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SUMMARY

Large-scale neural recordings have established that
the transformation of sensory stimuli into motor
outputs relies on low-dimensional dynamics at the
population level, while individual neurons exhibit
complex selectivity. Understanding how low-dimen-
sional computations on mixed, distributed represen-
tations emerge from the structure of the recurrent
connectivity and inputs to cortical networks is a ma-
jor challenge. Here, we study a class of recurrent
network models in which the connectivity is a sum
of a random part and a minimal, low-dimensional
structure. We show that, in such networks, the dy-
namics are low dimensional and can be directly
inferred from connectivity using a geometrical
approach. We exploit this understanding to deter-
mine minimal connectivity required to implement
specific computations and find that the dynamical
range and computational capacity quickly increase
with the dimensionality of the connectivity structure.
This framework produces testable experimental pre-
dictions for the relationship between connectivity,
low-dimensional dynamics, and computational fea-
tures of recorded neurons.

INTRODUCTION

Understanding the relationship between synaptic connectivity,

neural activity, and behavior is a central endeavor of neurosci-

ence. Networks of neurons encode incoming stimuli in terms

of electrical activity and transform this information into

decisions and motor actions through synaptic interactions,

thus implementing computations that underlie behavior. Reach-

ing a simple, mechanistic grasp of the relation between con-

nectivity, activity, and behavior is, however, highly challenging.

Cortical networks, which are believed to constitute the funda-

mental computational units in the mammalian brain, consist

of thousands of neurons that are highly inter-connected
through recurrent synapses. Even if one were able to experi-

mentally record the activity of every neuron and the strength

of each synapse in a behaving animal, understanding the

causal relationships between these quantities would remain a

daunting challenge because an appropriate conceptual frame-

work is currently lacking (Gao and Ganguli, 2015). Simplified,

computational models of neural networks provide a test bed

for developing such a framework. In computational models

and trained artificial neural networks, the strengths of all synap-

ses and the activity of all neurons are known, yet an under-

standing of the relation between connectivity, dynamics, and

input-output computations has been achieved only in very spe-

cific cases (e.g., Hopfield (1982); Ben-Yishai et al. (1995);

Wang (2002)).

One of the most popular and best-studied classes of network

models is based on fully random recurrent connectivity (Sompo-

linsky et al., 1988; Brunel, 2000; van Vreeswijk and Sompolinsky,

1996). Such networks display internally generated irregular activ-

ity that closely resembles spontaneous cortical patterns re-

corded in vivo (Shadlen and Newsome, 1998). However,

randomly connected recurrent networks display only very ste-

reotyped responses to external inputs (Rajan et al., 2010), can

implement only a limited range of input-output computations,

and their spontaneous dynamics are typically high dimensional

(Williamson et al., 2016). To implement more elaborate computa-

tions and low-dimensional dynamics, classical network models

rely instead on highly structured connectivity, in which every

neuron belongs to a distinct cluster and is selective to only one

feature of the task (e.g.,Wang (2002); Amit and Brunel (1997); Lit-

win-Kumar and Doiron (2012)). Actual cortical connectivity ap-

pears to be neither fully random nor fully structured (Harris and

Mrsic-Flogel, 2013), and the activity of individual neurons dis-

plays a similar mixture of stereotypy and disorder (Rigotti et al.,

2013; Mante et al., 2013; Churchland and Shenoy, 2007). To

take these observations into account and implement general-

purpose computations, a large variety of functional approaches

have been developed for training recurrent networks and

designing appropriate connectivity matrices (Hopfield, 1982;

Jaeger and Haas, 2004; Maass et al., 2007; Sussillo and Abbott,

2009; Eliasmith and Anderson, 2004; Boerlin et al., 2013; Pas-

canu et al., 2013; Martens and Sutskever, 2011). A unified con-

ceptual picture of how connectivity determines dynamics and
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computations is, however, currently missing (Barak, 2017; Sus-

sillo, 2014).

Remarkably, albeit developed independently and motivated

by different goals, several of the functional approaches for

designing connectivity appear to have reached similar solutions

(Hopfield, 1982; Jaeger and Haas, 2004; Sussillo and Abbott,

2009; Eliasmith and Anderson, 2004; Boerlin et al., 2013), in

which the implemented computations do not determine every

single entry in the connectivity matrix but instead rely on a spe-

cific type of minimal, low-dimensional structure, so that in math-

ematical terms the obtained connectivity matrices are low rank.

In classical Hopfield networks (Hopfield, 1982; Amit et al.,

1985), a rank-one term is added to the connectivity matrix for

every item to be memorized, and each of these terms fixes a sin-

gle dimension, i.e., row/column combination, of the connectivity

matrix. In echo state (Jaeger and Haas, 2004; Maass et al., 2007)

and FORCE learning (Sussillo and Abbott, 2009), and similarly

within the Neural Engineering Framework (Eliasmith and Ander-

son, 2004), computations are implemented through feedback

loops from readout units to the bulk of the network. Each feed-

back loop is mathematically equivalent to adding a rank-one

component and fixing a single row/column combination of the

otherwise random connectivity matrix. In the predictive spiking

theory (Boerlin et al., 2013), the requirement that information is

represented efficiently leads again to a connectivity matrix with

similar low-rank form. Taken together, the results of these

studies suggest that a minimal, low-rank structure added on

top of random recurrent connectivity may provide a general

and unifying framework for implementing computations in recur-

rent networks.

Based on this observation, here we study a class of recurrent

networks in which the connectivity is a sum of a structured,

low-rank part and a random part. We show that in such net-

works, both spontaneous and stimulus-evoked activity are

low-dimensional and can be predicted from the geometrical

relationship between a small number of high-dimensional vec-

tors that represent the connectivity structure and the feedfor-

ward inputs. This understanding of the relationship between

connectivity and network dynamics allows us to directly design

minimal, low-rank connectivity structures that implement spe-

cific computations. We focus on four tasks of increasing

complexity, starting with basic binary discrimination and ending

with context-dependent evidence integration (Mante et al.,

2013). We find that the dynamical repertoire of the network in-

creases quickly with the dimensionality of the connectivity

structure, so that rank-two connectivity structures are already

sufficient to implement complex, context-dependent tasks

(Mante et al., 2013; Saez et al., 2015). For each task, we illus-

trate the relationship between connectivity, low-dimensional

dynamics, and the performed computation. In particular, our

framework naturally captures the ubiquitous observation that

single-neuron responses are highly heterogeneous and mixed

(Rigotti et al., 2013; Mante et al., 2013; Churchland and She-

noy, 2007; Machens et al., 2010), while the dimensionality of

the dynamics underlying computations is low and increases

with task complexity (Gao and Ganguli, 2015). Crucially, for

each task, our framework produces experimentally testable

predictions that directly relate connectivity, the dominant di-
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mensions of the dynamics, and the computational features of

individual neurons.
RESULTS

We studied a class of models that we call low-rank recurrent net-

works. In these networks, the connectivity matrix was given by a

sum of an uncontrolled, random matrix and a structured,

controlled matrix P. The structured matrix P was low-rank, i.e.,

it consisted only of a small number of independent rows and col-

umns, and its entries were assumed to be weak (of order 1=N,

where N is the number of units in the network). We considered

P moreover to be fixed and known, and uncorrelated with the

random part gc, which was considered unknown except for its

statistics (mean 0, variance g2=N). As in classical models, the

networks consisted of N firing rate units with a sigmoid input-

output transfer function (Sompolinsky et al., 1988; Sussillo and

Abbott, 2009):

_xiðtÞ= � xiðtÞ+
XN
j = 1

JijfðxjðtÞÞ+ Ii; (Equation 1)

where xiðtÞ is the total input current to unit i, Jij =gcij +Pij is the

connectivity matrix, fðxÞ= tanhðxÞ is the current-to-rate transfer

function, and Ii is the external, feedforward input to unit i.

To connect with the previous literature and introduce the

methods that underlie our results, we start by describing the

spontaneous dynamics ðIi = 0Þ in a network with a unit-rank

structure P. We then turn to the response to external inputs,

the core of our results that we exploit to demonstrate how

low-rank networks can implement four tasks of increasing

complexity.
One-Dimensional Spontaneous Activity in Networks
with Unit-Rank Structure
We started with the simplest possible type of low-dimensional

connectivity, a matrix P with unit rank (Figure 1A). Such a

matrix is specified by two N-dimensional vectors m= fmig
and n = fnjg, which fully determine all its entries. Every column

in this matrix is a multiple of the vector m, and every row is

a multiple of the vector n, so that the individual entries are

given by

Pij =
minj

N
: (Equation 2)

Wewill callm and n, respectively, the right- and left-connectiv-

ity vectors (as they correspond to the right and left eigenvectors

of the matrix P, see STARMethods), and we consider them arbi-

trary but fixed and uncorrelated with the random part of the con-

nectivity. As we will show, the spontaneous network dynamics

can be directly understood from the geometrical arrangement

of the vectors m and n.

In absence of structured connectivity, the dynamics are deter-

mined by the strength g of the random connectivity: for g< 1, the

activity in absence of inputs decays to zero, while for g> 1 it dis-

plays strong, chaotic fluctuations (Sompolinsky et al., 1988). Our

first aim was to understand how the interplay between the fixed,
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Figure 1. Spontaneous Activity in Random Networks with Unit-Rank Connectivity Structure
(A) The recurrent network model, whose connectivity matrix consists of the sum of a random (gray) and of a structured unit-rank (colored) component.

