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Neural tissues have been consistently observed to be spontaneously active and to generate highly variable
(scale-free distributed) outbursts of activity in vivo and in vitro. Understanding whether these heterogeneous
patterns of activity stem from the underlying neural dynamics operating at the edge of a phase transition is a
fascinating possibility, as criticality has been argued to entail many possible important functional advantages
in biological computing systems. Here, we employ a well-accepted model for neural dynamics to elucidate an
alternative scenario in which diverse neuronal avalanches, obeying scaling, can coexist simultaneously, even
if the network operates in a regime far from the edge of any phase transition. We show that perturbations to
the system state unfold dynamically according to a “neutral drift” (i.e., guided only by stochasticity) with
respect to the background of endogenous spontaneous activity, and that such a neutral dynamics—akin to
neutral theories of population genetics and of biogeography—implies marginal propagation of perturbations
and scale-free distributed causal avalanches. We argue that causal information, not easily accessible to
experiments, is essential to elucidate the nature and statistics of neural avalanches, and that neutral dynamics
is likely to play an important role in the cortex functioning. We discuss the implications of these findings to
design new empirical approaches to shed further light on how the brain processes and stores information.
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I. INTRODUCTION

The introduction by Kimura in 1968 of the neutral
theory—hypothesizing that most evolutionary change is
the result of genetic drift acting on neutral alleles [1]—
caused much debate and a revolution in the way population
genetics and molecular evolution were understood. In a
similar endeavor, Hubbell proposed that most of the
variability in complex ecological communities could be

ascribed to neutral dynamics of similar species which
expand or decline as a result of stochasticity [2,3].
Neutral theories have in common that they neglect any
a priori intrinsic difference between coexisting individuals,
regardless of their “species” (allele, tree, etc.) type, imply-
ing that the dynamics is purely driven by random demo-
graphic effects. For instance, the introduction of a novel
species within an established population triggers a random
cascade of changes, or “avalanche,” which—as a result of
the implicit neutrality—does not have an inherent net
tendency to either shrink or expand at the expenses of
others. This marginal-propagation process generates scale-
free avalanches, which resemble critical ones even if the
system is not necessarily posed at the edge of a phase
transition [3,4]. (See Appendix A for a brief mathematical
summary of neutral theory and its statistical implications.)
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Neutral models have been successfully employed to explain
the emergence of scale-free distributions in (i) epidemic
outbreaks with neutral microbial strains [4], (ii) viral-like
propagation of neutral memes [5], (iii) the evolution of the
microbiome [6], and (iv) the renewal of the intestinal
epithelium from neutral stem cells [7]. Is neutral theory
susceptible to be applied to the neural dynamics of the
brain? And, in particular, could it explain the emergence of
scale-free neuronal avalanches that have been empirically
reported for spontaneous neural activity?
The humanbrain has a special feature that is common to all

mammalians: it is endogenously active; i.e., cascades of
electrochemical activity at multiple time scales spontane-
ously pervade its dynamical state even in the absence of
any apparent stimuli or task. Mounting evidence suggests
that such an endogenous activity is not random, but struc-
tured, and it contributes significantly to stimulus-related
responses, being essential to brain functioning. Specifically,
spontaneous, spatiotemporal bursts of neural activity were
reported to appear in the form of avalanches [8], whose sizes
s and durations t are distributed as PsðsÞ ∼ s−τF ðs=scÞ and
PtðtÞ ∼ t−αGðt=tcÞ, respectively, where τ ≈ 3=2 and α ≈ 2
are critical exponents similar to those of an unbiased
branching process [9–11], F and G are scaling functions,
and sc and tc are system-size-dependent cutoffs obeying
finite-size scaling [12]. Similar results have been obtained
both in vitro and in vivo, as well as for different tissues,
preparation types, experimental techniques, and animal
species (see, e.g., Refs. [13–19]). Remarkably, signs of scale
invariance have been reported to vanish under abnormal
circumstances such as under the influence of modified
pharmacological conditions, under anesthesia, or in pathol-
ogies [20]. See Refs. [21–25] for overviews and discussions
on the state of the art. Taken together, these observations
suggest that scale-free avalanches are a generic feature of
spontaneous activity in cortical tissues, suggesting that they
stem from an underlying critical phenomenon (see, however,
Refs. [26,27]). This conclusion seems to back the hypothesis
that biological computing systems might operate at the edge
of phase transitions [28–30], providing them with optimal
transmission and storage of information, exquisite sensitivity
to signals, and a number of other important functional
advantages [31,32].
Scale-free distributed events or bursts of “activity” such

as earthquakes, vortex avalanches in superconductors, and
Barkhaussen noise are common place in nature (see, e.g.,
Refs. [33,34]) and are often ascribed to their underlying
dynamics being poised at a critical point. The paradigm of
“self-organized criticality” was developed to explain how
and why natural systems could self-tune to the vicinity of
critical points [33,35,36]; in this context, scale-free dis-
tributed avalanches turn out to be the fingerprint of critical
points of a phase transition into quiescent (or “absorbing”)
states [37,38]. Despite the success and conceptual beauty of
this framework, not all scale-invariant episodes of activity

