuron plays in
information processing. A computational framework for analyz-
ing the relation between functional connectivity and stimulus
encoding is given by models that structure a neuron’s receptive
field into subunits, corresponding to the functionally relevant
input channels. Such subunit models form the basis of our cur-
rent understanding of, for example, retinal ganglion cell sensi-
tivity to high spatial frequencies1, 2, ganglion cell selectivity for
specific types of motion signals3–6, the emergence of orientation
selectivity and phase invariance in primary visual cortex7–13, and
the processing of visual motion information along the cortical
dorsal stream14–16. In the retina, ganglion cell subunits arise from
nonlinear integration of bipolar cell signals17–22. Retinal subunit
models have recently received increasing attention because they
form the scaffold for specific computations performed by the
retinal circuit23, 24 and because of their apparent importance for
understanding the encoding of natural stimuli21, 25, 26.

However, connecting subunit models to concrete neuronal
circuitry is complicated by the lack of methods that allow

identification of the subunits from neuronal recordings. While
receptive fields can be conveniently identified with white-noise
stimulation and computation of the spike-triggered average27,
assessing the substructure within receptive fields has turned out
to be a much harder problem. Efforts have therefore focused on
fitting specifically constrained subunit models to data10, 28–33 or by
otherwise enforcing localized subunits in the receptive field13, 34.
Furthermore, testing whether extracted subunits correspond to
actual elements of the presynaptic circuitry provides an additional
challenge, though progress can be made by comparing subunit
characteristics with anatomical information29. Thus, methods
that detect subunits of receptive fields with minimal prior
assumptions about their number, size, or shape and with a
demonstrated relation to functional connections in a neuronal
circuit are highly desirable.

To this end, we here introduce a new method that we term
spike-triggered non-negative matrix factorization (STNMF). The
method identifies subunits in a way analogous to the identifica-
tion of receptive fields through the spike-triggered average, that is,
without the need to construct explicit models of the stimulus-
response relation or to a priori specify the size, shape, number, or
nonlinearity of the subunits. Furthermore, application of the
method to recordings of retinal ganglion cells retrieves actual
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Fig. 1 Identification of subunits with STNMF. a Illustration of STNMF analysis. Samples of a ganglion cell’s effective spike-triggered stimulus ensemble
(top), whose average corresponds to the cell’s spike-triggered average (STA). For easier visual comparison with the subunits, STAs are here and in
subsequent plots displayed with negative pixel values set to zero and with zero corresponding to white in the greyscale image. STNMF decomposes this
ensemble into a set of modules and a weight matrix (bottom). The example here shows four modules that were identified for a sample ganglion cell.
bModules obtained for another sample ganglion cell by applying STNMF with 20 modules. Some modules have a strongly localized structure (blue frames),
others are more noise-like (red frames). The top row shows the cell’s receptive field, given by the spatial component of the STA, as well as the fitted
receptive field outline (GC RF, black ellipse), together with outlines of the localized subunits (blue ellipses). Scale bars, 100 µm. c Nonlinearities for the 20
modules, with colors corresponding to the frame colors in b. d Quantification of spatial autocorrelation, obtained as Moran’s I, vs. output gain, obtained as
the spike-rate range of the nonlinearities shown in c, for the 20 modules. Colors as in b and c
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receptive fields of presynaptic bipolar cells, thus providing a novel
perspective on the functional connectivity and signal transmis-
sion between these successive neuronal layers.

Results
STNMF detects layouts of localized receptive field subunits. We
developed STNMF as a method for extracting the receptive field
substructure that results from nonlinear pooling of functionally
relevant inputs. To illustrate and explore the method, we analyzed
responses of ganglion cells that we recorded from isolated sala-
mander retinas with extracellular microelectrode arrays. The
method only requires recorded ganglion cell spike times under
spatiotemporal white-noise stimulation with fine spatial resolu-
tion. The core aspect is then to apply non-negative matrix fac-
torization (NMF) to the collection of those stimulus patterns in
the white-noise sequence that elicited spikes. NMF is a compu-
tational technique that is typically used to seek a decomposition
of high-dimensional data into a relatively small set of modules
and corresponding weights so that the individual samples in the
data set are approximated by weighted combinations of the
modules. When the data set is represented as a matrix of sample
number vs. elements per sample, the decomposition amounts to a
factorization of this matrix into one matrix that holds the set of
modules and another matrix that holds the weights. Importantly,
in NMF, this factorization is obtained under the constraint that
the elements of all or some of these matrices are non-negative,
which is known to facilitate the detection of sparse, parts-like
modules35. This feature makes NMF attractive for trying to
capture subunits, which can be viewed as the constituent parts of
a receptive field. Intuitively, the modules derived by STNMF
should capture the subunit decomposition of the receptive field
because the spike-eliciting stimuli will have essential statistical
structure imprinted on them by the subunits, such as correlations
between pixel values, and the NMF method will make use of this
structure to efficiently reconstruct these stimuli.

Concretely, we here proceeded as follows. For each analyzed
ganglion cell, we extracted those 670-ms segments from the
white-noise stimulus that preceded a spike. The collection of these
spike-eliciting stimulus segments forms the spike-triggered
stimulus ensemble, akin to common reverse-correlation analyses.
For example, the average of all collected stimulus segments is the
spike-triggered average (STA; Fig. 1a), a commonly used estimate
of a cell’s spatiotemporal receptive field27. To focus our analysis on
the spatial structure of receptive fields, we collapsed each of the
spike-triggered stimulus segments along the temporal dimension.
We did so by computing an effective spike-triggered stimulus as
the weighted average over time, where the weights were taken
from the temporal profile of the cell’s STA (Supplementary Fig. 1).
Thus, the effective spike-triggered stimulus is a spatial pattern that
measures how well the contrast sequence at each pixel matched
the preferred temporal stimulus profile of the cell before a spike
occurred, which essentially is a measure of how strongly each pixel
was stimulated within this spike-triggered stimulus.

We then decomposed the ensemble of effective spike-triggered
stimuli into a set of modules and a set of weights by applying
semi-non-negative matrix factorization36 (semi-NMF; Fig. 1a), a
variant of NMF that is used here to implement the non-negativity
constraint only for the elements of the modules. The weights, on
the other hand, as well as the stimulus patterns were not
constrained. Stimuli, for example, were represented by their
contrast values, that is, by their relative deviations from mean
light intensity, which could be positive or negative. Semi-NMF
then seeks such weights and non-negative modules that minimize
the difference, in a least-squares sense, between the spike-
triggered stimuli and the reconstruction.

There is no analytical solution for the optimal modules and
weights under the non-negativity constraint. Instead, we here
used a numerical, iterative procedure (see Methods). Starting with
a set of modules that are initialized with random numbers, we
alternate between finding the best corresponding weights while
keeping the modules fixed (which amounts to solving a standard
least-squares problem) and optimizing the modules while keeping
the weights fixed (which requires a complex, yet numerically
tractable non-negative least-squares computation). In addition, to
mitigate the risk of getting stuck in local minima during this
iterative procedure, we periodically probe the effect of perturbing
the current set of modules and weights by randomly deleting,
duplicating, or splitting modules or adding noise (see Methods).
This procedure eventually yields a stationary solution where no
further improvements of modules and weights are found. The
obtained final modules then indeed show structures that conform
to the expectations for a layout of subunits. They are localized
patterns of similar size that cover the ganglion cell’s receptive field
in an orderly manner (Fig. 1a, b).

In the application of non-negative matrix factorization, the
number of considered modules must be specified before running
the optimization procedure. This might suggest that this number
needs to be individually optimized for each analyzed ganglion
cell. However, we found that this is not the case. Instead, we can
simply use a fixed number of modules, ideally somewhat larger
than the expected number of subunits. As illustrated by a sample
cell that was analyzed with 20 modules (Fig. 1b; see also
Supplementary Fig. 2a, b for additional examples), it turns out
that the method then yields modules of two types. Clearly, some
of the modules show the localized structure expected for subunits,
whereas the others look like noise. Indeed, when considering
each of the modules as a spatial stimulus filter and relating the
filter activation to the observed spiking activity in a histogram
manner (Fig. 1c, see Methods), we found that the localized
modules typically exert a strong effect on the cell’s activity. The
noise-like patterns, on the other hand, are largely uncorrelated
with the occurrence of spikes, showing that they capture the noise
in the spike-triggered ensemble. To quantify the effect of a
module on the spiking activity, we computed the difference
between the maximum and the minimum value in these
histograms and called this the output gain of the subunit.
Furthermore, we quantified how localized each of the obtained
modules was by computing a measure of the spatial autocorrela-
tion, called Moran’s I (see Methods). Thus, out of the set of
obtained modules, the relevant subunits could be extracted in an
automated manner according to their output gain and their level
of localization (Fig. 1d). All further analyses of this work
proceeded in this automated manner; STNMF was applied with
20 modules, and subunits were identified as those modules whose
spatial autocorrelation or output gain crossed certain thresholds
(see Methods).