(B) Left: dynamical regimes of the network activity as function of the structure connectivity strength mTn=N and the random strength g. Gray areas: bistable

activity; red: chaotic activity. Side panels: samples of dynamics from finite networks simulations (parameters indicated by colored dots in the phase diagram).

(C and D) Activity statistics as the random strength g is increased, and the structure strength is fixed to 2.2 (dashed line in B).

(C) Activity along the vector m, as quantified by k (Equation 3). Blue (resp. red) lines: theoretical prediction for stationary (resp. chaotic) dynamics.

(D) Activity variance due to random connectivity. Blue and pink lines: static heterogeneity; red: temporal variance that quantifies chaotic activity. Dots: simulations

of finite-size networks.

See STAR Methods for details.
low-rank part and the random part of the connectivity shapes the

spontaneous activity in the network.

Our analysis of network dynamics relies on an effective, statis-

tical description that can be mathematically derived if the

network is large and the low-dimensional part of the connectivity

is weak (i.e., if Pij scales inversely with the number of units N in

the network as in Equation 2). Under those assumptions, the ac-

tivity of each unit can be described in terms of themean and vari-

ance of the total input it receives. Dynamical equations for these

quantities can be derived by extending the classical dynamical

mean-field theory (Sompolinsky et al., 1988). This theory

effectively leads to a low-dimensional description of network dy-

namics in terms of equations for a couple of macroscopic quan-

tities. Full details of the analysis are provided in the STAR

Methods; here, we focus only on the main results.

The central ingredient of the theory is an equation for the

average equilibrium input mi to unit i:

mi = kmi; where k=
1

N

XN
j = 1

nj

�
fj

�
: (Equation 3)

The scalar quantity k represents the overlap between the left-

connectivity vector n and the N-dimensional vector ½f�= f½fj�g
that describes the mean firing activity of the network (½fj� is the

firing rate of unit j averaged over different realizations of the
random component of the connectivity, and depends implicitly

on k). The overlap k therefore quantifies the degree of structure

along the vector n in the activity of the network. If k> 0, the equi-

librium activity of each neuron is correlated with the correspond-

ing component of the vector n, while k= 0 implies no such struc-

ture is present. The overlap k is the key macroscopic quantity

describing the network dynamics, and our theory provides equa-

tions specifying its dependence on network parameters.

If one represents the network activity as a point in the N�
dimensional state space where every dimension corresponds

to the activity of a single unit, Equation 3 shows that the

structured part of the connectivity induces a one-dimensional

organization of the spontaneous activity along the vector m.

This one-dimensional organization, however, emerges only if

the overlap k does not vanish. As the activity of the network is

organized along the vector m, and k quantifies the projection

of the activity onto the vector n, non-vanishing values of k require

a non-vanishing overlap between vectorsm and n. This overlap,

given by mTn=N =
P

jmjnj=N, directly quantifies the strength of

the structure in the connectivity. The connectivity structure

strength mTn=N and the activity structure strength k are there-

fore directly related, but in a highly non-linear manner. If the

connectivity structure is weak, the network only exhibits

homogeneous, unstructured activity corresponding to k= 0 (Fig-

ure 1B, blue). If the connectivity structure is strong, structured
Neuron 99, 609–623, August 8, 2018 611



heterogeneous activity emerges ðk> 0Þ, and the activity of the

network at equilibrium is organized in one dimension along the

vectorm (Figures 1B, green, and 1C), while the random connec-

tivity induces additional heterogeneity along the remaining N� 1

directions. Note that because of the symmetry in the specific

input-output function we use, when a heterogeneous equilibrium

state exists, the configuration with the opposite sign is an equi-

librium state too, so that the network activity is bistable (for more

general asymmetric transfer functions, this bistability is still pre-

sent, although the symmetry is lost, see Figure S7).

The random part of the connectivity disrupts the organization

of the activity induced by the connectivity structure through two

different effects. The first effect is that as the random strength g

is increased, for any given realization of the random part of the

connectivity, the total input to unit i will deviate more strongly

from the expected mean mi (Figure 1D). As a consequence, the

activity along the N� 1 directions that are orthogonal to m in-

creases, resulting in a noisy input to individual neurons that

smoothens the gain of the non-linearity. This effectively leads

to a reduction of the overall structure in the activity as quantified

by k (Figure 1C). A second, distinct effect is that increasing the

random strength eventually leads to chaotic activity as in purely

random networks. Depending on the strength of the structured

connectivity, two different types of chaotic dynamics can

emerge. If the disorder in the connectivity is much stronger

than structure, the overlap k is zero (Figure 1C). As a result, the

mean activity of all units vanishes and the dynamics consist of

unstructured, N� dimensional temporal fluctuations (Figure 1D),

as in the classical chaotic state of fully random networks (Fig-

ure 1B, red). In contrast, if the strengths of the random and struc-

tured connectivity are comparable, a structured type of chaotic

activity emerges, in which k> 0 so that the mean activity of

different units is organized in one dimension along the direction

m as shown by Equation 3, but the activity of different units now

fluctuates in time (Figure 1B, orange). As for structured static ac-

tivity, in this situation the system is bistable as states with oppo-

site signs of k always exist.

The phase diagram in Figure 1B summarizes the different

types of spontaneous dynamics that can emerge as a function

of the strength of structured and random components of the

connectivity matrix. Altogether, the structured component of

connectivity favors a one-dimensional organization of network

activity, while the random component favors high-dimensional,

chaotic fluctuations. Particularly interesting activity emerges

when the structure and disorder are comparable, in which

case the dynamics show one-dimensional structure combined

with high-dimensional temporal fluctuations that can give rise

to dynamics with very slow timescales (see Figure S6).

Two-Dimensional Activity in Response to an
External Input
We now turn to the response to an external, feedforward input

(Figure 2A). At equilibrium, the total average input to unit i is

the sum of a recurrent input kmi and the feedforward input Ii:

mi = kmi + Ii; where k=
1

N

XN
j = 1

nj

�
fj

�
: (Equation 4)
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Transient, temporal dynamics close to this equilibrium are ob-

tained by including temporal dependencies in k and Ii (see STAR

Methods; Equation 102).

Figure 2B illustrates the response of the network to a step

input. The response of individual units is highly heterogeneous,

different units showing increasing, decreasing, or multi-phasic

responses. While every unit responds differently, the theory pre-

dicts that, at the level of the N-dimensional state space repre-

senting the activity of the whole population, the trajectory of

the activity lies on average on the two-dimensional plane

spanned by the right-connectivity vector m and the vector

I= fIig that corresponds to the pattern of external inputs (Fig-

ure 2B). Applying to the simulated activity a dimensionality

reduction technique (see Cunningham and Yu [2014] for a recent

review) such as principal-component analysis confirms that the

two dominant dimensions of the activity indeed lie in the m� I

plane (Figure 2C), while the random part of connectivity leads

to additional activity in the remaining N� 2 directions that grows

quickly with the strength of random connectivity g (see Fig-

ure S3). This approach therefore directly links the connectivity

in the network to the emerging low-dimensional dynamics and

shows that the dominant dimensions of activity are determined

by a combination of feedforward inputs and connectivity

(Wang et al., 2018).

The contribution of the connectivity vector m to the two-

dimensional trajectory of activity is quantified by the overlap k

between the network activity ½f� and the left-connectivity vector

n (Equation 4). If k = 0, the activity trajectory is one dimensional

and simply propagates the pattern of feedforward inputs. This is

in particular the case for fully random networks. If ks0, the

network response is instead a non-trivial two-dimensional com-

bination of the input and connectivity structure patterns. In gen-

eral, the value of k, and therefore the organization of network

activity, depends on the geometric arrangement of the input vec-

tor I with respect to the connectivity vectors m and n, as well as

on the strength of the random component of the connectivity g.

As the neural activity lies predominantly in the m� I plane, a

non-vanishing k, together with non-trivial two-dimensional activ-

ity, is obtained when the vector n has a non-zero component in

the m� I plane. Two qualitatively different input-output regimes

can be distinguished. The first one is obtained when the connec-

tivity vectorsm and n are orthogonal to each other (Figure 2D, left

and center). In that case, the overlap between them is zero, and

the spontaneous activity in the network bears no sign of the un-

derlying connectivity structure. Adding an external input can,

however, reveal this connectivity structure and generate non-

trivial two-dimensional activity if the input vector I has a non-

zero overlap with the left-connectivity vector n. In such a

situation, the vector n picks up the component of the activity

along the feedforward input direction I. This leads to a non-

zero overlap k, which in turn implies that the network activity

will have a component along the right-connectivity vector m.

Increasing the external input along the direction of nwill therefore

progressively increase the response alongm (Figure 2D, center),

leading to a two-dimensional output.

A second, qualitatively different input-output regime is ob-

tained when the connectivity vectors m and n have a strong

enough overlap along a common direction (Figure 2D, right).
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Figure 2. External Inputs Generate Two-Dimensional Activity in Random Networks with Unit-Rank Structure

(A) The pattern of external inputs can be represented by an N-dimensional vector I = fIig, where Ii is the input to unit i.

(B) Transient dynamics in response to a step input along I in a sample network of N= 3500 units. Left: activity traces for five units. Right: projections of the

population trajectory onto the plane defined by the right-connectivity vectorm and the input vector I. Light trace: theoretical prediction. Dark traces: simulations.