can be ascribed to underlying criticality [39,40]; for
instance, power-law distributed excursion sizes and times
can also emerge from unbiased random walks [41], self-
organization to the edge of a discontinuous phase transition
[42], the Yule-Simon or “the rich gets richer” process [40],
and, as discussed above, neutral dynamics [4,7].
In this work, we explore the possibility and discuss the

potential benefit that empirically observed neural ava-
lanches could be scale-free as a result of an underlying
neutral dynamics—i.e., that each single event of activity
is indistinguishable from others and can potentially
propagate through the network in a marginal way, i.e.,
without an intrinsic tendency to either expand or contract—
alternatively to being self-organized to the edge of a phase
transition. That is, we explore whether scale-free ava-
lanches could stem from the neutral competition of activity
(generated from different sources or stimuli) for available
space. Also, we show that causal avalanches are not
necessarily approximated by experimentally measured
avalanches commonly identified with a criterion of tem-
poral proximity. We propose that the diversity encountered
for causal avalanches with respect to their size, duration,
as well as spatial and temporal realization provides a rich
reservoir that the real neural systems could exploit for
efficient coding, optimal transmission of information, and,
thus, for memory and learning [43].

II. RESULTS

A. Computational model and its phenomenology

The leaky integrate-and-fire (IF) neuron represents one
of the most successful approaches to model spiking activity
in real neurons. Connections between IF neurons reflecting
brain connectivity allow these neurons to linearly integrate
inputs which—when reaching a threshold—make the
neuron spike, initiating propagation of activity in the
network and leading to a rich dynamical landscape.
Recently, several models explored the propagation of
avalanches of activity within this type of approach, using
synaptic plasticity as a key regulatory mechanism [44–46].
In particular, the model by Millman et al. [44] was able to
capture the empirical observation of bistability in cortical
networks, i.e., the existence of two well-differentiated
stable patterns of cortical activity, called up and down
states (see, e.g., Refs. [47,48] and references therein, as
well as Refs. [45,49], for related and rather interesting
models). Briefly, the model of Millman et al. consists of N
leaky integrate-and-fire excitatory neurons forming a
directed random Erdős-Rényi network with average con-
nectivity K. Neurons integrate synaptic inputs from other
neurons and fire action potentials, which rapidly deplete the
existing synaptic resources. These resources recover at a
slow time scale, thereby limiting the overall level of activity
in the network (see Appendix B). The model can be tuned
by controlling, e.g., its average synaptic strength. For weak
synaptic strengths, a quiescent phase with very low levels
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of activity, the down state, exists, whereas a second, stable
state with high firing rates, the up state, emerges for large
synaptic strengths [see Fig. 1(a)]. For intermediate
strengths, spontaneous fluctuations allow for rapid up
and down states alternations [see Fig. 1(b)]. This phenom-
enology—which could also be reproduced by keeping
synaptic strength fixed and varying the synaptic recovery
time or some other parameter of the model—corresponds
to a discontinuous phase transition (see Fig. 1 herein and
Fig. 1 in Ref. [44]) and therefore lacks the critical point
characteristic of continuous transitions. However, remark-
ably, when tracking cascades of neuronal firing based on
participating neurons, i.e., causal avalanches (see below),
the model was shown to exhibit scale-free distributions
of sizes and durations during up states, with associated
exponents τ ≈ 3=2 and α ≈ 2, i.e., the hallmark of neuronal
avalanches measured in brain activity. Accordingly,
Millman et al. considered the up state as “self-organized
critical,” in contrast to the down state, which was

“subcritical” with causal cascades that were not scale-free
[44]. Given that critical dynamics emerge at continuous
phase transitions, the presence of scale-invariant avalanches
within the up state in the absence of any such transition in
this model is unusual. This observation prompted us to
identify possible alternative mechanisms for the emergence
of scale-free avalanches within this and similar models.

B. Causal avalanches

Following Ref. [44], we tracked causal cascades or
avalanches [50]. Each one is initiated when an external
input depolarizes a neuron’s membrane potential above
threshold to fire an action potential. The activity propagates
when the membrane potential of a postsynaptic neuron
surpasses threshold. This threshold crossing results from
the integration of synaptic input from active neurons in the
network. Importantly, the postsynaptic neuron will become
a member of the cascade that provided the last—and thus
causal—input for the action potential being generated. This
causality-based avalanche affiliation thus does not exclude
subthreshold integration of input from many avalanches.
Accordingly, a cascade stopswhen no threshold crossing can
be linked to its past activity. The size of a cascade is the total
number of action potentials triggered, while the cascade
duration is the time span between its initiation and the time of
its last action potential [44]. Avalanches were analyzed
separately for up and down states in a network with
N ¼ 3000 neurons, using different values of the external
firing ratefe; in particular,we analyzed the slow-driving case
fe → 0 in which new cascades arrive at a slow pace.
Our results are in perfect agreement with the phenom-