As an aside, let us note that the computed output gain (Fig. 1d)
provides a weight of how relevant a given subunit is for activating
the ganglion cell. This can be interpreted as a measure of
connection strength of the subunit to the ganglion cell. The
relative weighting of the different subunits should be reflected in
how strongly they contribute to the receptive field. Indeed, we
found that the receptive field can be well fitted by the set of
obtained subunits and that the weights of the subunits in this fit
closely resembled their output gain values (Supplementary Fig. 2c, d).
The same structure of relative importance of the subunits is also
reflected in the average weights of the corresponding modules in
the non-negative matrix factorization (Fig. 1a). The fact that these
different measures of subunit contributions agree corroborates
their interpretation as a measure of connection strength to the
ganglion cell. This can be used, for example, to analyze the
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dependence of connection strength on the location of subunits
within the receptive field, showing that the average subunit
connection strength declined with distance from the receptive
field center (Supplementary Fig. 2e). The weights of subunits will
furthermore be important, as shown below, for combining the
subunit signals into predictive models of ganglion cell activity.

A standard extension of the STA analysis for the case where
multiple stimulus features are relevant is the method of spike-
triggered covariance (STC) analysis37, 38, which applies an
eigenvalue analysis of the covariance matrix of the spike-
triggered stimulus ensemble to detect relevant stimulus features.
For comparison with the STNMF method, we therefore applied
STC analysis to the ensemble of effective spike-triggered stimuli
(Supplementary Fig. 3). The results indicate that (1) the STC
analysis is more strongly impaired by the high dimensionality of
the investigated stimulus space, allowing no clear separation
between eigenvalues for relevant and non-relevant stimulus
features, and that (2) features extracted by the STC analysis are
not localized subunits, but rather correspond to a Fourier-like
decomposition of the receptive field. This underscores the

importance of the non-negativity constraint in the STNMF for
the extraction of localized subunits.

STNMF robustly recovers true subunits of model neurons. To
check whether the STNMF analysis can indeed recover a known
subunit layout, we tested the method on a simulated ganglion cell.
The model cell contained five subunits that each filtered the
incoming spatial stimulus patterns and then applied a threshold-
quadratic rectification, akin to spatial nonlinearities observed for
retinal ganglion cells17. The subunit signals were then summed by
the ganglion cell (Fig. 2a). We here chose a subunit layout that
contains considerable spatial overlap between the subunits, a
scenario that is particularly challenging for subunit identification.
Despite this overlap, we found that our approach faithfully
recovered the true subunits of the model (Fig. 2b).

A subunit model requires that the subunit signals be combined
in nonlinear manner; otherwise, the subunits would merge into a
single filter and well-defined subunits would not exist. Yet, the
exact shape of the subunit nonlinearity is not critical for subunit
extraction with the STNMF method; for example, the subunits of
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Fig. 2 Identification of overlapping subunits with STNMF for a model neuron. a Model structure. Stimuli are here spatial patterns of 16 × 16 pixels of
Gaussian white noise. The model contains five subunits, each covering a 4 × 4 region of the input space. The first four subunits tile the central 8 × 8 region
of the input space; the last subunit is located in the center of the input space, overlapping partly with each of the other four subunits. The filter output of
each subunit is transformed by a threshold-quadratic subunit nonlinearity before summation and application of a threshold-linear output nonlinearity with a
positive threshold at unity to make spiking sparse, like in the observed recordings. This yielded a spiking probability that was used to determine actual
spikes according to a Bernoulli process. b–d, STNMF analysis of simulated data, using 3500 spikes. STA as well as identified modules (b), nonlinearities
corresponding to the modules (c), and analysis of spatial autocorrelation vs. output gain (d) are shown like in Fig. 1b–d. The analysis faithfully recovered the
original subunits despite their spatial overlap
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the model were equally well identified when we replaced the
threshold-quadratic rectification by a symmetric quadratic
subunit nonlinearity (Supplementary Fig. 4). It is not surprising
that the symmetric nonlinearity does not impede subunit
identification because the subunits can contribute to the
decomposition of the effective spike-triggered stimulus ensemble
with either positive or negative weight (Fig. 1a). Note, though,
that the average NMF weight of a subunit will now average out to
near zero and therefore no longer provide a measure of
connection strength of the subunit.

Because our described procedure begins with applying a single
temporal filter to all spike-eliciting stimuli, one may wonder
whether the approach fails when temporal filtering differs
between the subunits. However, this is not the case as shown
by analysis of a spatiotemporal model where each subunit was
associated with a different temporal filter. This did not prevent
the method from recovering the true subunits (Supplementary
Fig. 5). The intuition behind this is that as long as there is some
overlap between the individual temporal subunit filters and the
temporal component of the cell’s STA, the effective spike-
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Fig. 3 Comparison of ganglion cell subunits and simultaneously recorded bipolar cell receptive fields. a Illustration of the experiment (left), where one
bipolar cell (B, red) is recorded with a sharp microelectrode, while multiple ganglion cells (G, blue) are simultaneously recorded with a multielectrode array.
b Sample staining of a bipolar cell that was imaged after the combined intracellular and multielectrode-array recording, displaying neurites both in the outer
plexiform layer (OPL) and inner plexiform layer (IPL). Scale bar, 10 µm. c Pixel-by-pixel representation of ganglion cell receptive fields, obtained as the
spatial component of the spike-triggered average under spatiotemporal white noise. The red ellipse here and in subsequent panels shows the receptive field
outline of the simultaneously recorded bipolar cell. d Outlines of identified subunits (blue ellipses). e Pixel-by-pixel representation of the best matching
identified subunit. f Pixel-by-pixel representation of the bipolar cell receptive field, obtained as the spatial component from the corresponding reverse
correlation analysis. Scale bar, 100 µm
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triggered stimuli will still reflect the spatial structure that is
imposed by the subunits.

How robust is the subunit identification with respect to noise
and to the amount of data available? To explore this, we first used
the model of Fig. 2 and varied either the level of noise or the
number of included spikes (Supplementary Fig. 6a–c). The
former was done by replacing a fraction of the simulated spikes,
chosen at random, with spikes at random times and the latter by
successively including more simulated spikes in the analysis. We
measured performance by computing the correlation between the
true model subunits and the corresponding reconstructed
modules. In addition, since the true subunits are characterized
by a high spatial autocorrelation, we also measured performance

by the average spatial correlation of the five most localized
modules. This measure has the advantage that it can also be
applied when the true subunits are not known. As expected,
reconstruction of the subunits deteriorated with increasing noise,
yet small levels of noise only had a relatively mild effect, and only
once about half the spikes had been replaced did performance
decline steeply. Similarly, the subunit reconstruction was fairly
robust with respect to spike number; here, performance leveled
off once about 1500 spikes were included. A similar qualitative
dependence of subunit reconstruction on noise and spike number
was observed in sample ganglion cells (Supplementary Fig. 6d–i),
indicating again a certain robustness to noise and good
reconstruction performance once several thousand spikes were
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Fig. 4 Using subunits to predict ganglion cell responses. a Illustration of model structures for the linear-nonlinear (LN) model (left) and the subunit model
(right). The subunit model takes each identified subunit as a spatial filter and then sums their outputs after rectification. Both models pass the obtained
filter signal through a final output nonlinearity to predict the cell’s firing rate. b Raster plots of measured spikes and simulations of the fitted models for a
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the subunit model compared to the LN model (p= 9 × 10−4; Wilcoxon signed-rank test) as well as compared to the shuffled subunit model (p= 1 × 10−5).
d Sample image used to measure responses to briefly flashed natural images and corresponding measured spike responses from a sample ganglion cell for
several stimulus repeats. The red ellipse shows the 3-sigma outline of the ganglion cell receptive field. The shaded region in the raster plot shows the
window over which spikes were counted. e Average spike counts (black line) and standard deviations (grey region) of the sample cell for each of the 300
images. f Comparison of rank-order correlations between predicted and measured responses for the different models. Each data point corresponds to a
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included in the analysis. Moreover, inspecting the modules
obtained under different levels of noise and spike numbers
suggests that, when the method starts failing, it does so by first
losing individual subunits while faithfully retaining other
subunits.