(C) Principal-component analysis (PCA) of the average activity trajectory. Bottom: fraction of SD explained by successive PCs. Top: correlation between PCs and

the vectors m and I. The direction of the projections onto the m� I plane of the two top PCs e1 and e2 are represented in (B). See also Figure S3.

(D) The activity k alongm is determined by the geometrical arrangement of the vector I and the connectivity vectorsm and n. Three different cases are illustrated:

(left) I,m, and nmutually orthogonal; (center) m and nmutually orthogonal, but I has a non-zero overlap with n; (right)m and n have non-zero overlap, leading to

bistable activity in absence of inputs. Increasing the external input along n suppresses one of the two stable states. Continuous lines: theoretical predictions.

Dots: simulations.

See STAR Methods for details.
As already shown in Figure 1, an overlap larger than unity be-

tweenm and n induces bistable, structured spontaneous activity

along the dimensionm. Adding an external input along the vector

n increases the activity along m but also eventually suppresses

one of the bistable states. Large external inputs along the n di-

rection therefore reliably set the network into a state in which

the activity is a two-dimensional combination of the input direc-

tion and the connectivity direction m. This can lead to a strongly

non-linear input-output transformation if the network was initially

set in the state that lies on the opposite branch (Figure 2D, right).

An additional effect of an external input is that it generally

tends to suppress chaotic activity present when the random

part of connectivity is strong (Figures S3 and S4). This suppres-

sion occurs irrespectively of the specific geometrical configura-

tion between the input I and connectivity vectors m and n

and therefore independently of the two input-output regimes

described above. Altogether, external inputs suppress both

chaotic and bistable dynamics (Figure S4) and therefore always

decrease the amount of variability in the dynamics (Churchland

et al., 2010; Rajan et al., 2010).

In summary, external, feedforward inputs to a network with

unit-rank connectivity structure in general lead to two-dimen-
sional trajectories of activity. The elicited trajectory depends on

the geometrical arrangement of the pattern of inputs with respect

to the connectivity vectors m and n, which play different roles.

The right-connectivity vector m determines the output pattern

of network activity, while the left-connectivity vector n instead

selects the inputs that give rise to outputs along m. An output

structured alongm can be obtained when n selects recurrent in-

puts (non-zero overlap between n and m) or when it selects

external inputs (non-zero overlap between n and I).

Higher-Rank Structure Leads to a Rich Dynamical
Repertoire
This far we focused on unit-rank connectivity structure, but our

framework can be directly extended to higher-rank structure. A

more general structured component of rank r � N can be writ-

ten as a superposition of r independent unit-rank terms

Pij =
m

ð1Þ
i n

ð1Þ
j

N
+.+

m
ðrÞ
i n

ðrÞ
j

N
; (Equation 5)

and is inprinciple characterizedby2r vectorsmðkÞ andnðkÞ. In such
a network, the average dynamics lie in the ðr + 1Þ-dimensional
Neuron 99, 609–623, August 8, 2018 613
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Figure 3. Implementing a Simple Go-Nogo Discrimination Task with a Unit-Rank Connectivity Structure

(A) A linear readout is added to the network, with randomly chosen weightswi. The stimuli are represented by random input patterns IA and IB. The task consists in

producing an output in response to stimulus A, but not B. The simplest unit-rank structure that implements the task is given by m=w and n = IA.

(B) Response of a sample network to the Go (blue) and Nogo (green) inputs. Activity traces for five units.

(C) Projections of the population trajectories onto the planes predicted to contain the dominant part of the dynamics. Gray: predicted trajectory. Colored traces:

simulations.

(D) Linear regression coefficients for the Go and the Nogo stimuli. Every dot corresponds to a network unit.

(E) Readout dynamics for the Go (blue) and the Nogo (green) stimulus.

(F) Average connectivity strength as a function of the product between the coefficients of the first PC. Every dot corresponds to a pair of units.

(G) Generalization properties of the network. We select two Go stimuli IA1 and IA2 , and we set n = IA1 + IA2 . We build the input pattern as a normalized mixture of the

two preferred patterns, and we gradually increase the component along IA1 . Continuous lines: theoretical predictions. Dots: simulations.

See STAR Methods for details.
subspace spanned by the r right-connectivity vectors

m kð Þ; k = 1;.; r and the input vector I, while the left connectivity

vectors nðkÞ select the inputs amplified along the corresponding

dimension mðkÞ. The details of the dynamics will in general

depend on the geometrical arrangement of these 2r vectors

among themselves and with respect to the input pattern. The

number of possible configurations increases quickly with the

structure rank, leading to a wide repertoire of dynamical states

that includes continuous attractors (Figure S5) and sustained

oscillatory activity (Figure S8). In the remainder of thismanuscript,

we will explore only the rank-two case.

Implementing a Simple Discrimination Task
Having developed an intuitive, geometric understanding of how

a given unit-rank connectivity structure determines the low-

dimensional dynamics in a network, we now reverse our

approach to ask how a given computation can be implemented

by choosing appropriately the structured part of the connectivity.

We start with the computation underlying one of the most basic

and most common behavioral tasks, Go-Nogo stimulus discrim-

ination. In this task, an animal has to produce a specific motor
614 Neuron 99, 609–623, August 8, 2018
output, e.g., press a lever or lick a spout, in response to a stim-

ulus IA (the Go stimulus), and ignore another stimuli IB (Nogo

stimuli). This computation can be implemented in a straightfor-

ward way in a recurrent network with a unit-rank connectivity

structure. While such a simple computation does not in principle

require a recurrent network, the implementation we describe

here illustrates in a transparent manner the relationship between

connectivity, dynamics, and computations in low-rank networks

and leads to non-trivial and directly testable experimental pre-

dictions. It also provides the basic building block for more com-

plex tasks, which we turn to in the next sections.

We model the sensory stimuli as random patterns of external

inputs to the network, so that the two stimuli are represented

by two fixed, randomly chosen N-dimensional vectors IA and

IB. To model the motor response, we supplement the network

with an output unit, which produces a linear readout

z tð Þ= 1

N

P
iwi4 xi tð Þð Þ of network activity (Figure 3A). The readout

weights wi are chosen randomly and form also a fixed N-dimen-

sional vector w. The task of the network is to produce an output

that is selective to the Go stimulus: the readout z at the end of



stimulus presentation needs to be non-zero for the input pattern

IA that corresponds to the Go stimulus, and zero for the other

input IB.

The two N-dimensional vectors m and n that generate the

appropriate unit-rank connectivity structure to implement the

task can be directly determined from our description of network

dynamics. As shown in Equation 4 and Figure 2, the response of

the network to the input pattern I is in general two-dimensional

and lies in the plane spanned by the vectorsm and I. The output

unit will therefore produce a non-zero readout only if the readout

vector w has a non-vanishing overlap with either m or I. As w is

assumed to be uncorrelated, and therefore orthogonal, to all

input patterns, this implies that the connectivity vector m needs

to have a non-zero overlap with the readout vector w for the

network to produce a non-trivial output. This output will depend

on the amount of activity alongm, quantified by the overlap k. As

shown in Figure 2, the overlap k will be non-zero only if n has a

non-vanishing overlap with the input pattern. Altogether, imple-

menting the Go-Nogo task therefore requires that the right-con-

nectivity vector m is correlated with the readout vector w, and

that the left-connectivity vector n is correlated with the Go stim-

ulus IA.

Choosing m=w and n= IA therefore provides the simplest

unit-rank connectivity that implements the desired computation.

Figure 3 illustrates the activity in the corresponding network. At

the level of individual units, by construction both stimuli elicit

large and heterogeneous responses (Figure 3B) that display

mixed selectivity (Figure 3D). As predicted by the theory, the

response to stimulus B is dominantly one-dimensional and orga-

nized along the input direction IB, while the response to stimulus

A is two-dimensional and lies in the plane defined by the right-

connectivity vector m and the input direction IA (Figure 3C).

The readout from the network corresponds to the projection of

the activity onto them direction and is non-zero only in response

to stimulus A (Figure 3E), so that the network indeed implements

the desired Go-Nogo task. Our framework therefore allows us to

directly link the connectivity, the low-dimensional dynamics, and

the computation performed by the network and leads to two

experimentally testable predictions. The first one is that perform-

ing a dimensionality reduction separately on responses to the

two stimuli should lead to larger dimensionality of the trajectories

in response to the Go stimulus. The second prediction is that for

the Go stimulus, the dominant directions of activity depend on

the recurrent connectivity in the network, while for the Nogo

stimulus they do not. More specifically, for the activity elicited

by theGo stimulus, the dominant principal components are com-

binations of the input vector IA and right-connectivity vector m.

Therefore, if two neurons have large principal-component

weights, they are expected to also have large m weights and

therefore stronger mutual connections than average (Figure 3F,

top). In contrast, for the activity elicited by the Nogo stimulus,

the dominant principal components are determined solely by

the feedforward input, so that no correlation between dominant

PC weights and recurrent connectivity is expected (Figure 3F,

bottom). This prediction can in principle be directly tested in ex-

periments analogous to Ko et al. (2011), where calcium imaging

in behaving animals is combined with measurements of connec-

tivity in a subset of recorded neurons. Note that in this setup very
weak structured connectivity is sufficient to implement compu-

tations, so that the expected correlations may be weak if the

random part of the connectivity is strong (see Figure S5).