enology found in Ref. [44]: cascades in the down state do
not exhibit scale invariance but instead have a characteristic
scale (see Fig. S1 of Supplemental Material [52]). On the
other hand, cascades during up states distribute in size and
duration according to power laws with exponent close to
τ ¼ 3=2 and α ¼ 2, respectively [see Fig. 2(a)]. Also, the
measured effective branching ratio is always close to unity;
i.e., any tendency for increased propagation is counterbal-
anced by fewer recruitable sites (see Supplemental Material
Fig. S2 [52]). As already observed in Ref. [44], these results
are quite robust; they do not depend on how deep into the
up state (i.e., how far from the transition point) simulations
are run, nor on simulation details, nor do they change upon
introducing inhibitory neurons (see Secs. S2 and S3 in
Supplemental Material, respectively [52]). In particular,
parameter values can be changed quite a lot, even away
from neurophysiologically realistic ones, but as long as a
stationary active or up state exists, causal avalanches within
it unfold marginally, in a scale-free way.

C. Time-correlated avalanches from time binning

A key point of the previous analysis is that causal
information between activation events (i.e., “who triggers
whom”) is essential to define avalanches. However, in

FIG. 1. Numerical integration of the model ofMillman et al. [44]
withN ¼ 300 neurons. (a) Phase diagram of the mean firing rate as
a function of the synaptic strength parameter win. For low values
of win, the stable state is a quiescent state with very low levels of
activity (down state), whereas for large values of win, the system
exhibits high levels of activity (up state). Both states coexist for
intermediate strength values (shaded region), allowing for up-and-
down transitions. Importantly, the transition is discontinuous.
(b) Time series of the network firing rate for win ¼ 50 pA illustrate
the system’s bistability, with eventual (stochastic) jumps between
up and down states. (c) Raster plot (for the same times as above) in
which distinct colors are used for different causal avalanches.
(d) Raster plot zoom (broken lines) demonstrating the intermingled
and temporally overlapping organization of different causal ava-
lanches. Model parameters have been set as in Ref. [44] (see
Appendix B).
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empirical analyses it is not clear whether events occurring
nearby in time—usually ascribed to the same avalanche in
statistical analyses—are actually causally connected or not.
The standard approach, which has been successfully used
in the analysis of experimental data, where causal infor-
mation of event propagation is typically not accessible
[8,13], consists in defining cascades from a series of
discrete suprathreshold events, by choosing a discrete time
binΔt. An avalanche is defined as a sequence of successive
time windows with at least one event in each that is
preceded and ended by an empty bin. Following
Refs. [8,13], where it was shown that scaling relations
obtained with different time bins Δt could be collapsed, we
take Δt to be equal to the average interevent interval (IEI),
defined as the average time interval between successive
events [53]. Using this binning procedure in time series
from the computational model, we find that cascade

duration and size distributions obtained from up states
are exponentially distributed with a characteristic scale,
showing no signs of scale-invariant behavior [see Fig. 2(b)].
Distributions did not change qualitatively for different
values of Δt. Thus, in the model of Millman et al., cascades
based on temporal proximity differ significantly from
cascades based on causal information. In the model of
Millman et al., causal avalanches can (and do) coexist in
time [see Figs. 1(c) and 1(d)]; thus, the temporal proximity
approach does necessarily fail to uncover true causal ava-
lanches. This finding is in contrast to the established scale-
free avalanche distributions that emerge from experimental
data based on temporal proximity.
Summing up, our observations, together with the lack of

a continuous phase transition within this computational
model, question the origin of scale invariance within up
states and its actual relationship with empirically found
(time-correlated) scale-free avalanches. To shed light on
this problem, in the next section we analyze a minimal
model which captures the main ingredients for activity
propagation—but is more susceptible to mathematical
analysis—showing that the observed scale-free causal
avalanches in the basic approach as outlined in Millman
et al. stem from an underlying neutral dynamics [4,7].

D. Neutral (causal) avalanches in a minimal
model for activity propagation

In archetypical models of activity propagation such
as the contact process, directed percolation, and the
susceptible-infected-susceptible model [10,54], “active”
sites propagate activity to their nearest neighbors or
become deactivated at some transition rates. As a result,
depending on rate values, there exist a quiescent and an
active phase, as well as a critical point separating them
[10,54]; avalanches triggered from a single initial event
exhibit scale invariance only at criticality (see Fig. S4 of
Supplemental Material [52]) and, if they are triggered at a
sufficiently slow rate, they do not overlap.
In contrast, within the framework of neutral dynamics