Detected subunits match bipolar cell receptive fields. Given the
reported role of bipolar cell inputs for nonlinear spatial integra-
tion by ganglion cells18–21, we hypothesized that the subunits
identified by the STNMF method from ganglion cell recordings
corresponded to individual presynaptic bipolar cells. To check
this hypothesis, we combined the multielectrode array recordings
with simultaneous recordings from individual bipolar cells
through sharp microelectrodes. Indeed, we often found that the
bipolar cell receptive field closely matched one of the subunits
from one or more ganglion cells (Fig. 3; see also Supplementary
Fig. 7 for more examples).

We quantitatively evaluated the match of bipolar cell receptive
fields and subunits by computing their overlap, defined as the
relative shared area (see Methods). From a total of 17 recorded
bipolar cells, we found 9 bipolar cells whose receptive field
displayed a close match with at least one ganglion cell subunit, as
shown by overlap values >0.5 and reaching up to 0.86. For other
recorded bipolar cells, we found no matching subunits (Supple-
mentary Fig. 7), consistent with the expectation that not all
ganglion cells will be connected to a given nearby bipolar cell
because of the multitude of bipolar and ganglion cell types.

To statistically evaluate these overlap values, we compared
them to maximal overlap values from surrogate data sets, which
we obtained by randomly rotating the receptive fields and
randomly permuting their center positions for all ganglion cells
whose receptive fields overlapped with a given bipolar cell (see
Methods). This procedure showed that the experimentally
observed maximal overlap values were significantly larger than
the maximal overlap values that should be encountered by chance
(p= 0.0068, Fisher’s combined probability test). Thus, the good
match of bipolar cell receptive fields and ganglion cell subunits
suggests that the subunits identified with the STNMF method
indeed correspond to the receptive fields of individual presynaptic
bipolar cells.

Subunit layouts help predict ganglion cell activity. Are the
STNMF-derived subunits relevant for understanding how the
ganglion cells respond to visual stimuli? We studied this question
by assessing the importance of the subunits for predicting the
ganglion cell response to novel stimuli. We first considered
“frozen-noise” sections from the spatiotemporal white-noise sti-
mulation that were repeatedly inserted into the stimulus
sequence. The frozen-noise sections were not used for estimating
the subunits and therefore provided a held-out test set. Temporal
filtering was again taken care of by convolving the stimulus
sequence of each pixel with the temporal component of the cell’s
STA, analogous to the computation of the effective spike-
triggered stimuli (Supplementary Fig. 1). We then compared a
standard linear-nonlinear (LN) model, where the spatial com-
ponent of the STA was used as a stimulus filter, to a subunit
model that contained multiple filters, corresponding to the
identified subunits (Fig. 4a). In the subunit model, the filter
outputs were rectified and then summed in a weighted manner.
The weights were determined by the linear combination of sub-
units that best matched the receptive field. This means that the
LN model and the subunit model gave approximately equal total
weight to each stimulus pixel. For both models, a subsequent
output nonlinearity, obtained from the non-repeated sections of

the white-noise stimulus, transformed the resulting signals into a
firing rate.

Compared to the LN model, we found that this simple
approach of incorporating the subunits could already substan-
tially improve the prediction of firing rates for the held-out
spatiotemporal white-noise segments, in particular when the LN
model itself performed poorly (Fig. 4b, c). Intuitively, the superior
performance of the subunit model results from the fact that pixel
values will often cancel out toward zero over the entire receptive
field, thus not allowing the LN model to predict spikes. Individual
subunits, on the other hand, may still be strongly activated,
leading to spiking responses both in the subunit model and in the
experimental data.

One might hypothesize that the superior performance of the
subunit model results primarily from inserting an intermediate
rectification and not from including the layout of localized
subunits. To test this hypothesis, we also set up a shuffled subunit
model. The shuffled subunit model was obtained by taking the
subunits of the subunit model and randomly permuting the pixel
values at each spatial location across the subunits. Otherwise, the
shuffled subunit model was treated and evaluated in the same way
as the actual subunit model. Comparing performance of these two
models showed that shuffling the subunits leads to substantially
worse response predictions (Fig. 4c, right), indicating that, beyond
the rectification before spatial summation, the actual subunit
layout is important for response predictions under white-noise
stimulation.

To evaluate whether the subunit layout is also important for
predicting responses to natural stimuli, we measured ganglion cell
responses to briefly flashed natural photographs (Fig. 4d, e) and
compared these to model predictions. We only considered the
average spike count elicited by each image and could therefore
omit temporal stimulus integration here. We furthermore
dispensed with the output nonlinearities for this analysis and
only aimed at predicting the rank order of the 300 applied images.
This made the model comparison independent of how well the
final output nonlinearity captures the neuronal sensitivity in this
specific stimulus context. Thus, the only model parameters here
were the receptive field for the LN model and the set of subunits
for the subunit model, which were all obtained from the
spatiotemporal white-noise experiments. Similar to the results
under white-noise stimulation, we found that the subunit model
clearly and systematically outperformed both the LN model as
well as the shuffled subunit model (Fig. 4f), demonstrating the
importance of the subunit layout for capturing the encoding of
natural stimuli. Likewise, we found that the subunit model was
also superior in capturing more subtle differences between
images; it predicted response differences for slightly shifted
presentations of the same natural images much better than the
considered alternatives (Supplementary Fig. 8).

While these analyses showed that knowledge about the
subunits can improve response predictions over the simple LN
model, there is apparently still room for improvement, in
particular, through optimizing the subunit nonlinearities and
including feedback dynamics both on the level of subunits and on
the global level after subunit integration. We here did not pursue
these options further because our primary goal in this work was
to investigate the potential of the STNMF method to extract
subunits that are interpretable in terms of actual circuit elements.
Yet, to check how the effect of including subunits relates to
current state-of-the-art approaches in analyzing nonlinear
stimulus integration, we compared our results to the Nonlinear
Input Model (NIM), which extends the Generalized Linear Model
framework to include subunit-like nonlinear stimulus integra-
tion28. In order to allow for a direct comparison with our subunit
model and to cope with the high dimensionality of our stimulus
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space, we here used a reduced version of the NIM, with time
integrated out like for the STNMF approach and no dependence
of spiking probability on previous spikes. For this reduced NIM,
we found that the obtained filters, unlike the subunits of the
STNMF method, were not localized in space and that the
response predictions for held-out white noise segments did not
improve over the STNMF-derived subunit model (Supplementary
Fig. 9). Clearly, we have not explored the full potential of the NIM
here, but the comparison at least indicates that subunits obtained
by STNMF provide a competitive spatial layout for developing
generative models of ganglion cell spiking.

Identification of shared input to different ganglion cells. The
STNMF analysis does not require adjusting stimuli for the ana-
lysis of individual cells. We can therefore obtain subunits from
many ganglion cells recorded simultaneously under spatio-
temporal white-noise stimulation and compare the layout of
identified subunits for cells with overlapping receptive fields. This

provides for the possibility to check whether ganglion cells of
different identified functional types have matching subunit lay-
outs, which would indicate that they share presynaptic inputs
from the same bipolar cells. In our recordings from the sala-
mander retina, two classes of ganglion cells could be readily
identified (see Methods). Fast Off cells were characterized by their
relatively small receptive fields, fast temporal filters and stereo-
typic spike autocorrelation, and their receptive fields were found
to tile the retina (Fig. 5a). Direction-selective (DS) ganglion cells
were detected by their directional tuning for drifting gratings (see
Methods), though the class of DS cells may contain DS cells of
two different types39.