The unit-rank connectivity structure forms the fundamental

scaffold for the desired input-output transform. The random

part of the connectivity adds variability around the target output

and can induce additional chaotic fluctuations. Summing the ac-

tivity of individual units through the readout unit, however, aver-

ages out this heterogeneity, so that the readout error decreases

with network size as 1=
ffiffiffiffi
N

p
(Figure S5). The present implementa-

tion is therefore robust to noise and has desirable computational

properties in terms of generalization to novel stimuli. In particular,

it can be extended in a straightforward way to the detection of a

category of Go stimuli, rather than a single stimulus (Figure 3G).

Detection of a Noisy Stimulus
We now turn to a slightly more complex task: integration of a

continuous, noisy stimulus. In contrast to the previous discrimi-

nation task, where the stimuli were completely different (i.e.,

orthogonal), here we consider a continuum of stimuli that differ

only along the intensity of a single feature, such as the coherence

of a random-dot kinetogram (Newsome et al., 1989). In a given

stimulus presentation, this feature moreover fluctuates in time.

We therefore represent each stimulus as cðtÞI, where I is a fixed,

randomly chosen input vector that encodes the relevant stimulus

feature, and cðtÞ is the amplitude of that feature. We consider a

Go-Nogo version of this task, in which the network has to pro-

duce an output only if the average value of c is larger than a

threshold (Figure 4A).

As for the basic discrimination task, the central requirements

for a unit-rank network to implement this task are that the

right-connectivity vector m is correlated with the readout vector

w, and the left-connectivity vector n is correlated with the input

pattern I. A key novel requirement in the present task is, however,

that the response needs to be non-linear to produce the Go

output when the strength of the input along I is larger than the

threshold. As shown in Figure 2D, such a non-linearity can be ob-

tained when the left- and right-connectivity vectors n andm have

a strong enough overlap. We therefore add a shared component

to m and n along a direction orthogonal to both w and I. In that

setup, if the stimulus intensity c is low, the network will be in a bi-

stable regime, in which the activity along the directionm can take

two distinct values for the same input (Figure 2D, right).

Assuming that the lower state represents a Nogo output, and

that the network is initialized in this state at the beginning of

the trial, increasing the stimulus intensity c above a threshold

will lead to a sudden jump, and therefore a non-linear detection

of the stimulus. Because the input amplitude fluctuates noisily in

time, whether such a jump occurs depends on the integrated es-

timate of the stimulus intensity. The timescale over which this es-

timate is integrated is determined by the time constant of the

effective exponential filter describing the network dynamics. In

our unit-rank network, this time constant is set by the connectiv-

ity strength, i.e., the overlap between the left- and right-connec-

tivity vectors m and n, which also determines the value of the

threshold. Arbitrarily large timescales can be obtained by adjust-

ing this overlap close to the bifurcation value, in which case the

threshold becomes arbitrarily small (Figure 4F). In this section,
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Figure 4. Implementing a Noisy Detection Task with a Unit-Rank Connectivity Structure

(A) The network is given a noisy input cðtÞ along a fixed, random pattern of inputs I. The task consists in producing an output if the average input c is larger than a

threshold q.

(B) Dynamics in a sample network. Top: noisy input and threshold. Bottom: activity traces for four units and two different noise realizations in the stimulus, leading

to a Go (dark blue) and a Nogo (light blue) output.

(C) Readout dynamics for the two stimuli.

(D) Projections of thepopulation trajectory onto the planedefinedby the right-connectivity vectorm and the input vector I. Left: single-trial trajectories corresponding

to (B). Right: trial-averaged trajectories, for Go (top) and Nogo (bottom) outputs, and different values of the mean input c. Stars indicate correct responses.

(E) Left: linear regression coefficients for the input amplitude and the decision outcome. Every dot corresponds to a network unit. Right: correlation coefficients

between the vectorsm and I and the input and choice regression axes (see STARMethods). Projection directions of the two input and choice regression axes onto

the m� I plane are shown in (D).

(F) Detection threshold (dashed) and timescale of the effective exponential filter (full line) for increasing values of the structure strength.

(G) Psychometric curve. The shaded area indicates the bistable region.

(H) Average connectivity strength as a function of the product of the linear regression coefficients for the choice variable. Every dot corresponds to a pair of

network units.

See STAR Methods for details.
we fix the structure strength so that the threshold is set to 0.5,

which corresponds to an integration timescale of the order of

the time constant of individual units.

Figure 4 illustrates the activity in an example implementation

of this network. In a given trial, as the stimulus is noisy, the

activity of the individual units fluctuates strongly (Figure 4B).

Our theory predicts that the population trajectory on average

lies in the plane defined by the connectivity vector m and the

input pattern I (Figure 4D). Activity along the m direction is

picked up by the readout, and its value at the end of stimulus
616 Neuron 99, 609–623, August 8, 2018
presentation determines the output (Figure 4C). Because of the

bistable dynamics in the network, whether the m direction is

explored, and an output produced, depends on the specific

noisy realization of the stimulus. Stimuli with an identical

average strength can therefore lead to either two-dimensional

trajectories of activity and Go responses or one-dimensional tra-

jectories of activity corresponding to Nogo responses (Fig-

ure 4D). The probability of generating an output as function of

stimulus strength follows a sigmoidal psychometric curve that

reflects the underlying bistability (Figure 4G). Note that the
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Figure 5. Implementing a Context-Dependent Go-Nogo Discrimination Task with a Rank-Two Connectivity Structure

(A) As in Figure 3, two stimuli A and B are presented to the network. The task consists in producing an output in response to the Go stimulus, which is determined

by the contextual cue (A in context A, B in context B), modeled as inputs along random directions IctxA and IctxB.

(B) Inputs along the overlap direction between the left- and the right-connectivity vectors modulate the response threshold of the network (see also Figure S5).

(C) Dynamics in a sample network in response to the stimulus A. Top: stimulus and contextual input. Bottom: activity for five units in context A (crimson) and

B (pink).

(D) Readout dynamics in the two contexts.

(E) Projections of the average population trajectories onto the planes spanned by vectors w, IA and IB.

(F) Network performance in the two contexts.

(G) Average connectivity strength between pairs of units as a function of the product between the regression coefficients for context. Every dot corresponds to a

pair of network units.

See STAR Methods for details.
bistability is not clearly apparent on the level of individual units.

In particular, the activity of individual units is always far from

saturation, as their inputs are distributed along a zero-centered

Gaussian (Equation 4).

The responses of individual units are strongly heterogeneous

and exhibit mixed selectivity to stimulus strength and output

choice (Figure 4E). A popular manner to interpret such activity

at the population level is a targeted dimensional reduction

approach, in which input and choice dimensions are determined

through regression analyses (Mante et al., 2013). As expected

from our theoretical analysis, the two dimensions obtained

through regression are closely related to m and I; in particular,

the choice dimension is highly correlated with the right-connec-

tivity vectorm (Figure 4E). As a result, the plane in which network

activity dominantly lies corresponds to the plane defined by the

choice and the input dimensions (Figure 4D). Our framework

therefore directly links recurrent connectivity and effective

output choice direction through the low-dimensional dynamics.
A resulting experimentally testable prediction is that neurons

with strong choice regressors have stronger mutual connections

(Figure 4H).

A Context-Dependent Discrimination Task
We next consider a context-dependent discrimination task, in

which the relevant response to a stimulus depends on an addi-

tional, explicit contextual cue. Specifically, we focus on the

task studied in Saez et al. (2015) where in one context (referred

to as context A), the stimulus A requires a Go output, and the

stimulus B a Nogo, while in the other context (referred to as

context B), the associations are reversed (Figure 5A). This task

is a direct extension of the basic binary discrimination task intro-

duced in Figure 3; yet it is significantly more complex as it repre-

sents a hallmark of cognitive flexibility: a non-linearly separable,

XOR-like computation that a single-layer feedforward network

cannot solve (Rigotti et al., 2010; Fusi et al., 2016). We will

show that this task can be implemented in a rank-two recurrent
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network that is a direct extension of the unit-rank network used

for the discrimination task in Figure 4.

This context-dependent task can be seen as a combination of

two basic, opposite Go-Nogo discriminations, each of which can

be independently implemented by a unit-rank structure with the

right-connectivity vector m correlated to the readout, and the

left-connectivity vector correlated to the Go input (IA for context

A, IB for context B). Combining two such unit-rank structures,

with left-connectivity vectors nð1Þ and nð2Þ correlated respectively

with IA and IB, leads to a rank-two connectivity structure that

serves as a scaffold for the present task. The cues for context

A and B are represented by additional inputs along random

vectors IctxA and IctxB, presented for the full length of the trial

(Remington et al., 2018) (Figure 5C). These inputs are the only

contextual information incorporated in the network. In particular,

the readout vector w is fixed and independent of the context

(Mante et al., 2013). Crucially, since the readout w needs to pro-

duce an output for both input stimuli, both right-connectivity vec-

tors mð1Þ and mð2Þ need to be correlated with it.

The key requirement for implementing context-dependent

discrimination is that each contextual input effectively switches

off the irrelevant association. To implement this requirement,

we rely on the same non-linearity as for the noisy discrimination

task, based on the overlap between the left- and right-connectiv-

ity vectors (Figure 2D). We however exploit an additional prop-

erty, which is that the threshold of the non-linearity (i.e., the

position of the transition from a bistable to a mono-stable region

in Figure 2D) can be controlled by an additional modulatory input

along the overlap direction betweenm and n (Figures 5B and S4).