(that we are about to define), multiple avalanches can
propagate simultaneously. The difference between critical
and neutral avalanches can be vividly illustrated by con-
sidering a variant of the contact process, consisting of many
different but equivalent “species” (or “labels” or “colors” or
“types”). This model can be studied with parameters (rates)
in the active phase, arbitrarily far from the phase transition,
to explore the statistics of causal avalanches. More spe-
cifically, we consider a network with N nodes that can be
either active (A) or inactive (I). Here, we discuss the case
of a fully connected architecture—for which mathematical
analysis is simpler—but almost identical results are
obtained for a directed random network, with the very
same structure as employed in the model of Millman et al.
(see Fig. S5 of Supplemental Material [52]). At every time,
each single active site is assigned to a unique individual

(b)

(a)

Size Duration

DurationSize

FIG. 2. Probability distribution functions (PDF) for the ava-
lanche size and durations within the up-state phase in the model
of Millman et al. [44] using two different methods (double
logarithmic plot). (a) Causal avalanches were defined using the
same criterion as in Ref. [44], for several values of the external
input fe, confirming the observation that sizes and durations are
power-law distributed with the same exponents of an unbiased
branching process, i.e., τ ¼ 3=2 and α ¼ 2, respectively [9,11].
(b) “Time-correlated” avalanches, defined with the standard
temporal binning method [8] (which estimates causality by
temporal proximity), using five different time intervals Δt to
bin the data, including one coinciding with the average interevent
interval (IEI) as usually done in the analyses of empirical data [8],
for fe ¼ 5 Hz; in this case, distributions do not obey a power-law
distribution but have a characteristic scale. In all cases, simu-
lations were performed in a network of N ¼ 3000 neurons
(model parameters as in Ref. [44]; see Appendix B).
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avalanche or species k (the one from which it derives) and
labeled by Ak. More specifically, the dynamics is as
follows: (i) a new avalanche, with a new label, is initiated
by the spontaneous activation of an inactive site at small
driving rate ϵ, (ii) active sites propagate the activity to
neighboring inactive places at rate λ, and (iii) active sites
become inactive at rate μ. This is equivalent to the
following set of reactions for k ¼ 1;…;MðtÞ:

I→
ϵ
AMðtÞþ1;

Ak þ I→
λ
Ak þ Ak;

Ak →
μ
I; ð1Þ

whereMðtÞ is the total number of avalanches triggered up to
time t. This dynamical process is neutral (or symmetrical)
among species or avalanches as rates do not depend on label
k (see Appendix A for an extended presentation of neutral
theories). The duration (size) of an avalanche k is the time
elapsed (total number of activations) between its sponta-
neous generation and the extinction of its label. Observe that
different avalanches can coexist (all the more in the active
phase, as in the model of Millman et al.) and that the total
number of coexisting avalanches can vary in time. Also, their
sizes are anticorrelated due to competition for a limited
number of active sites (see Fig. S3 of Supplemental Material
[52]). The state of the system is determined byMðtÞ and the
number of k-type active sites nkðtÞ, or, equivalently, their
corresponding densities ρkðtÞ ¼ nkðtÞ=N. The total density

of active sites is defined as ρðtÞ ¼ PMðtÞ
k¼1 ρkðtÞ. Importantly,

just ignoring species labels, one realizes that the system of
Eq. (1) is nothing but the standard contact process (with a
nonvanishing rate for spontaneous activation ϵ). Therefore,
in the slow-driving limit ϵ → 0, the system exhibits a
continuous phase transition for the total activity density at
the critical point given by λc ¼ μ [10,54].
We performed computer simulations of the dynamics

described by Eq. (1) by means of the Gillespie algorithm
[55] in a fully connected network of size N ¼ 104.
Parameter values are chosen for the system to lie well
inside the active phase, λ ¼ 2, μ ¼ 1 (i.e., λ ¼ 2λc), and ϵ
taking small values such as 10−1, 10−2, 10−3, and 10−4.
Typical time series for individual avalanches ρk, as well as
for the total activity ρ, are depicted in Fig. 3(a).
Observe that the steady-state overall density (gray color)

coincides, on average, with that of the contact process
in the infinite size limit, ρ� ≃ 1 − μ=λþ ϵμ=½λðλ − μÞ� (see
Appendix C for the derivation of this equality). In Fig. S2 of
Supplemental Material [52] it is shown that, in full analogy
with the more realistic model studied above, also in this
simple model, the effective propagation rate of a given active
site is equal to unity; i.e., the process is marginal in both
cases. In particular, individual avalanches [colored curves in
Fig. 3(a) experience wild fluctuations as a function of time.
The statistics of avalanches is illustrated in Fig. 3(b), revealing
that avalanche sizes and durations are power-law distributed

with exponents τ ¼ 3=2 and α ¼ 2 in the limit of small
spontaneous activation rate ϵ → 0. Remarkably, scale-free
avalanches appear all across the active phase, λ > λc (see
Fig. S6 of Supplemental Material [52]).
To shed light on this result, we study analytically this

simplified model in the large network-size limit. Starting
from the master equation associated to Eq. (1), performing
a system-size expansion for large but finite system sizes
[56], the dynamics of a newly created avalanche is
described by the following equation:

_ρk ¼ ½λð1 − ρÞ − μ�ρk þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
½λð1 − ρÞ þ μ�ρk

r
ξkðtÞ; ð2Þ

with the initial condition ρk ¼ 1=N, and where ξkðtÞ
represents a zero-mean Gaussian white noise of unit

(b)

(a)

A
ct

iv
ity

Time

Size Duration (s)

FIG. 3. Causal avalanches in a minimal model for propagation
activity, defined as cascades of events initiated from the sponta-
neous activation of one unit, without overlap between avalanches
(i.e., a given node cannot be simultaneously part of more than one
avalanche). (a) The activity of each avalanche is defined as the
density of active elements in the system belonging to that
avalanche, identified with different colors in the plot. The global
activity density is represented with the gray colored line. Param-
eters of the model are taken deep inside the active phase, λ ¼ 2,
μ ¼ 1, for a system sizeN ¼ 104 and small spontaneous activation
rate ϵ ¼ 10−3. Whereas the global activity exhibits slight fluctua-
tions around its steady-state value ρ� ≃ 1 − μ=λ (represented by
the dashed line), individual avalanches can exhibit wild variability.
(b) Probability distribution functions (PDF) for avalanche sizes and
durations for different values of ϵ [other parameters as in (a), i.e.,
deep inside the active phase]. Avalanche statistics exhibit robust
power-law scaling—limited by system size—with the same ex-
ponents of the neutral theory for avalanche propagation (marked
with dashed lines for comparison).
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variance (to be interpreted in the Itô sense [56]). If the
system is very large, and when the rates lie within the active
phase (i.e., λ > μ), the total activity density exhibits very
small fluctuations, remaining quite stable around the
steady-state value, as illustrated by the gray colored time
series in Fig. 3(a).
To understand the variability of individual avalanches,

let us assume that in the steady state ρðtÞ≃ ρ�, which
introduced in Eq. (2) leads to

_ρk ¼ −
μ

λ − μ
ϵρk þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ

N

�
2 −

ϵ

λ − μ

�
ρk

s
ξkðtÞ: ð3Þ

In the limit ϵ → 0, the deterministic or drift term in Eq. (3)
vanishes, and the dynamics of avalanche k can be simply
written as

_ρk ¼ ffiffiffiffiffi
ρk

p
ξkðt̂Þ; ð4Þ

where, for simplicity in the notation, a factor 2μ=N has been
reabsorbed into the time scale t̂. Equation (4) represents a
freely moving random walk with demographic fluctuations,
which—as further discussed in Appendix A—describes the
evolution of a species density in any neutral type of dynamics.
In other words, once an avalanche starts, its statistics is
entirely driven by neutral demographic fluctuations, without
any net tendency to either expand or contract, regardless of
the distance to the critical point [57]. Furthermore, the
avalanche exponents associated with this neutral, noise-
driven, dynamics are α ¼ 2 and τ ¼ 3=2; on the other hand,
sizes and durations of time-correlated avalanches, as deter-
mined from time binning, are not power laws (see Fig. S7
of Supplemental Material [52]). These results hold all across
the active (up) phase; on the other hand, in the quiescent
(down) state, the steady-state activity ρ� goes to 0, as the
deterministic driving force in Eq. (2) is negative, leading to
subcritical avalanches, as indeed reported in Ref. [44].
Thus, a simple approach allowed us to explicitly show

that neutral dynamics among coexisting dynamically indis-
tinguishable avalanches leads to scale-free distributions all
across the active (up) phase, i.e., arbitrarily far away from
the edge of the phase transition, where many different
causal avalanches can simultaneously coexist, and with no
relationship with self-organized criticality.
Our claim, relying on universality arguments, is that the

same conclusion extends to the active phase of the model of
Millman et al.; for such a case, detailed analytical calcu-
lations would be much more difficult to perform, but it
seems rather plausible that the effective dynamics is also
neutral as in the case of the simple model we discuss here,
and that many neutral causal avalanches coexist, thus
strongly supporting that as a matter of fact the scale-free
causal avalanches in the model of Millman et al. stem
from neutral dynamics and not from the model being

self-organized to the critical point of any (nonexisting)
continuous phase transition.

III. CONCLUSIONS AND DISCUSSION

A remarkable observation—that has elicited a great deal
of interest—is that neural activity in the brain of mammals,
including humans, occurs in the form of neuronal ava-
lanches consisting of outbursts of neural activity intervened
by periods of relative quiescence, across many resolution
scales in a robust way [8,21]. For in vitro studies of
relatively small networks, it seems plausible to assume that
events occurring during one of such outbursts are causally
connected, so that activity emerges at some location and
transiently propagates through the network, causing a
cascade of coactivations. However, there is no clear
empirical validation that this is actually the case; diverse
causally connected cascades could, in principle, occur
simultaneously, hindering their experimental discrimina-
tion as individual avalanches. Obviously, the situation is
much more involved in large neural networks as analyzed
in vivo as diverse scales of resolution, e.g., from local field
potential measurements, magnetoencephalography, func-
tional magnetic resonance imaging, etc. There is no well-
accepted empirical procedure to actually disentangle causal
influences, nor to discern whether different causal cascades
of activations overlap (as they probably do in functional
brains). Developing a protocol to fill such a gap is a task
of utmost importance for the coming future (see Ref. [51]).
In the absence of a better indicator, events of activity are
customarily clustered together as individual avalanches,
relying on a criterion of temporal proximity.
It remains to be fully elucidated what is the true nature