The STNMF method allowed subunit identification in a high-
throughput manner for each cell in these large populations,
providing a dense map of bipolar cell inputs to fast Off cells
(Fig. 5b), with about 8–10 identified subunits per cell (Fig. 5c).
For both fast Off and DS cells, the sizes of identified subunits
were densely clustered around 100 µm diameter (Fig. 5d). This
matches previous measurements of bipolar cell receptive field
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Fig. 5 Analyzing subunit overlap for ganglion cell populations. a Layout of receptive fields of fast Off ganglion cells from a single recording. Scale bar, 300
µm. Inset shows the collection of temporal filters (670ms long) for the fast Off cells. b Layout of reconstructed subunits for the collection of cells shown in
a. c Histograms of the numbers of subunits per cell for fast Off and direction-selective (DS) ganglion cells from the experiment shown in a.
d Histograms of the diameters of receptive fields (black) and subunits (red). e Examples and distributions of overlapping subunits among fast Off cells (left),
DS cells (center), and pairs of fast Off and DS cells (right). Scale bar, 300 µm. f Distributions of relative overlap for pairs of subunits from different ganglion
cell classes (black bars), collected from five retinas (110 fast Off cells, 40 DS cells). Subunit pairs with zero overlap were excluded. For comparison,
distributions of chance overlaps, obtained by shuffling the receptive field center positions within each ganglion cell class, are shown in green (shaded region
corresponding to one standard deviation, obtained from repeated shuffling). All actual overlap distributions show an excess of well matching subunits
(relative overlap larger than about 0.5) as compared to chance, indicating that ganglion cells within as well as across the two ganglion cell classes share
input from the same bipolar cells
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sizes in the salamander retina40, which had yielded diameters in
the range of 50–150 µm, and is also comparable to typical
salamander bipolar cell dendritic field sizes41.

The dense sampling of analyzed ganglion cells allowed us to
investigate the relative positioning of subunits for pairs of
ganglion cells within and across the two cell classes. For pairs of
both fast Off and DS cells as well as for mixed pairs, we found
that the cells can display subsets of closely matching subunits
(Fig. 5e). In order to analyze whether these matches indicate a
systematic structure of the subunit inputs to multiple ganglion
cells or whether they could simply be chance occurrences, we
evaluated the overlap between all pairs of subunits from different
ganglion cells in the same recordings. To do so, we computed the
relative overlap of a subunit pair as the ratio between the shared
area and the total area covered by the 1.5-sigma contours of the
subunits. We then compiled these values into histograms (Fig. 5f;
leaving out subunit pairs with no overlap at all) and compared
them to overlap distributions from randomized subunit layouts.
The latter were obtained by repeatedly permuting the spatial
positions of the ganglion cells at random, that is, for each
ganglion cell, we spatially translated the subunit layout so that the
receptive field center position of that cell was shifted to the
receptive field center position of a randomly chosen ganglion cell
of the same class in the same recording. This showed that the true
ganglion cell layout yielded many more pairs of subunits with a
large relative overlap than the randomly permuted ganglion cell
layouts. Note that large subunit overlaps by chance were rare; the
distributions obtained from the random permutations rapidly
approached zero for increasing overlap values. Each of the actual
overlap distributions, on the other hand, contained many pairs of
subunits with overlap values >0.5, corresponding to several times
the number of subunit pairs expected from chance (fast Off vs.
fast Off: 69 actual pairs vs. 25± 5, mean± SD, in the shuffle data;
DS vs. DS: 6 vs. 1± 1; fast Off vs. DS: 49 vs. 11± 4). Thus, the
STNMF-derived subunits capture the systematic sharing of
bipolar cell inputs by ganglion cells of the same type as well as
across the two analyzed classes of ganglion cells. Furthermore, it
is noteworthy that the strongly overlapping subunits of different
ganglion cells were recovered from independent sets of spikes,
providing further evidence that the identified subunits indeed
correspond to specific circuit elements, namely presynaptic
bipolar cells.

Discussion
We here demonstrated that STNMF can reveal the subunit
structure of receptive fields (Figs. 1 and 2). An appealing aspect of
the method is that the subunits naturally emerge from the ana-
lysis—much like the receptive field emerges from an STA analysis
—without the need to guess a specific model structure that may
be constrained in terms of subunit shape or subunit nonlinearity
or that may require identical subunits arranged in an orderly
layout. Moreover, we showed that the identified subunits match
actual circuit elements, the receptive fields of presynaptic bipolar
cells (Fig. 3). Thus STNMF provides a way to link structure and
function in the neural circuit, for example, by using the inferred
subunit layout as a basis for improved models of sensory
encoding (Fig. 4). Finally, application of the method only requires
recorded spike times under high-resolution white-noise stimula-
tion and is therefore applicable to high-throughput analyses of
populations of simultaneously recorded cells (Fig. 5), providing
insight into the divergence and convergence of sensory infor-
mation between subsequent processing layers.

Regarding bipolar-to-ganglion cell connectivity, previous stu-
dies, based on current injections into bipolar cells42 as well as
anatomy-based circuit reconstructions43, had suggested

considerable diversity in the connectivity matrix between bipolar
and ganglion cells. Here, on the other hand, the identified orderly
sets of subunits within ganglion cell receptive fields suggest a
rather high degree of specificity in the functional connectivity of
individual ganglion cells. It seems likely that the identified sub-
units correspond to primary bipolar cell connections, which
provide the major excitatory input under the applied stimulus,
but that there may also be secondary connections, including
polysynaptic connections42, with other bipolar cells, which may
have more modulatory effects or are invoked in other stimulus
contexts. Furthermore, the functionally rather different types of
fast Off and DS cells in the salamander retina appear to share
inputs from the same bipolar cells. That such input sharing exists
should be expected simply because of the larger number of
ganglion cell types compared to bipolar cell types. Indeed, similar
sharing was seen in anatomical investigations of mouse retina,
with DS cells strongly connecting to the same bipolar cells as local
edge detectors43. Analyses of subunit sharing as presented here
complement these connectivity studies by identifying common
input from a functional perspective.

How does STNMF work? Essentially, the method detects cor-
relation patterns in the set of spike-eliciting stimuli. Stimulus
pixels within a subunit can more easily cancel each other’s effect
on the activation of the ganglion cell than pixels from different
subunits, and their contrast values will therefore be more strongly
correlated for spike-eliciting stimuli to avoid this cancellation.
These correlations are extracted and used by the NMF to find a
basis for representing the spike-eliciting stimuli. Thus, the
method, as introduced here, is restricted to stimuli with white-
noise statistics because correlated stimuli would bias the NMF to
represent these prior stimulus correlations. Also, this shows that
the nonlinear integration of subunit signals is essential because
this nonlinearity creates the differences in the pixel correlations.
Thus, the method would fail for cells with purely linear stimulus
integration, and stronger nonlinearities (typically stronger recti-
fication) will facilitate the subunit detection. Note also that the
non-negativity constraint on the modules prevents the method
from identifying opposing contrast preference within the same
subunit. Thus, the identified subunits may be thought of as
receptive field centers of bipolar cells, but any bipolar cell
receptive field surround would not be detected. A further lim-
itation is the dependence on sufficient amounts of data. We here
generally aimed for recording several thousands of spikes under
the white-noise stimulation to have enough statistics in the spike-
triggered ensemble. A typical effect of insufficient data is the
failure to detect all subunits so that parts of the receptive field
remain uncovered by subunits. Owing to the data demand,
potential future extensions of the method that may aim at ana-
lyzing full spatiotemporal subunits need to find ways to handle
the resulting higher stimulus dimensionality. This may be facili-
tated by combining NMF with a factorization into sets of purely
spatial and purely temporal modules, an approach that has
recently been developed for decomposing neuronal population
activity44.

We tested the STNMF method on ganglion cell recordings
from salamander retina, a system that allowed us to compare the
extracted subunits with simultaneously recorded bipolar cell
receptive fields. Yet, the method should also work similarly for
mammalian retinas. In fact, we found in a proof-of-principle
manner that application of STNMF to ganglion cell recordings
from mouse retina also yields orderly layouts of localized subunits
(Supplementary Fig. 10).