Such a modulatory input acts as an effective offset for the bist-

ability at the macroscopic, population level (see Equation 153 in

STARMethods). A stimulus of a given strength (e.g., unit strength

in Figure 5B) may therefore induce a transition from the lower to

the upper state (Figure 5B, top), or no transition (Figure 5B bot-

tom) depending on the strength of the modulatory input that

sets the threshold value. While in the noisy discrimination task,

the overlapbetweenmand nwaschosen in anarbitrary direction,

in the present setting, we take the overlaps between each pair of

left- and right-connectivity vectors to lie along the direction of the

corresponding contextual input (i.e., mð1Þ and nð1Þ overlap along

IctxA, m
ð2Þ and nð2Þ along IctxB), so that contextual inputs directly

modulate the threshold of the non-linearity. The final rank-two

setup is described in detail in the STAR Methods.

Figure 5 illustrates the activity in an example of the resulting

network implementation. The contextual cue is present from

the very beginning of the trial and effectively sets the network

in a context-dependent initial state (Figure 5C) that corresponds

to the lower of the two bistable states. The low-dimensional

response of the network to the following stimulus is determined

by this initial state and the sustained contextual input. If the cue

for context A is present, stimulus A leads to the crossing of the

non-linearity, a transition from the lower to the upper state, and

therefore a two-dimensional response in the plane determined

by IA and w (Figure 5E, top left), generating a Go output (Fig-

ure 5D). In contrast, if the cue for context B is present, the

threshold of the underlying non-linearity is increased in the direc-

tion of input IA (Figure 5B, bottom), so that the presentation of

stimulus A does not induce a transition between the lower and
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upper states but leads only to a one-dimensional trajectory

orthogonal to the readout, and therefore a Nogo response (Fig-

ure 5E, top right). The situation is totally symmetric in response

to stimulus B (Figure 5E, bottom), so that contextual cues fully

reverse the stimulus-response associations (Figure 5F). Overall,

this context-dependent discrimination relies on strongly non-

linear interactions between the stimulus and contextual inputs,

that on the connectivity level are implemented by overlaps be-

tween the connectivity vectors along the contextual inputs. A

central, experimentally testable prediction of our framework is

therefore that, if a network is implementing this computation,

units with strong contextual selectivity have on average stronger

mutual connections (Figure 5G).

A Context-Dependent Evidence Integration Task
We finally examine a task inspired by Mante et al. (2013) that

combines context-dependent output and fluctuating, noisy in-

puts. The stimuli now consist of superpositions of two different

features A and B, and the strengths of both features fluctuate

in time during a given trial. In Mante et al. (2013), the stimuli

were random dot kinetograms, and the features A and B corre-

sponded to the direction of motion and color of these stimuli.

The task consists in classifying the stimuli according to one of

those features, the relevant one being indicated by an explicit

contextual cue (Figure 6A).

We implemented a Go-Nogo version of the task, in which the

output is required to be non-zero when the relevant feature is

stronger than a prescribed threshold (arbitrarily set to 0.5). The

present task is therefore a direct combination of the detection

task introduced in Figure 4 and the context-dependent discrim-

ination task of Figure 5, but the individual stimuli are now two

dimensional, as they consist of two independently varied fea-

tures A and B. In this task, a significant additional difficulty is

that on every trial the irrelevant feature needs to be ignored,

even if it is stronger than the relevant feature (e.g., color coher-

ence stronger than motion coherence on a motion-context trial).

This context-dependent evidence integration task can be im-

plemented with exactly the same rank-two configuration as the

basic context-dependent discrimination in Figure 5, with contex-

tual gating relying on the same non-linear mechanism as in

Figure 5B. The contextual cue is presented throughout the trial

(Figure 6B) and determines which of the features of the two-

dimensional stimulus leads to non-linear dynamics along the

direction of connectivity vectorsmð1Þ andmð2Þ (Figure 6D). These

directions share a common component along the readout vector

w, and the readout unit picks up the activity along that dimen-

sion. As a consequence, depending on the contextual cue, the

same stimulus can lead to opposite outputs (Figure 6C). Alto-

gether, in context A, the output is independent of the values of

feature B, and conversely in context B (Figure 6E). The output

therefore behaves as if it were based on two orthogonal readout

directions, yet the readout direction is unique and fixed, and the

output relies instead on a context-dependent selection of the

relevant input feature (Mante et al., 2013).

An important additional requirement in the present task with

respect to the basic context-dependent integration is that the

network needs to perform temporal integration to average out

temporal fluctuations in the stimulus. As illustrated in Figures
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Figure 6. Implementing a Context-Dependent Evidence Accumulation Task Using Rank-Two Connectivity Structure

(A) The stimuli consist of a superposition of two features cA and cB, which fluctuate in time aroundmean values cA and cB. In every trial, a pair of contextual inputs

determines the relevant input feature. The task consists in producing an output if the average strength of the relevant feature is larger than a threshold.

(B) Dynamics in a sample network. Top: stimulus and contextual inputs. Bottom: activity of four units in contexts A (crimson) and B (pink).

(C) Readout dynamics in the two contexts.

(D) Average population trajectories projected onto the planes spanned by vectors w, IA and IB. Blue (resp. green) trajectories have been sorted according to the

value of the strength of stimulus A (resp. B), and averaged across stimulus B (resp. A).

(E) Network performance. Top row: probability of response as function of input strengths cA and cB (simulated data). Bottom: probability of response averaged

over cB. Continuous line: theoretical prediction; dots: simulations.

(F) Projection of the population activity onto the plane defined by the orthogonal components of the vectors mA and mB and comparison with the underlying

circular attractor (see STARMethods). Trajectories are sorted by the strength of the relevant stimulus and averaged across the non-relevant one. The direction of

the projections of the regression axes for choice and context are indicated in gray.

See STAR Methods for details.
6B and 6C, the network dynamics in response to stimuli indeed

exhibit a slow timescale and progressively integrate the input.

Strikingly, such slow dynamics do not require additional con-

straints on network connectivity; they are a direct consequence

of the rank-two connectivity structure used for contextual gating

(in fact the dynamics are already slow in the basic contextual

discrimination task, see Figures 5C and 5D). More specifically,

the symmetry between the two contexts implies that two sets

of left- and right-connectivity vectors have identical overlaps

(i.e.mð1ÞTnð1Þ =mð2ÞTnð2Þ). Without further constraints on the con-

nectivity, such a symmetric configuration leads to an emergence

of a continuous line attractor, with the shape of a two-dimen-

sional ring in the plane defined by mð1Þ and mð2Þ (see STAR

Methods and Figure S5). In the implementation of the present

task, on top of symmetric overlaps, the four connectivity vectors

include a common direction along the readout vector. This addi-

tional constraint eliminates the ring attractor and stabilizes only

two equilibrium states that correspond to Go and Nogo outputs.

Yet, the ring attractor is close in parameter space, and this prox-
imity induces a slowmanifold in the dynamics, so that the trajec-

tories leading to a Go output slowly evolve along two different

sides of the underlying ring depending on the context (Figure 6F).

As a result, the two directions in the plane mð1Þ �mð2Þ corre-

spond to choice and context axis as found by regression analysis

(Figure 6F). A similar mechanism for context-dependent evi-

dence integration based on a line attractor was previously iden-

tified by reverse-engineering a trained recurrent network (Mante

et al., 2013). Whether the underlying dynamical structure was a

ring as in our case or two line attractors for the two contexts de-

pended on the details of the network training protocol (V. Mante,

unpublished data). Here, we show that such amechanism based

on a ring attractor can be implemented in a minimal network with

rank-two connectivity structure, but other solutions can certainly

be found. Note that this rank-two network can also serve as an

alternative implementation for context-independent evidence

integration in which the integration timescale and the threshold

value are fully independent in contrast to the unit-rank implemen-

tation (Figure 4).
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DISCUSSION

Motivated by the observation that a variety of approaches for im-

plementing computations in recurrent networks rely on a com-

mon type of connectivity structure, we studied a class of models

in which the connectivity matrix consists of a sum of a fixed, low-

rank term and a random part. Our central result is that the low-

rank connectivity structure induces low-dimensional dynamics

in the network, a hallmark of population activity recorded in

behaving animals (Gao and Ganguli, 2015). While low-dimen-

sional activity is usually detected numerically using dimen-

sional-reduction techniques (Cunningham and Yu, 2014), we

showed that a mean-field theory allows us to directly predict

the low-dimensional dynamics based on the connectivity and

input structure. This approach led us to a simple, geometrical un-

derstanding of the relationship between connectivity and

dynamics and enabled us to design minimal-connectivity imple-

mentations of specific computations. In particular, we found that

the dynamical repertoire of the network increases quickly with

the rank of the connectivity structure, so that rank-two networks

can already implement a variety of computations. In this study,

we have not explicitly considered structures with rank higher

than two, but our theoretical framework is in principle valid for

arbitrary rank r � N, where N is the size of the network.

While other works have examined dynamics in networks with a

mixture of structured and random connectivity (e.g., Roudi and

Latham [2007]; Ahmadian et al. [2015]), the most classical

approach for implementing computations in recurrent networks

has been to endow them with a clustered (Wang, 2002; Amit

and Brunel, 1997; Litwin-Kumar and Doiron, 2012) or distance-

dependent connectivity (Ben-Yishai et al., 1995). Such networks

inherently display low-dimensional dynamics similar to our

framework (Doiron and Litwin-Kumar, 2014; Williamson et al.,

2016), as clustered connectivity is in fact a special case of low-

rank connectivity. Clustered connectivity, however, is highly or-

dered: each neuron belongs to a single cluster and therefore is

selective to a single task feature (e.g., a given stimulus, or a given

output). Neurons in clustered networks are therefore highly

specialized and display pure selectivity (Rigotti et al., 2013).