of scale-free avalanches in actual neural systems. To shed
light on this, here we scrutinize the most commonly
referred model—introduced by Millman and coauthors
[44]—justifying the emergence of power-law distributed
avalanches in networks of integrate-and-fire neurons with
synaptic plasticity. First of all, we reproduced the findings
in Ref. [44], and confirmed that the model exhibits two
different phases in parameter space, an up state charac-
terized by large average firing rates and a down one with
small firing, separated by a discontinuous phase transition.
We carefully analyzed the dynamics within the active
phase, and corroborated that diverse avalanches can coex-
ist, and that their sizes and durations are scale-free (with
exponents, 3=2 and 2, respectively) if and only if precise
information on which neuron triggers the firing of which—
which is accessible in computational models—is used to
identify (causal) avalanches [51]. On the other hand, a
different analysis—which is the one customarily applied to
empirical data—based on defining avalanches through a
time-binning procedure, blind to detailed causal informa-
tion between activation events, does not reveal any trace of
scale freedom in avalanche distributions. These observa-
tions naturally pose two important questions. First, if the
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analyzed model is not self-organized to the edge of a phase
transition, where do the computationally reported scale-free
(causal) avalanches within this model stem from? And
second, does this model constitute a faithful representation
of actual neural dynamics, including the experimentally
observed scale-invariant avalanches?
To answer the first question we designed a simplified

dynamical model with an overall phenomenology very
similar to that of the model of Ref. [44]: i.e., it exhibits
scale-invariant causal avalanches all along its active phase,
regardless of the distance to a phase-transition point (which
actually can be either a continuous or a discontinuous one
depending on model details). This simplified model—a
variant of the contact process with many different types of
active sites—allows us to uncover that scale-invariant
avalanches within the active phase stem from the neutral
dynamics among diverse coexisting (causal) avalanches.
In particular, if new seeds of activity are injected at a very
slow rate in a system with recurrent background activity
(i.e., in its active phase), each one does not have a net drift
toward contracting or expanding in the background of
recurrent activity in which it unfolds; its dynamics just
follows demographic fluctuations, much as in neutral
theories of population genetics. Moreover, the branching
ratio is equal to unity and causal avalanches are power-law
distributed—with the same exponents as an unbiased
branching process—without the model being posed at
the edge of a phase transition. In summary, the observed
scale invariance in a well-accepted computational model
for neuronal dynamics as well as in a simplified model—
and in any other model for activity propagation with a
stationary active or up state—stems from the neutrality or
symmetry between diverse coexisting cascades of causally
related events which coexists in a background of recurrent
activity.
In regards to the second question above, it might occur

that the discussed computational model does not reproduce
all the phenomenology of actual neural dynamics in real
networks. For instance, activity exhibits clear temporal
clustering (so that measured power laws disappear when
times are reshuffled [8]) and, as we have shown, this fact is
mostly lacking in the model ofMillman et al. This drawback
was overcome in a more recent and detailed computational
model including many additional neurophysiologically real-
istic ingredients (such as, e.g., inhibitory plasticity), which
exhibits temporal clustering of activity together with scale-
free avalanches [46]. In this case, avalanches are also
measured employing causal information so that scale invari-
ance is likely to stem from underlying neutrality, rather than
criticality. It would be highly desirable to have a study of
purely time-binned avalanches in this type of approach,
allowingus to compare themwith causal ones. For the sake of
completeness, let us remark that recent work (analyzing a
population of independent spiking units, all sharing a
common time-correlated randomly changing firing rate)

has illustrated the possibility—just opposite to the one
discussed here—of having scale-free temporally defined
avalanches, in the absence of causal ones (as neurons are
not causally coupled) [27].
From a broader perspective, more complete computa-

tional models and/or analyses allowing us to scrutinize the
possible emergence and interplay between neutrality and
criticality are highly needed. In particular, relying on such
models it should be possible to fully ascertain the relation-
ship between neutral causal avalanches and empirically
observed ones, but, for the time being, there remains a gap
in the literature between causal avalanches in models and
temporal correlated ones in experiments.
Finally, the main question that remains to be answered is,