Moreover, nonlinear pooling of presynaptic signals is ubiqui-
tous in sensory systems, and identifying underlying subunit
structures is a common goal not only for the retina20, 21, 29, 34, but
also for thalamus28, primary visual cortex10–13, higher visual
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cortex areas14–16, and the auditory system28, 45. The STNMF
method should be readily applicable to these different systems, as
it does not require specific assumptions about the nonlinear
interactions between subunits and does not rely on concomitant
acquisition of anatomical information20, 46. Note that the spatial
stimulus dimension that was analyzed here could be replaced by
other stimulus coordinates, along which neurons might be
organized, such as spectral components of auditory stimuli.

Future applications of the STNMF method may lie in investi-
gating neural coding as well as in analyzing neural circuits. For
example, subunit models enhanced by further features, such as
optimized subunit nonlinearities, inhibitory interactions, and/or
adaptation or feedback dynamics both before and after spatial
summation should provide a promising basis for the difficult task
of modeling responses to general, natural stimuli26. Using
STNMF as a designated tool to first obtain the subunit layout
with subsequent investigations of additional model features will
facilitate parameter estimation for such enhanced models. For
example, a previous exploration of a retinal subunit model with
temporal filtering and feedback30, which applied a global opti-
mization approach for all model parameters, had to restrain the
parameter space by enforcing identical shapes of subunits and
restricting the analysis to a single spatial dimension by applying a
stripe-like stimulus layout. Prior identification of subunits by
STNMF may considerably reduce the numbers of parameters in a
subsequent model fit. Moreover, when subunit identification is
performed in an online fashion during an experiment, probe
stimuli could directly be targeted at individual subunits in order
to examine local nonlinearities20, 29 as well as local adaptation
features47, 48.

Similar analyses might also be applied when a retina is not
stimulated via its photoreceptors, but through optogenetic con-
structs inserted into bipolar cells49–51, which is currently con-
sidered as a promising approach for vision restoration therapy
when photoreceptors have degenerated. Subunit identification in
such therapeutic models should aid analyses of how the optoge-
netic stimulation is processed by the retina and how it might be
optimized to activate ganglion cells. Finally, large-scale recordings
from the retina may allow functional identification of a large set
of different ganglion cell types52, providing a basis for large-scale
analyses of functional connectivity, complementing high-
resolution measurements of receptive fields53 as well as
anatomy-based identification of connection patterns43, 54.

Methods
Electrophysiology. Recordings were made in isolated retinas obtained from axolotl
salamanders (Ambystoma mexicanum; pigmented wild type) of either sex. All
experimental procedures conformed with institutional guidelines of the University
Medical Center Göttingen. Multielectrode array (MEA) recordings of ganglion cell
spiking activity were obtained as described previously55. In brief, animals were
killed after about 30 min dark adaptation, and both eyes were enucleated and
hemisected to isolate the retina. The retina was placed onto a 252-channel MEA in
a recording chamber and superfused with oxygenated Ringer’s solution at room
temperature (around 22 °C). A transparent dialysis membrane stretched across a
plastic holder was placed on top of the retina to hold it in place during the
recording. We also performed MEA recordings with retinas from adult wild-type
mice (C57BL/6, 7–12 weeks old) of either sex as described previously56. Here,
retinas were superfused with oxygenated Ames’ medium, buffered with 22 mM
NaHCO3, heated to a constant temperature around 33–34 °C, and held in place by
a coating of poly-D-lysine on the array. Spikes were extracted by custom-made
software, based on a Gaussian mixture model and an expectation-maximization
algorithm57. Only well-sorted units with clear refractory period were used for
further analysis.

Combined recordings of ganglion cells and bipolar cells from salamander retina
were obtained by placing the retina onto a 60-channel perforated MEA58. The
perforated MEAs contain small holes in between the electrodes, so that slight
suction applied underneath the array held the retina tightly in place while allowing
unrestricted access to the tissue with sharp microelectrodes from the top. Sharp
microelectrodes, tip-filled with 4% Neurobiotin, dissolved in 0.1 M Tris buffer, and
backfilled with 3 M KCl solution with impedance in the range of 100–300MΩ,

were inserted blindly into retinal cells. By monitoring through a 60× objective, the
microelectrode was positioned at the photoreceptor surface of the retina roughly
above a selected MEA recording site, which was chosen according to the observed
ganglion cell spiking activity to maximize chances of recording pairs of bipolar and
ganglion cells with overlapping receptive fields. The microelectrode was then
inserted into the retina and advanced until a cell was impaled while monitoring the
depth of the electrode tip in the tissue. After the recording, Neurobiotin was
injected into the intracellularly recorded cell with current pulses (alternating blocks
of several seconds of 1 Hz positive or negative pulses). The retina was fixated with
4% paraformaldehyde, processed further with Alexa Fluor 488 Streptavidin, and
imaged under a confocal microscope to visualize the Neurobiotin-filled cell. Two-
dimensional images were obtained by a maximum projection in the x–z plane. To
reduce blur, we applied the blind-deconvolution algorithm in Matlab
(deconvblind), using an estimate of the point-spread function obtained by imaging
fluorescent beads.

When cell staining and imaging were successful, the cell morphology was used
to confirm that the intracellularly recorded cell was indeed a bipolar cell.
Occasionally encountered amacrine cells were discarded for the present analysis. In
some experiments, morphological reconstruction failed because the recorded cell
was lost before dye injection or because the retina could not be removed from the
perforated MEA in an intact manner58. We then used additional criteria to identify
bipolar cells. Bipolar cells were distinguished from photoreceptors by recording
depth, by the receptive field size, and by the characteristic light responses of
photoreceptors. Intracellularly recorded cells that were morphologically verified as
photoreceptors showed stereotypical response traces to positive and negative
contrast steps and receptive field sizes of 10–20 µm diameter. In some recordings,
we also applied the AMPA/kainate antagonist CNQX at the end of the experiment
to check that light responses were lost for putative Off-type bipolar cells, whereas
photoreceptor light responses were insensitive to CNQX. To distinguish bipolar
cells from amacrine cells, we applied depolarizing and hyperpolarizing current
pulses into the recorded cell (50–500 pA, 500 ms duration, 2 s intervals) and
checked that a robust activation of ganglion cells to positive current injection was
observed59.

Visual stimulation. Visual stimuli were controlled by custom-made software,
written in C+ + and using the OpenGL library, and displayed on a gamma-cor-
rected, monochromatic white OLED monitor (800 × 600 pixels, 60 Hz refresh rate).
The monitor was projected onto the photoreceptor layer either through a tele-
centric lens above the retina (252-electrode MEA recordings, pixel size 7.5 × 7.5 µm
on the retina) or through the objective of an upright microscope with a
beamsplitter inserted into the light path (combined bipolar cell and MEA
recordings, pixel size 2.5 × 2.5 µm on the retina).

We optically stimulated the retina with spatiotemporal white noise, temporally
updated at a rate of 30 Hz and spatially arranged in a checkerboard layout with
stimulus pixels of 30 × 30 µm. For some bipolar cell recordings, the stimulus update
rate was reduced to 10 or 15 Hz. The light intensity of each square was chosen
independently from a binary distribution with 100% contrast and a mean light level
of about 2.5 mWm−2. In all analyses, stimuli were represented by their contrast
values, so that the stimulus values for the bright and dark squares were +1 and −1,
respectively. Typical recording durations with this stimulus were 60–180 min for
standard MEA recordings and 60 min for combined bipolar/MEA recordings. For
bipolar cell recordings, we also applied 10 min of stimulation with spatiotemporal
white noise of 10 × 10 µm pixel size to evaluate receptive field size for small cells
and distinguish bipolar cells from photoreceptors.

To stimulate the retina with natural images, we selected a set of 300 natural
photographs from the McGill Calibrated Colour Image Database60, displaying a
wide range of natural scenes. Each image had a spatial resolution of 256 × 256
pixels, covering a total area of 1920 × 1920 µm on the retina. The provided RGB-
color values for each image were converted into greyscale by a weighted average of
the three color channels with R:G:B= 30:59:11. Mean and standard deviation of the
pixel values were normalized for each image by appropriately shifting and scaling
the values so that the mean pixel intensity was equal to that of the spatiotemporal
white noise, and the standard deviation was 50% of the mean intensity. Pixel values
that then deviated from the mean by more than 100% in either direction were
clipped to ensure that the maximal pixel values were within the physically available
range of the display. To minimize the artefacts induced by this clipping, we selected
images that had only few clipped pixels (not more than 0.1% of the pixels). Images
were presented individually for 200 ms each in a pseudo-random sequence, with an
inter-stimulus-interval of 800 ms, during which uniform illumination at the mean
intensity was presented. For data analysis, we counted the number of spikes for
each ganglion cell over a 300-ms window following stimulus onset.