Here, instead, we have considered random low-rank structures,

which generate activity organized along heterogeneous direc-

tions in state space. As a consequence, stimuli and outputs

are represented in a random, highly distributed manner and indi-

vidual neurons are typically responsive to several stimuli, out-

puts, or combinations of the two. Such mixed selectivity is a

ubiquitous property of cortical neurons (Rigotti et al., 2013;

Mante et al., 2013; Churchland and Shenoy, 2007) and confers

additional computational properties to our networks (Kanerva,

2009). In particular, it allowed us to easily extend to a context-

dependent situation (Mante et al., 2013; Saez et al., 2015), a

network implementation of a basic discrimination task. This is

typically difficult to do in clustered, purely selective networks

(Rigotti et al., 2010).

The type of connectivity used in our study is closely related to

the classical framework of Hopfield networks (Hopfield, 1982;

Amit et al., 1985). The aim of Hopfield networks is to store in

memory specific patterns of activity by creating for each pattern

a corresponding fixed point in the network dynamics. This is
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achieved by adding a unit-rank term for each item, and one

approach for investigating the capacity of such a setup has relied

on the mean-field theory of a network with a connectivity that

consists of a sumof a rank-one term and a randommatrix (Tirozzi

and Tsodyks, 1991; Shiino and Fukai, 1993; Roudi and Latham,

2007). While this approach is clearly close to the one adopted in

the present study, there are important differences. Within Hop-

field networks, the unit-rank terms are symmetric, so that the

corresponding left- and right-connectivity vectors are identical

for each pattern. Moreover, the unit-rank terms that correspond

to different patterns are generally uncorrelated. In contrast, here

we have considered the more general case where the left- and

right-eigenvectors are different and potentially correlated be-

tween different rank-one terms. Most importantly, our main

focus was on responses to external inputs and input-output

computations, rather than memorizing items. In particular, we

showed that left- and right-connectivity vectors play different

roles with respect to processing inputs, with the left-connectivity

vector implementing input- selection, and the right-connectivity

vector determining the output of the network.

Our study is also directly related to echo-state networks (ESNs)

(Jaeger and Haas, 2004) and FORCE learning (Sussillo and Ab-

bott, 2009). In those frameworks, randomly connected recurrent

networks are trained to produce specified outputs using a

feedback loop from a readout unit to the network, which is math-

ematically equivalent to adding a rank-one term to the random

connectivitymatrix (Maass et al., 2007). In theirmost basic imple-

mentation, both ESN and FORCE learning train only the readout

weights. The training isperformed for afixed, specified realization

of the random connectivity, so that the final rank-one structure is

correlated with the random part of the connectivity and may be

strong with respect to it. In contrast, the results presented here

rely on the assumption that the low-rank structure is weak and in-

dependent from the randompart. Although ESN and FORCE net-

works do not necessarily fulfill this assumption, in ongoing work

we found that our approach describes well networks trained us-

ing ESN or FORCE to produce a constant output (Rivkind and

Barak, 2017). Note that in our framework, the computations rely

solely on the structured part of the connectivity, but ongoing

work suggests that the random part of the connectivity may

play an important role during training.

The specific network model used here is identical to most

studies based on trained recurrent networks (Sussillo and Ab-

bott, 2009; Mante et al., 2013; Sussillo, 2014). It is highly simpli-

fied and lacksmany biophysical constraints, themost basic ones

being positive firing rates, the segregation between excitation

and inhibition and interactions through spikes. Recent works

have investigated extensions of the abstract model used here

to networks with biophysical constraints (Ostojic, 2014; Kadmon

and Sompolinsky, 2015; Harish and Hansel, 2015; Mastrogiu-

seppe and Ostojic, 2017; Thalmeier et al., 2016). Additional

work will be needed to implement the present framework in net-

works of spiking neurons.

Our results imply novel, directly testable experimental predic-

tions relating connectivity, low-dimensional dynamics and

computational properties of individual neurons. Our main result

is that the dominant components of low-dimensional dynamics

are a combination of feedforward input patterns, and vectors



specifying the low-rank recurrent connectivity (Figure 2C). A

direct implication is that, if the low-dimensional dynamics in

the network are generated by low-rank recurrent connectivity,

two neurons that have large loadings in the dominant principal

components will tend to have mutual connections stronger

than average (Figure 3F, top). In contrast, if the low-dimensional

dynamics are not generated by recurrent interactions but instead

are driven by feedforward inputs alone, no correlation between

principal components and connectivity is expected (Figure 3F,

bottom). Since the low-dimensional dynamics based on recur-

rent connectivity form the scaffold for computations in our

model, this basic prediction can be extended to various task-

dependent properties of individual neurons. For instance, if the

recurrent connectivity implements evidence integration, two

units with strong choice regressors are predicted to have mutual

connections stronger than average (Figure 4H). Analogously, if

recurrent connections implement context-dependent associa-

tions, two units with strong context regressors are expected to

share connections stronger than average (Figure 5G). Such pre-

dictions can in principle be directly tested in experiments that

combine calcium imaging of neural activity in behaving animals

with measurements of connectivity between a subset of re-

corded neurons (Ko et al., 2011). It should be noted, however,

that very weak structured connectivity is sufficient to implement

computations, so that the expected correlations between con-

nectivity and various selectivity indices may be weak.

The class of recurrent networks we considered here is based

on connectivity matrices that consist of an explicit sum of a low-

rank and a random part. While this may seem as a limited class of

models, in fact, any arbitrary matrix can be approximated with a

low-rank one, e.g., by keeping a small number of dominant sin-

gular values and singular vectors (Markovsky, 2012)—this is the

basic principle underlying dimensionality reduction. A recurrent

network with any arbitrary connectivity matrix can therefore in

principle be approximated by a low-rank recurrent network.

From this point of view, our theory suggests a simple conjecture:

the low-dimensional structure in connectivity determines low-

dimensional dynamics and computational properties of recur-

rent networks. While more work is needed to establish under

which precise conditions a low-rank network provides a good

computational approximation of a full recurrent network, this

conjecture provides a simple and practically useful working hy-

pothesis for reverse-engineering trained neural networks (Sus-

sillo and Barak, 2013), and relating connectivity, dynamics, and

computations in neural recordings.
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METHOD DETAILS

The network model
We study large recurrent networks of rate units. Every unit in the network is characterized by a continuous variable xiðtÞ, commonly

interpreted as the total input current. More generically, we also refer to xiðtÞ as the activation variable. The output of each unit is a non-

linear function of its inputs modeled as a sigmoidal function fðxÞ. In line with previous works (Sompolinsky et al., 1988; Sussillo and

Abbott, 2009; Rivkind and Barak, 2017), we focus on fðxÞ = tanhðxÞ, but we show that qualitatively similar dynamical regimes appear

in network models with more realistic, positively defined activation functions (Figure S7). The transformed variable fðxiðtÞÞ is inter-

preted as the firing rate of unit i, and is also referred to as the activity variable.

The time evolution is specified by the following dynamics:

_xiðtÞ= � xiðtÞ+
XN
j = 1

JijfðxjðtÞÞ+ Ii: (6)

We considered a particular class of connectivity matrices, which can be written as a sum of two terms:

Jij =gcij +Pij: (7)

Similarly to (Sompolinsky et al., 1988), cij is a Gaussian all-to-all random matrix, where every element is drawn from a centered

normal distribution with variance 1=N. The parameter g scales the strength of random connections in the network, and we refer to

it also as the random strength. The second termPij is a low-rankmatrix. In this study, we consider the low-rank part of the connectivity

fixed, while the random part varies between different realizations of the connectivity. Our results rely on two simplifying assumptions.

The first one is that the low-rank term and the random term are statistically uncorrelated. The second one is that, as stated in Equa-

tion 8, the structured connectivity is weak in the largeN limit, i.e., it scales as 1=N, while the random connectivity components cij scale

as 1=
ffiffiffiffi
N

p
.

We first consider the simplest case where Pij is a rank-one matrix, which can generally be written as the external product between

two one-dimensional vectors m and n:

Pij =
minj

N
: (8)

According to our first assumption, the entries of vectors m and n are independent of the random bulk of the connectivity cij. Note

that the only non-zero eigenvalue of P is given by the scalar product mTn=N, and the corresponding right and left eigenvectors are,

respectively, vectorsm and n. In the following, we will refer to the eigenvaluemTn=N as the strength of the connectivity structure, and

tom and n as the right- and left-connectivity vectors. Here we focus on vectors obtained by generating the components from a joint

Gaussian distribution.

More general connectivity structures of rank r � N can be written as a sum of unit-rank terms

Pij =
m

ð1Þ
i n

ð1Þ
j

N
+.+

m
ðrÞ
i n

ðrÞ
j

N
; (9)

and are therefore specified by r pairs of vectors mðkÞ and nðkÞ, where different m vectors are linearly independent, and similarly for n

vectors.
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Overview of Dynamical Mean-Field Theory
Our results rely on a mathematical analysis of network dynamics based on Dynamical Mean-Field (DMF) theory (Sompolinsky et al.,

1988; Rajan et al., 2010; Kadmon and Sompolinsky, 2015). To help navigate the analysis, here we provide first a succint overview of

the approach. Full details are given further down in the section Details of Dynamical Mean-Field Theory.