given that various types of functional advantages are
ascribed to criticality, do these same advantages still exist
if neuronal scale-free avalanches turn out to be the
consequence of underlying neutrality rather than of the
tuning to the edge of a phase transition? While we do not
have a definite answer to this, we speculate that this type of
power-law distributed coexisting causal avalanches could
play a fundamental role in neural functioning. In particular,
there are known biological mechanisms, such as learning
rules, that take into account causal information (i.e., which
neuron triggers the firing of which); a well-documented
example is synaptic timing dependent plasticity (STDP)
[43] by which synaptic weights are either reinforced or
weakened depending on the relative spike timing between
the pre- and postsynaptic neuron. STDP has been found to
stabilize the dynamics of neural networks and to maintain
reproducible patterns of causal neuronal avalanches [46].
Thus, patterns of activity, generated by neutral dynamics,
and consisting on coexisting scale-free avalanches, could
be stored and stabilized or “ingrained” by such a mecha-
nism, allowing the network to spontaneously generate a
large set of attractors and a broad dynamical repertoire, in a
similar way in which cellular diversity—stemming from
underlying neutral dynamic of stem cells—entails func-
tional advantages in epithelial tissues [7]. These speculative
ideas need to be much more carefully scrutinized, and we
plan to do so in forthcoming work.
Summing up, some of the existing confusion surround-

ing different types of scale invariance in neural activity can
be rationalized in the framework of neutral theories, posing
new and fascinating questions that may contribute to clarify
the criticality hypothesis in the cortex and its implications
for function and learning.
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APPENDIX A: BRIEF SUMMARY OF
NEUTRAL THEORY

Consider a fully connected network with N nodes
(extensions to regular lattices or more complex networks
architectures are also possible, but we stick here to the
simplest case) and a number of possible states (be these
species, alleles, opinions, etc.). The simplest neutral-
dynamic model is the voter model (VM) [10,58–60], also
known as the Moran process in the context of population
dynamics and population genetics (see, e.g., Ref. [61]). The
VM assumes that there are two types of species that we call
A and B, respectively, and that the system or network is
saturated, meaning that all nodes are always occupied,
each one adopting one of the possible states at every time.
The dynamics proceeds as follows: at each time step, one
randomly chosen individual is “invaded” by a copy of
another neighboring node at uniform rate, i.e., common to
all the individuals in the population independently of their
species labels. Without loss of generality, we first consider
the case with just two species, and later on we explain how
this can be employed to analyze the case with multiple
species.
The so-defined, 2-species VM has been profusely studied

in the mathematical literature; some of its main relevant
features are [10,58–61] (i) it has no free parameters, (ii) it
lacks any characteristic (length or time) scale and its
dynamics exhibits scale invariance, and (iii) it is character-
ized by purely noise-driven diffusive dynamics (see
Refs. [59,60] for moremathematical in-depth presentations).
Now, we derive the coarse-grained mean-field descrip-

tion of a voter model; similar derivations can be found in
the literature [61]. For the sake of illustration, let us
consider also a more generic model in which λA (λB) is
the probability for A (B) to invade a site in state B (A), with
λA ≠ λB in general; the VM dynamics is recovered impos-
ing the symmetrical or neutral condition λA ¼ λB.
As the system is saturated, the number of individuals for

the other species is nB ¼ N − nA and the state of the system
can be determined by the total number of individuals of A,
nA. The model can be expressed as a branching process [9],
with transition rates WðnA → nA þ 1Þ ¼ λAnBnA=N and
WðnA → nA − 1Þ ¼ λBnAnB=N. Using these rates, writing
down the master equation for the probability of finding
the system in a state nA at time t—or alternatively with a
density of individuals A, ρA ¼ nA=N—and performing a
standard large N expansion, one readily obtains the
following Fokker-Planck equation:

∂PðρA; tÞ
∂t ¼ −ðλA − λBÞ

∂
∂ρA ½ρAð1 − ρAÞPðρA; tÞ�

þ λA þ λB
2N

∂2

∂ρ2A ½ρAð1 − ρAÞPðρA; tÞ�; ðA1Þ

or its equivalent (Itö) Langevin equation

_ρA ¼ ðλA − λBÞρAð1 − ρAÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λA þ λB

N
ρAð1 − ρAÞ

r
ηðtÞ;

ðA2Þ

where η is a zero-mean Gaussian white noise with
hηðtÞηðt0Þi ¼ δðt − t0Þ. The neutrality condition λA ¼ λB
implies that the deterministic drift in Eq. (A2) vanishes,
thus h_ρAi ¼ 0, i.e., the average density of each species
remains constant on average; i.e., its population does not
grow nor shrink on average, but it just experiences
stochastic demographic changes as described by