For experiments with shifted natural images, we further selected 10 images from
the set of 300 images. Each image was presented with nine different center
positions, arranged on a 3 × 3 square grid, with 90 µm between adjacent positions.
Stimulation with the resulting 90 images and assessment of responses then
occurred in the same way as for the set of 300 different natural images.

Receptive field analysis. From the response to the spatiotemporal white-noise
stimulus, we computed the STA for each recorded ganglion cell27, taking into
account stimulus sequences of 670 ms before each spike. We then decomposed the
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STA into a temporal filter and a spatial receptive field through singular-value
decomposition61, using the top-rank temporal and spatial components of the
decomposition. Both temporal filter and receptive field were normalized to unit
Euclidean norm so that the sum of squares of the filter elements equaled unity for
both components. Receptive field sizes were estimated by fitting a two-dimensional
Gaussian function to the spatial receptive field and determining the effective dia-
meter d ¼ ffiffiffiffiffiffiffiffiffi

a � bp
, where a and b are the major and minor axis of the 1.5-sigma

contour of the fitted Gaussian.
For bipolar cells, the same approach was used, except that the STA was replaced

by the reverse correlation of the stimulus with the measured membrane potential.
Specifically, we temporally binned the recorded membrane potential at the same
rate as the stimulus update rate by computing the average potential over each bin.
We then subtracted the mean from this sequence of membrane potentials and used
the resulting values as weights for the preceding stimulus sequences. The weighted
sum of the stimulus sequences then provided the spatiotemporal receptive field of
the bipolar cell.

Cell-type classification. We detected DS ganglion cells by analyzing the responses
to drifting square-wave gratings (100% contrast, 600 µm spatial period, 450 µm s−1

velocity) moving in eight different directions for 6.67 s each, with the entire
sequence repeated five times. From the average firing rate rθ for each direction θ
(leaving out the first 1.33 s after stimulus onset), we computed a direction-
selectivity index (DSI) as the normalized vector sum, DSI ¼ P

θ rθ e
iθ

�� ��=
P

θ rθ .
Note that the definition of the DSI via the vector sum differs from the often applied
measure that uses the response difference between preferred and null direction. We
then determined DS cells as cells with a significantly large DSI and at least DSI>
0.25. Significance was here established by repeatedly shuffling the firing rates over
all angles and trials 10,000 times for a given cell to obtain the distribution of DSI
values under the null hypothesis that the firing rates are independent of the motion
direction. A cell for which the DSI was larger than 95% of the DSI values obtained
from the corresponding shuffled data was considered significantly direction
selective.

Note that two types of DS ganglion cells have recently been found in the
salamander retina39, “standard DS cells” and “OMS-DS cells”. The latter are
characterized by their small receptive fields and by also being object-motion-
sensitive (OMS), that is, their responses are (partly) suppressed under global
motion4. We here did not distinguish between these two types of DS cells, yet we
generally find considerably more standard DS cells than OMS-DS cells in our
recordings39, and the fairly large receptive field sizes of the DS cells in the present
data (364± 73 µm, mean± SD) also indicate that most of the analyzed DS cells are
of the standard DS cell type.

Fast Off cells were identified by performing a cluster analysis of simultaneously
recorded ganglion cells. To obtain the parameters for the cluster analysis, we
performed principal component analysis on the set of all temporal filters as well as
on all spike-train autocorrelation functions. The latter were obtained also under
spatiotemporal white noise, with a maximal lag of 60 ms and binned at 2-ms
resolution. Each cell was then described by four parameters, its receptive field size,
the projections of its temporal filter on the first two principal components of all
temporal filters, and the projection of its autocorrelation function on the first
principal component of all autocorrelation functions. The variance of each
parameter was normalized to unity. In this four-dimensional space, we performed
spectral clustering62, 63 (details below) with typically around K= 10 clusters. We
then identified fast Off cells as the elements of one of the clusters, which was
characterized by always being strongly populated as well as by displaying the
shortest peak times of the temporal filters, relatively small receptive fields, and a
peak in the spike-train autocorrelation at about 10 ms. When there was either
apparent contamination of the fast Off cell cluster (identified by variability in the
cell parameters and violations of tiling) or if fast Off cells were distributed over two
or more clusters (identified by clusters with similar cell parameters and
complementary tiling), cells were re-clustered with an adjusted value K for the
number of clusters. Note that the aim of the cluster analysis was not to determine
the number or identity of all cell types, but simply to extract the single type of fast
Off cells.

To perform the spectral clustering, we defined an adjacency matrix A, whose
elements Aij ¼ exp � Xi � Xj

�� ��2=σ2
� �

capture the pairwise Gaussian similarity
between cells i and j, where Xi and Xj are the four-dimensional vectors of the two
cells’ parameters and σ is a scale parameter. We then computed the normalized
graph Laplacian matrix62 L =D−1/2AD−1/2, where D is the diagonal matrix with
Dii ¼

P
j Aij , and extracted those K eigenvectors of L that had the largest

eigenvalues. In the space that is spanned by these eigenvectors, clustering of data
points that are connected by large similarity values is typically simpler than in the
original parameter space62, 63, and we applied k-means clustering to obtain the final
set of K clusters. To optimize the scale parameter σ for each recording, we used the
suggested procedure62 of performing the clustering for a range of σ-values (here
from 0.1 to 1.0 in steps of 0.005) and selecting the one that yielded the most
compact clusters, corresponding to minimal total within-cluster distances of the
normalized representations of the Xi in the space extracted by the eigenvector
analysis.

Fast Off cells represented by far the largest homogeneous class of cells in our
recordings (comprising up to half of the cells in some recordings). They were also

the only class obtained from the clustering for which we observed receptive field
tiling, consistent with previous classification analyses of ganglion cells in the
salamander retina64, 65, where these cells are referred to as “biphasic Off cells”.
Thus, the present lack of a solid, reliable classification scheme for other ganglion
cell types in the salamander retina led us to focus our cell-type analyses on the fast
Off and DS cells.

Spike-triggered non-negative matrix factorization. For each recorded ganglion
cell, we extracted the effective spike-triggered stimulus ensemble from the
responses to the spatiotemporal white-noise stimulation in the following way. For
each of the Nspikes recorded spikes, we took the preceding 670-ms stimulus
sequence and computed a weighted average over time by using the cell’s temporal
filter as a weight function. Concretely, we regarded the 670-ms stimulus sequence
(20 stimulus frames) of contrast values for each pixel as a vector (with values of +1
and −1 corresponding to dark and bright illumination of the pixel, respectively)
and computed the scalar product with the corresponding vector from the 670-ms-
long temporal filter. Doing this for every pixel yields an effective spatial pattern
where each pixel value, which can be positive or negative, measures how well the
contrast sequence at the corresponding pixel matched the preferred temporal
contrast sequence of the cell. To reduce the analyzed spatial region to the neigh-
borhood of the cell’s receptive field, we then only considered the minimal rec-
tangular region in space that fully contained the three-sigma contour of the fitted
Gaussian function.

The spike-triggered stimuli form a matrix S= (sij), where the index i= 1…
Nspikes counts over all spikes and the index j= 1…Npixels enumerates all stimulus
pixels of the considered rectangular analysis window. We then apply semi-non-
negative matrix factorization36 to the matrix S, which aims at identifying a
decomposition W ⋅ M that best approximates S under the constraint that the
elements of the matrix M are all non-negative. Here, M is a Nmodules ×Npixels

matrix, whose rows contain the modules of the decomposition, andW is a Nspikes ×
Nmodules matrix, which contains the weights of each module for each spike-
triggered stimulus. Placing a non-negativity constraint only on M allows negative
components in S and W so that stimuli can be represented by the positive or
negative deviations from the mean light intensity (contrast), which here is the
relevant parameter for driving the spiking activity.