DMF theory allows one to derive an effective description of the dynamics by averaging over the disorder originating from the

random part of the connectivity. Across different realizations of the random connectivity matrix cij, the sum of inputs to unit i is

approximated by a Gaussian stochastic process hiðtÞXN
j = 1

JijfðxjðtÞÞ+ IizhiðtÞ; (10)

so that each unit obeys a Langevin-like equation:

_xiðtÞ= � xiðtÞ+ hiðtÞ: (11)

The Gaussian processes hi can in principle have different first and second-order statistics for each unit, but are otherwise statis-

tically independent across different units. As a consequence, the activations xi of different units are also independent Gaussian sto-

chastic processes, coupled only through their first and second-order statistics. The core of DMF theory consists of self-consistent

equations for the mean mi and auto-correlation function DI
iðtÞ.

At equilibrium (i.e., in absence of transient dynamics) the equation for the mean mi of xi is obtained by directly averaging Equation 6

over the random part of the connectivity. For a unit-rank connectivity, it reads

mi = kmi + Ii; (12)

where

k=
1

N

XN
j = 1

nj

�
fj

�
: (13)

In the last equation, we adopted the short-hand notation fiðtÞ : = fðxiðtÞÞ. Here ½fj� is the average firing rate of unit j, i.e., fðxjÞ
averaged over the Gaussian variable xj. In a geometrical interpretation, the quantity k represents the overlap between the left-con-

nectivity vector n and the vector of average firing rates. Equivalently, it is given by a population average of nj½fj�, which can also be

expressed as

k=

Z
dm dn dI pðm; n; IÞn

Z
Dzf

�
mk+ I+

ffiffiffiffiffiffi
DI

0

q
z

�
(14)

where pðm; n; IÞ is the joint distribution of components of vectors m, n and I. DI
0 is the variance of xi (see below), andR Dz =

R +N
�N e�z2=2=

ffiffiffiffiffiffi
2p

p
dz.

The auto-correlation function DI
iðtÞ quantifies the fluctuations of the activation xi around the expected mean. Computing this auto-

correlation function shows that it is identical for all units in the network, i.e., independent of i (see Equation 27). It can be decomposed

into a static variance, which quantifies the fluctuations of the equilibrium values of xi across different realizations of the random

component of the connectivity, and an additional temporal variance which is present when the network is in a temporally fluctuating,

chaotic state. In a stationary state, the variance DI
0hDIðt = 0Þ can be expressed as

DI
0 = g2 1

N

XN
j =1

�
f2
i

�
: (15)

where ½f2
i � is the average of f2

i ðxÞ over the Gaussian variable xi.

The right-hand-sides of Equations 13 and 15 show that both themean mi and variance DI
0 depend on population-averaged, macro-

scopic quantities. To fully close the DMF description, the equations for single-unit statistics need to be averaged over the population.

For static equilibrium dynamics, this leads to two coupled equations for two macroscopic quantities, the overlap k and the static,

population-averaged variance D0:

k=Fðk;D0Þ
D0 =Gðk;D0Þ: (16)

Here F andG are two non-linear functions, the specific form of which depends on the geometrical arrangement of the connectivity

vectorsm and n and the input vector I. For temporally fluctuating, chaotic dynamics an additional macroscopic quantity (correspond-

ing to the temporal variance) needs to be taken into account. In that case, the full DMF description is given by a system of three non-

linear equations for three unknowns. The equilibrium states of the network dynamics are therefore obtained by solving these systems

of equations using standard non-linear methods.
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To describe the transient dynamics and assess the stability of the obtained equilibrium states, we determined the spectrum of ei-

genvalues at the obtained equilibrium fixed points. This spectrum consists of two components: a continuous, random component

distributed within a circle in the complex plane, and a single outlier induced by the structured part of the connectivity (Figures

S1A and S1D). The radius of the continuous component and the value of the outlier depend on the connectivity parameters. Although

the two quantities in general are non-trivially coupled, the value of the radius is mostly controlled by the strength of the disorder, while

the value of the outlier increases with the strengthmTn=N of the rank-one structure (Figure S1F). The equilibrium is stable as long as

the real part of all eigenvalues is less than unity. For large connectivity structure strengths, the outlier crosses unity, generating an

instability that leads to the appearance of one-dimensional structured activity. Increasing the disorder strength on the other hand

leads to another instability, corresponding to the radius of the continuous component crossing unity. This instability gives rise to

chaotic, fluctuating activity.

When a linear readout with weights wi is added to the network, its average output is given by

zðtÞ= 1

N

XN
i = 1

wi½fiðtÞ�; (17)

i.e., by the projection of the average network firing rate on the readout vectorw. This quantity is analogous to k, except that the vector

n is replaced by the vector w, so that similarly to Equation 14, the average readout can also be expressed as

z=

Z
dm dw dI pðm;w; IÞ w

Z
Dyf

�
mz+ I+

ffiffiffiffiffiffi
DI

0

q
y

�
(18)

and therefore directly depends on the joint distribution pðm;w; IÞ which characterizes the geometric arrangement of vectors m, w

and I.

The DMF theory can be directly extended to connectivity structures of rank r greater than one. The equilibriummean input to unit i is

then given by

mi =
Xr
k =1

kðkÞmðkÞ
i + Ii: (19)

The activity therefore lives in an ðr + 1Þ-dimensional space determined by the r right-connectivity vectorsmðkÞ and the input vector

I. It is characterized by r overlaps kðkÞ, each of which quantifies the amount of activity along the corresponding direction mðkÞ. Aver-
aging over the population, the DMF theory then leads to a system of r + 1 nonlinear coupled equations for describing stationary

dynamics.

DETAILS OF DYNAMICAL MEAN-FIELD THEORY

Here we provide the full details of themathematical analysis. We start by examining the activity of a network with a rank-one structure

in absence of external inputs (Ii = 0 ci in Equation 6).

Single-unit equations for spontaneous dynamics
We start by determining the statistics of the effective noise hi to unit i, defined by

hiðtÞ=g
XN
j = 1

cijfðxjðtÞÞ+
mi

N

XN
j =1

njfðxjðtÞÞ: (20)

The DMF theory relies on the hypothesis that a disordered component in the coupling structure, here represented by cij, efficiently

decorrelates single neuron activity when the network is sufficiently large. We will show that this hypothesis of decorrelated activity is

self-consistent for the specific network architecture we study.

As in standard DMF derivations, we characterize self-consistently the distribution of hi by averaging over different realizations of

the randommatrix cij (Sompolinsky et al., 1988; Rajan et al., 2010). In the following, ½:� indicates an average over the realizations of the

randommatrix cij, while h:i stands for an average over different units of the network. Note that the network activity can be equivalently

characterized in terms of input current variables xiðtÞ or their non-linear transforms fðxiðtÞÞ. As these two quantities are not indepen-

dent, the statistics of the distribution of the latter can be written in terms of the statistics of the former.

The mean of the effective noise received by unit i is given by:

½hiðtÞ�=g
XN
j = 1

�
cijfðxjðtÞÞ

�
+
mi

N

XN
j = 1

nj½fðxjðtÞÞ�: (21)
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Under the hypothesis that in large networks, neural activity decorrelates (more specifically, that activity fðxjðtÞÞ is independent of its
outgoing weights), we have:

½hiðtÞ�=g
XN
j = 1

�
cij

�½fðxjðtÞÞ�+mi

N

XN
j = 1

nj½fðxjðtÞÞ�=mik (22)

as ½cij� = 0. Here we introduced

k : =
1

N

XN
j = 1

nj½fðxjðtÞÞ�=
�
nj

�
fjðtÞ

��
; (23)

which quantifies the overlap between the mean population activity vector and the left-connectivity vector n.

Similarly, the noise correlation function is given by

�
hiðtÞhjðt + tÞ�=g2

XN
k =1

XN
l = 1

�
cikcjl

�½fðxkðtÞÞfðxlðt + tÞÞ�+mimj

N2

XN
k = 1

XN
l =1

nknl½fðxkðtÞÞfðxlðt + tÞÞ�: (24)

Note that every cross-term in the product vanishes since ½cij� = 0. Similarly to standard DMF derivations (Sompolinsky et al., 1988),

the first term on the r.h.s. vanishes for cross-correlations ðisjÞ while it survives in the auto-correlation function ði = jÞ, as ½cikcjl� =
dijdkl=N. We get:

�
hiðtÞhjðt + tÞ�= dijg

2h½fiðtÞfiðt + tÞ�i+mimj

N2

XN
k = 1

XN
l = 1

nknl½fðxkðtÞÞfðxlðt + tÞÞ�: (25)

We focus now on the second term in the right-hand side. The corresponding sum contains N terms where k = l. This contribution

vanishes in the large N limit because of the 1=N2 scaling. According to our starting hypothesis, when ksl, activity decorrelates:

½fkðtÞflðt + tÞ� = ½fkðtÞ�½flðt + tÞ�. To the leading order in N, we get:�
hiðtÞhjðt + tÞ�= dijg

2h½fiðtÞfiðt + tÞ�i+mimj

N2

X
k

nk ½fðxkðtÞÞ�
X
lsk

nl½fðxlðt + tÞÞ�

= dijg
2h½fiðtÞfiðt + tÞ�i+mimjk

2

(26)

so that: �
hiðtÞhjðt + tÞ�� ½hiðtÞ�

�
hjðtÞ

�
= dijg

2h½fiðtÞfiðt + tÞ�i: (27)

We therefore find that the statistics of the effective input are uncorrelated across different units, so that our initial hypothesis is self-

consistent.