_ρA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρAð1 − ρAÞ

p
ηð~tÞ; ðA3Þ

where a factor 2λA=N has been absorbed into the new time
scale ~t.
Observe that this last equation describes a stochastic

process (random walk) with two absorbing barriers at 0 and
1, corresponding to either of the species A or B, respec-
tively, dominating the whole network. By neglecting the
quadratic term in the noise (which is a valid approximation
as far as the avalanche is small with respect to the much
larger system size), the avalanche-time exponent α ¼ 2 can
be deduced from the first-passage time (return to the origin)
statistics of this random-walk process, and using simple
scaling arguments one can also easily derive τ ¼ 3=2 for
the avalanche-size distribution [62]; i.e., one recovers the
mean-field exponents of the voter model (neutral theory)
class (see, e.g., Ref. [4]). These power laws are truncated
only by system size. The exponent values could also be
analytically determined by employing the more standard
generating function formalism for an unbiased branching
process, as the rate of any cluster of A nodes to expand
λAnAnB=N coincides with its rate to contract λBnAnB=N in
the neutral case λA ¼ λB (see, e.g., Refs. [9,11]).
Two apparently important differences between the VM

dynamics and the multispecies contact-process-like one
that we employ in the main text are (i) that many species
appear in our model and only two of them in the VM and
(ii) that in the VM the system is “saturated,” in the sense
that each single site is in one of the two possible states
(opinions, alleles, species, labels, etc.) whereas in the
model we study, some sites can be inactive, not belonging
to any avalanche.
Regarding the first difference, for any given avalanche in

the multispecies model, we can label it as “A” and the rest
of species labeled together as “B,” which is feasible given
that they all obey the same dynamical rules, i.e., are neutral.
In respect to the second point, general principles of
statistical physics, relying on universality, indicate that
such a difference should have little effect on avalanche
exponents. As a matter of fact, looking at the computational
results for the dynamics of individual avalanches, such a
difference is confirmed to be irrelevant.
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APPENDIX B: MODEL FOR NEURAL
DYNAMICS

The model of Millman et al. [44] consists of a population
of N leaky integrate-and-fire excitatory neurons which are
randomly connected in a directed graph to, on average, other
K neurons in the population (i.e., forming an Erdős-Rényi
network [63]). External inputs IkeðtÞ are Poisson distributed
with rate fe and internal inputs IkinðtÞ are generated from
spiking neurons in the network (k accounts for the input
number). Both internal and external currents are modeled by
exponentials functions of amplitude we=in and characteristic
time τs, Ike=iniðtÞ ¼ we=in exp½−ðt − tksiÞ=τs�, where tksi repre-
sents the corresponding spiking time of neuron i. Each
individual neuron i is described by a dynamical variable Vi
representing itsmembranepotential.When this value reaches
a threshold value θ, the neuron spikes and it may open—with
probability pr—each of its nr associated release sites per
synapse, inducing a postsynaptic current. After spiking, the
membrane potential is reset to the resting potential value Vr
for a refractory period τrp, during which its dynamics is
switched off. Synaptic depression is implemented by means
of a dynamical “utility” variableUijðtÞ ∈ ½0; 1� (for neuron i
and release site j), which modulates the release probability
pr → Uijpr. The membrane potential obeys the following
equation:

_Vi ¼ −
Vi − Vr

RC
þ
X
k

IkeiðtÞ
C

þ 1

C

X
i0∈n:n:ðiÞ

j;k

Θ½prUi0jðtksi0 Þ − ζki0j�Ikini0 ðtÞ; ðB1Þ

where R is the membrane resistance, C its capacitance, k is
the spike number, i0 runs over presynaptic neurons linking to
i, and j0 over its release sites; ζki0j0 is a uniform random
number in [0, 1] andΘðxÞ theHeaviside step function.On the
other hand, the synaptic utility Uij is set to 0 immediately
after a release and recovers exponentially to 1 at constant
rate τR:

_Uij ¼
1 −Uij

τR
−
X
k

UijΘðpr − ζkijÞδðt − tksiÞ: ðB2Þ

As Eqs. (B1) and (B2) are linear during successive events,
they can be integrated exactly, which allows us to implement
both synchronous (or clock-driven) and asynchronous (or
event-driven) methods [64], leading to essentially indistin-
guishable results. When not specified, model parameters
were taken as in Ref. [44]: K ¼ 7.5, nr ¼ 6, R ¼ 2=3 GΩ,
C ¼ 30 pF, Vr ¼ −70 mV, θ ¼ −50 mV, we ¼ 95 pA,
win ¼ 50 pA, pr ¼ 0.25, τrp ¼ 1 ms, τs ¼ 5 ms, and
τR ¼ 0.1 s. We also studied versions of the model including
inhibitory couplings, but this did not alter the main con-
clusions (see Sec. S2 in Supplemental Material [52]).

APPENDIX C: TOTAL DENSITY OF ACTIVITY
AT STATIONARITY IN THE MINIMAL MODEL

Neglecting fluctuations from finite-size effects, the
dynamics of the total density of activity for the process
described by Eq. (1) becomes deterministic in the limit
N → ∞:

_ρ ¼ ½λð1 − ρÞ − μ�ρþ ϵð1 − ρÞ; ðC1Þ

whose stationary solution _ρ ¼ 0 is

ρ� ¼ λ − μ − ϵþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ϵλþ ðλ − μ − ϵÞ2

p
2λ

: ðC2Þ

Up to first order in ϵ, Eq. (C2) can be written as

ρ� ≃
� ϵ

μ−λ if λ < μ

1 − μ
λ þ ϵ μ

λðλ−μÞ if λ > μ:
ðC3Þ
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