In principle, there may be transformations of W and M (for example, linear
scaling) that keep W ⋅ M fixed and do not affect the non-negativity constraint,
which would lead to multiple equivalent decompositions. To reduce the problem of
non-unique solutions, we enforced a normalization of the matrix W by
constraining each column of W to have unit Euclidean norm, and we applied a
common sparsity constraint on the columns ofM66, 67. Together, we thus sought to
minimize, under the non-negativity constraint on M and the normalization
constraint on W, the objective function

S�W �Mk k2Fþλ
XNpixels

i¼1

Mik k21;

where theMi are the columns ofM, �k kF is the Frobenius matrix norm, �k k1 is the
l1-norm, and λ is a sparseness parameter, which was set to λ= 0.1 to obtain a
reasonable trade-off between sparseness and reconstruction error.

Solutions for this minimization problem can be found iteratively by alternating
between optimizing W while keeping M fixed and vice versa. To start the
algorithm, the elements of M were initialized with random numbers, drawn
uniformly between zero and unity. The optimization of W is a conventional least-
squares problem, which can be solved analytically by multiplying S with the
pseudoinverse of M. This is followed by a normalization of each column of W to
unit Euclidean norm. The subsequent optimization of M, on the other hand,
requires the numerical solution of a non-negative least-squares (NNLS) problem.
Fortunately, there are computationally efficient algorithms available68, 69 that solve
the NNLS problem iteratively by systematically probing the space of potential
solutions along the boundaries that are defined by the non-negativity constraint
(active set method). We here based our implementation of the alternating
optimization of W and M on the non-negative matrix factorization Matlab toolbox
by Li and Ngom70.

The alternating optimization of the decomposition is known to rapidly
converge to a stationary point where additional iterations do not further change the
decomposition matrices68. However, there is no guarantee that the obtained
stationary point is optimal, that is, that it reflects a global minimum of the objective
function. To reduce the impact of local minima of the objective function, we
performed the following procedure: We ran the algorithm for a number of
iterations, Niter, and then defined the resulting matrix M as the current best
solution Mbest and assessed its performance by the residual of the reconstruction of
S. We then inserted a perturbation of Mbest (explained below) to obtain a new
matrix M, which was used as the starting condition for another Niter iterations. If,
after these iterations, the newly resulting M provided an improvement in terms of
the residual over Mbest, Mbest was updated to this new solution; otherwise the
previous Niter iterations and the perturbation were discarded. Then a new
perturbation of the current Mbest was applied, and the process was repeated for a
total of Npert perturbations. In addition, we repeated the entire procedure 100 times
with different random initializations of M, and the solution with the smallest
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residual was selected. We found that, typically, many of the obtained 100 solutions
had similarly small residuals and looked very similar or virtually identical,
indicating that the chosen procedure successfully avoided erroneous solutions from
local minima.

To perform a perturbation of the current best solution, we first identified
putative localized subunits by computing for every module (that is, for every row of
the matrix Mbest) a measure of the spatial autocorrelation, called Moran’s I (see
below), and selecting those modules with an autocorrelation value larger than a
threshold value of 0.25. We then randomly selected one of the following
manipulations, where “noise” always refers to random numbers, drawn uniformly
between zero and unity: (1) replacing one randomly selected putative subunit by
noise, (2) replacing one randomly selected non-localized module by a duplicate of a
randomly selected putative subunit and then adding noise to both copies of the
putative subunit, (3) splitting one randomly selected putative subunit into two
halves, either vertically or horizontally, with the split occurring next to the pixel
with the maximal value of the subunit, and substituting these two new modules for
the original putative subunit and a randomly selected non-localized subunit, (4)
reinitializing all non-localized modules with noise.

Inserting these perturbations was a crucial ingredient in avoiding local minima
of the objective function and obtaining robust solutions. The concrete set of
perturbations was chosen heuristically. For applying the STNMF method to
different types of data, other types of perturbations may be useful for speeding up
the method or for improving robustness. Similarly, the number of considered
modules Nmodules, the number of iterations Niter between perturbations, and the
total number of performed perturbations Npert are parameters that are likely
important for adjusting the method to the specifics of the data at hand, such as the
dimensionality of the investigated stimulus space, the expected number of subunits,
and the available amount of data. For the present analysis of salamander retinal
ganglion cells, we applied Nmodules= 20, Niter= 20, and Npert= 50, which we found
to yield robust results in reasonable computation time. For analyzing data from
simulated subunit models, we increased both Niter and Npert to 100, but only used a
single run of the algorithm.

Evaluation of subunits. To identify subunits from the solution found for the
module matrixM, we evaluated the localization of each module m (given by each of
the rows of M, so that for the kth module m, the elements are given as mi=Mki) as
well as its relation to the spiking activity of the neuron. The elements mi, i= 1,…,
Npixels, of each m correspond to different spatial locations within the analyzed
region and can also be viewed as organized in a two-dimensional Nx ×Ny layout

with Nx ⋅ Ny=Npixels. The spatial autocorrelation of each m was calculated as

Moran’s I, defined as: I ¼ NpixelsP
i

P
j
wij

P
i

P
j
wij mi�mð Þ mj�mð ÞP

i
mi�mð Þ2 , where m is the mean of

the elements of m and the wij are weights that equal unity whenever the spatial
location of mi is adjacent to that of mj and zero otherwise. Values of I near zero are
found for random distributions over space; localized modules generate values of
I larger than zero and bounded by unity.

To relate the modules to the cell’s spiking activity, we interpreted each module
as a spatial filter and then computed the nonlinearity that relates the activation of
this filter to the evoked spike rate, that is, the average number of spikes elicited
during the corresponding time bin of the response. To do so, the spatiotemporal
white-noise stimulus was again first convolved with the cell’s temporal filter. The
resulting sequence of spatial stimuli was then filtered by computing the scalar
product of the stimulus with the module to obtain a filter output. The filter output
was binned into 40 bins in a way so that each bin contained the same number of
data points in order to build a histogram of the dependence of the spike rate on the
filter output. We displayed the nonlinearity by plotting the average filter output
against the corresponding average spike rate for each bin. Finally, we quantified the
relation between filter activation and evoked response by computing a gain value
from this nonlinearity, which we defined as the difference between the maximal
and the minimal spike rate in this histogram. To evaluate the gain of a module
independently of the overall excitability of the cell, we also computed in the same
way the gain for the spatial receptive field of the cell, obtained from the STA. The
ratio of the module gain to the receptive field gain gave us the module’s normalized
gain.

To automatically detect subunits from among the obtained modules, we applied
criteria for both the spatial autocorrelation and the gain of the module. Specifically,
we here defined subunits as those modules that had a Moran’s I of at least 0.25 or a
normalized gain of at least 0.3.

Analysis of bipolar cell-subunit overlap. Identified ganglion cell subunits were
compared to bipolar cell receptive fields based on the simultaneous recordings of
ganglion cells and bipolar cells. We here recorded a total of 20 bipolar cells, three of
which were excluded from further analysis because their receptive fields overlapped
with two or fewer recorded ganglion cell receptive fields.

To quantify how well the identified ganglion cell subunits matched the receptive
field of a simultaneously recorded bipolar cell (Fig. 3), we compared their contours
as obtained from the 1.5-sigma outlines of the fitted 2D Gaussians. We compared
the area that was shared within the contours of the bipolar cell and of a subunit,
Ashared, to the total area enclosed by the contours, which is given by Atotal=ABC +
Asubunit − Ashared, where ABC and Asubunit are the areas of the bipolar cell receptive

field and of the subunit, respectively. The overlap was then computed as the ratio
Ashared/Atotal. The overlap yields values between zero and unity.

To test whether the encountered overlap values could arise by chance, we
obtained the maximal overlap value for each bipolar cell recording and compared
the set of these maximal overlap values from the actual data to maximal overlap
values from surrogate data. Since the different bipolar cell recordings provided
different numbers of recorded ganglion cells with overlapping receptive fields, we
first assessed each bipolar cell recording separately by constructing separate
surrogate data sets. For each bipolar cell recording, surrogate data were obtained by
shuffling and rotating all ganglion cell receptive fields that overlapped with the
bipolar cell receptive field (as determined by the 1.5-sigma contours). Concretely,
we created for each bipolar cell 1000 surrogate data sets by rotating each ganglion
cell receptive field (and thereby the layout of subunits for that ganglion cell) by a
random angle between 0 and 360° and by randomly permuting the receptive field
center positions of the ganglion cells. We then determined the maximal overlap of
the bipolar cell receptive field with any of the subunits of each surrogate data set
and used the distribution of the 1000 maximal overlap values to determine the
probability that a value larger than the observed maximal overlap value would be
obtained by chance. Finally, the set of these probability values was tested for
significance by Fisher’s combined probability test.

Analysis of subunit overlap in ganglion cell populations. To quantify how well
individual subunits from different ganglion cells matched each other, we computed
their relative overlap in the same way as for analyzing the match between subunits
and bipolar cell receptive fields. Thus, the overlap is given by Ashared/(A1 + A2 −
Ashared), where A1 and A2 are the areas within the 1.5-sigma contours of the two
subunits and Ashared is the shared area.

The analysis of subunit overlaps at the population level (Fig. 5) incorporates
data from cells with a wide range of firing rates and noise levels. To, nonetheless,
make this analysis robust against the occurrence of spurious subunits, we here
included only subunits that robustly occurred in the analysis for different random
initializations of the module matrix M. Concretely, we used Gaussian fits to
compute the center points for all final subunits from all 100 runs with different
initializations (see section on “Spike-triggered non-negative matrix factorization”).
We then took the subunits from the single best run and checked for each of these
whether within a circle of 30-µm radius around its center point there were subunit
center points in at least 50 of the 100 runs. If that was the case, we defined a robust
subunit as the pixel-wise average of all the subunits with center points in this circle.

To compare the distribution of overlap values with chance level, we randomly
permuted the receptive field center positions of the ganglion cells within each cell
type and recording and then computed the overlap values between the
correspondingly relocated subunits. This shuffling procedure was repeated 100
times to obtain mean values and standard deviations for the distribution of overlap
values (Fig. 5).

Response predictions. To assess the relevance of the subunit layout for predicting
ganglion cell responses, we compared a subunit model and a standard LN model
for predicting responses to three different stimulus sets: (1) held-out spatio-
temporal white-noise sequences, which were repeatedly inserted as identical sti-
mulus sequences (frozen noise) between longer, non-repeated white-noise
segments; (2) a set of 300 briefly flashed natural images; and (3) shifted natural
images that used brief flashes of the same image with slightly different spatial
positioning (see “Visual stimulation”). For these model evaluations, the model
parameters were generally obtained from the non-repeated white-noise segments
so that the evaluations were performed on stimuli that were not used for obtaining
parameters. Only in the analysis of natural images at slightly different positions,
one parameter (the gain of the final output nonlinearity in each model) remained
free and was fitted to the test data.

The spatiotemporal white-noise sequences were first convolved with the cell’s
temporal filter to yield a sequence of effective spatial images. For all stimuli, model
predictions were constructed by first computing a filter signal, based on either the
cell’s spatial receptive field (LN model) or based on the set of identified subunits
(subunit model). For the LN model, the filter signal FLN was simply obtained by
filtering the images with the spatial receptive field, as retrieved from the spike-
triggered average. For the subunit model, the images were first filtered by each
subunit individually. These filter outputs were half-wave rectified and then
summed in a weighted manner in order to obtain the filter signal Fsubunit. Note that
this half-wave rectification is likely not the correct or best subunit nonlinearity and
was taken here for simplicity and for balancing the number of parameters in the
different models, making the evaluation of the subunit model a conservative
estimate of its ability to predict responses. Since our primary goal here was to
evaluate whether using subunits can improve response predictions over linear
spatial summation as in the LN model and not to optimize response predictions,
we did not try fitting subunit nonlinearities to the data, but rather aimed at
minimizing the number of model parameters. The weights for the summation of
subunit signals were determined from a least-squares fit of the receptive field by the
subunits, so that individual image pixels had similar relevance for the LN model
prediction and the subunit model prediction.

To turn FLN and Fsubunit into predictions for the frozen white-noise sections,
we computed nonlinearities for both models from the non-repeated parts of the
white-noise stimulus. This was done by relating FLN and Fsubunit to the average
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evoked firing rate in a histogram manner, similar to the computation of the
gain for the subunits (see “Evaluation of subunits”), using again 40 bins of
the filter signals and computing the average filter signal and average firing rate for
each bin. The histograms were then fitted with nonlinear functions of the form
rðFÞ ¼ a1 � ln 1þ ea2 � Fþa3ð Þ� �

by optimizing the parameters a1, a2, and a3 according
to a least-squares criterion. The fitted functions were used to obtain response
predictions for the frozen-noise sections. To quantify model performance, we
computed for each model the correlation coefficient R between prediction and
measured firing rate and reported the explained variance R2.

The models can only be expected to explain such variations of the firing rate
that correspond to a deterministic signal, whereas any noise in the estimated firing
rates provides variance that is inaccessible (“unexplainable”) to the model. We
checked to what extent noise in the estimated ganglion cell firing rate might limit
the explained variance by computing the explainable variance26 for each cell.
Concretely, we separated the responses to the frozen noise into even and odd trials,
computed the firing rate profiles for each, and calculated the explained variance R2

between them26. This is a measure of the reliability of the structure in the PSTH,
that is, a measure of the explainable variance, which a model may hope to capture.
We found that this measure was generally close to unity (0.97± 0.04, mean± SD,
N= 28 cells), indicating that noise in the estimation of the ganglion cell firing rates
is not a limiting factor here, as expected from the large number of repeats of the
frozen noise (more than 200).

For the set of 300 natural images, we did not use a nonlinearity to turn FLN and
Fsubunit into actual response predictions for the evoked spike count, but rather, we
used FLN and Fsubunit directly to predict the rank order of the images in terms of
their average spike count. This procedure just assumes that any nonlinear
transformation of the filter signals is monotonic, yielding larger spike counts for
larger filter signals. Not applying an output nonlinearity makes the model
evaluation independent of the accuracy of estimating the nonlinearity, which is
likely to be different for the image presentation as compared to the white-noise
stimulation because of the different stimulus dynamics and because of adaptation.
Thus, we quantified model performance by computing Spearman’s rank correlation
coefficient for the relation between the image order according to the model
prediction and the image order according to the measured average spike counts.

For the shifted natural images, presented at nine different positions, we used a
different approach because using only nine positions was insufficient to get good
sampling for the rank correlation. Instead, we here applied a half-wave rectification
to the filter signals FLN and Fsubunit in order to predict the actual spike count
elicited by the nine positions. The slope of the linear part of the half-wave
rectification was left as a free parameter for each model, which was optimized by
minimizing the root-mean-square (RMS) error. Model performance was then
quantified for each cell and each image by the obtained RMS error values.

For comparison, we also assessed performance of a model where the subunits
were scrambled (shuffled subunit model) by randomly permuting the pixel values
between the different subunits. This shuffling was done for each image pixel
separately so that each pixel was filtered with the same set of weights as for the
original subunits, but in different compositions. After this subunit shuffling, the
corresponding model was obtained and evaluated in the same way as the original
subunit model.

For comparison with the NIM28 (Supplementary Fig. 9), we analyzed the
ganglion cells recorded under spatiotemporal white noise. We based our analysis
on the NIM Matlab toolbox (http://neurotheory.umd.edu/nimcode). However,
since it was not practically possible to fit the full version of this model for the long
recording durations and the high-dimensional spatiotemporal stimuli of our data,
we simplified the model fitting as follows: as for the application of the STNMF
method, we integrated out time by convolving the stimulus sequence with the
temporal filter of the analyzed cell, and we set the post-spike filter in the model to
zero. Thus, the only components to be optimized were the spatial subunits and
their nonlinearities. We initialized the model with normally distributed random
numbers for the subunits and threshold-linear subunit nonlinearities. (We also
tested exponential subunits with no difference in results.) The number of
considered subunits was set for each cell to the number of subunits identified by
the STNMF method. These simplifications allowed us to apply the parameter fitting
of the NIM for the large stimulus space considered in our analysis and to directly
compare model performance, as temporal binning remained constant for the
different models. The parameters for model optimization and regularization were
kept identical to the original NIM implementation. Yet, clearly, our analysis of this
reduced and restricted model does not aim at a full evaluation of the NIM’s
potential to identify subunits or predict ganglion cell responses.

Code availability. The computer code (in Matlab) used for applying the STNMF
method to experimental as well as simulated data is available from https://github.
com/gollischlab/STNMFanalysis.

Data availability. All relevant data are available from the authors upon request.
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