To conclude, for every unit i, we computed the first- and the second-order statistics of the effective input hiðtÞ. The expressions we

obtained show that the individual noise statistics depend on the statistics of the full network activity. In particular, the mean of the

effective input depends on the average overlap k, but varies from unit to unit through the components of the right-connectivity vector

m. On the other hand, the auto-correlation of the effective input is identical for all units, and determined by the population-averaged

firing rate auto-correlation h½fiðtÞfiðt + tÞ�i.
Once the statistics of hiðtÞ have been determined, a self-consistent solution for the activation variable xiðtÞ can be derived by solv-

ing the Langevin-like stochastic process from Equation 11. As a first step, we look at its stationary solutions, which correspond to the

fixed points of the original network dynamics.

Population-averaged equations for stationary solutions
For any solution that does not depend on time, the mean mi and the variance DI

0 of the variable xi with respect to different realizations

of the random connectivity coincide with the statistics of the effective noise hi. From Equations 22 and 27, the mean mi and variance

DI
0 of the input to unit i therefore read

mi : = ½xi�=mik

DI
0 : =

�
x2i
�� ½xi�2 =g2

��
f2
i

�� (28)

while any other cross-variance ½xixj� � ½xi�½xj� vanishes. We conclude that, on average, the structured connectivity Pij shapes the

network activity along the direction specified by its right eigenvector m. Such a heterogeneous stationary state critically relies on

a non-vanishing overlap k between the left eigenvector n and the average population activity vector ½f�. Across different realizations
of the random connectivity, the input currents xi fluctuate around thesemean values. The typical size of fluctuations is determined by

the individual variance DI
0, equal for every unit in the network.
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The r.h.s. of Equation 28 contains two population averaged quantities, the overlap k and the second moment of the activity h½f2
i �i.

To close the equations, these quantities need to be expressed self-consistently. Averaging Equation 28 over the population, we get

expressions for the population-averaged mean m and variance D0 of the input:

m : = h½xi�i= hmiik
D0 : =

��
x2i
��� h½xi�i2 =g2

��
f2
i

��
+
	�

m2
i

�� hmii2


k2:

(29)

Note that the total population variance D0 is a sum of two terms: the first term, proportional to the strength of the random part of

connectivity, coincides with the individual variabilityDI
0 which emerges from different realizations of cij; the second term, proportional

to the variance of the right-connectivity vector m, coincides with the variance induced at the population level by the spread of the

mean values mifmi. When the vector m is homogeneous ðmi = mÞ, input currents xi are centered around the same mean value m,

and the second variance term vanishes.

We next derive appropriate expression for the r.h.s. terms k and h½f2
i �i. To start with, we rewrite ½fi� by substituting the average over

the random connectivity with the equivalent Gaussian integral:

½fi�=
Z

Dzf

�
mi +

ffiffiffiffiffiffi
DI

0

q
z

�
(30)

wherewe used the short-hand notation
R Dz =

R +N
�N e�z2=2=

ffiffiffiffiffiffi
2p

p
dz. To obtain k, ½fi� needs to bemultiplied by ni and averaged over the

population. This average can be expressed by representing the fixed vectorsm and n through the joint distribution of their elements

over the components:

pðm;nÞ= 1

N

XN
j =1

dðm�mjÞdðn� njÞ: (31)

This leads to

k=

�
ni

Z
Dzf

�
mi +

ffiffiffiffiffiffi
DI

0

q
z

��
=

Z
dm

Z
dn pðm;nÞ n

Z
Dzf

�
mk+

ffiffiffiffiffiffi
DI

0

q
z

�
:

(32)

Similarly, a suitable expression for the second-order momentum of the firing rate is given by:��
f2
i

��
=

Z
dm pðmÞ

Z
Dzf2

�
mk+

ffiffiffiffiffiffi
DI

0

q
z

�
: (33)

Equations 32 and 33, combined with Equation 29, provide a closed set of equations for determining k and D0 once the vectors m

and n have been specified.

To further simplify the problem, we reduce the full distribution pðm;nÞ of elements mi and ni to their first- and second-order

momenta. That is equivalent to substituting the probability density pðm; nÞ with a bivariate Gaussian distribution. We therefore write:

m=Mm +Sm

ffiffiffiffiffiffiffiffiffiffiffi
1� r

p
x1 +Sm

ffiffiffi
r

p
y

n=Mn +Sn

ffiffiffiffiffiffiffiffiffiffiffi
1� r

p
x2 +Sn

ffiffiffi
r

p
y

(34)

where x1, x2 and y are three normal Gaussian processes. Here,Mm (resp.Mn) andSm (resp.Sn) correspond to themean and the stan-

dard deviation ofm (resp. n), while the covariance betweenm and n is given by hminii�MmMn = SmSnr. Within a geometrical inter-

pretation,Mm andMn are the projections ofN–dimensional vectorsm and n onto the unitary vector u = ð1;1;.1Þ=N,Sm
ffiffiffi
r

p
and Sn

ffiffiffi
r

p
are the projections onto a direction orthogonal to u and common tom and n, and Sm

ffiffiffiffiffiffiffiffiffiffiffi
1� r

p
and Sn

ffiffiffiffiffiffiffiffiffiffiffi
1� r

p
scale the parts ofm and n

that are mutually orthogonal.

The expression for k becomes:

k=

Z
Dy

Z
Dx2

	
Mn +Sn

ffiffiffiffiffiffiffiffiffiffiffi
1� r

p
x2 +Sn

ffiffiffi
r

p
y

Z

Dz

Z
Dx1 f

�
k
	
Mm +Sm

ffiffiffiffiffiffiffiffiffiffiffi
1� r

p
x1 +Sm

ffiffiffi
r

p
y


+

ffiffiffiffiffiffi
DI

0

q
z

�
(35)

which gives rise to three terms when expanding the sum Mn + Sn

ffiffiffiffiffiffiffiffiffiffiffi
1� r

p
x2 + Sn

ffiffiffi
r

p
y. The first term can be rewritten as:

Mn

Z
Dz f

�
Mmk+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DI

0 +S2
mk

2

q
z

�
=Mn

Z
Dz f

	
m+

ffiffiffiffiffiffi
D0

p
z



=Mnh½fi�i;

(36)
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which coincides with the overlap between vectors n and ½f� along the unitary direction u = ð1; 1;.1Þ=N. In the last step, we rewrote

our expression for k in terms of the population averaged statistics m and D0 (Equation 29).

The second term vanishes, while the third one gives:

Sn

ffiffiffi
r

p Z
Dy y

Z
Dz

Z
Dx1 f

�
k
	
Mm +Sm

ffiffiffiffiffiffiffiffiffiffiffi
1� r

p
x1 +Sm

ffiffiffi
r

p
y


+

ffiffiffiffiffiffi
DI

0

q
z

�
= krSmSn

��
f

0
i

�� (37)

which coincides with the overlap between n and ½f� in a direction orthogonal to u. Here we used the equality:Z
Dz zfðzÞ=

Z
Dz

dfðzÞ
dz

(38)

which is obtained by integrating by parts.

Through a similar reasoning we obtain: ��
f2
i

��
=

Z
Dz f2

	
m+

ffiffiffiffiffiffi
D0

p
z



(39)

as in standard DMF derivations.

To conclude, the mean-field description of stationary solutions reduces to the system of three implicit equations for m, k and D0:

m=Mmk

D0 =g2
��
f2
i

��
+S2

mk
2

k=Mmh½fi�i+ krSmSn

��
f

0
i

��
:

(40)

Both averages h½:�i are performed with respect to a Gaussian distribution of mean m and variance D0. Once m, D0 and k have been

determined, the single unit mean mi and the individual variance DI
0 are obtained from Equation 28.

The dynamical mean-field equations given in Equation 40 can be fully solved to determine stationary solutions. Detailed descrip-

tions of these solutions are provided further down for two particular cases: (i) overlap betweenm and n only along the unitary direction

u (Mms0, Mns0, r = 0); (ii) overlap between m and n only in a direction orthogonal to u (Mm = Mn = 0, rs0).

Transient dynamics and stability of stationary solutions
We now turn to transient dynamics around fixed points, and to the related problem of evaluating whether the stationary solutions

found within DMF are stable with respect to the original network dynamics (Equation 6).

For any given realization of the connectivity matrix, the network we consider is completely deterministic. We can then study the

local, transient dynamics by linearizing the dynamics around any stationary solution.We therefore look at the time evolution of a small

displacement away from the fixed point: xðtÞ = x0i + x1i ðtÞ. For any generic stationary solution fx0i g the linearized dynamics are given

by the stability matrix Sij which reads:

Sij =f
0
	
x0j


	
gcij +

minj

N



: (41)

If the real part of every eigenvalue of Sij is smaller than unity, the perturbation decays in time and thus the stationary solution is

stable.

Homogeneous stationary solutions
We first consider homogeneous stationary solutions, for which x0i = x for all units. A particular homogeneous solution is the trivial so-

lution x = 0, which the network admits for all parameter values when the transfer function is fðxÞ = tanhðxÞ. Other homogeneous

solutions can be obtained when the vector m is homogeneous, i.e., mi =Mm for all i.

For homogeneous solutions, the stability matrix reduces to a scaled version of the connectivity matrix:

Sij =f0ðxÞJij: (42)

We are thus left with the problem of evaluating the eigenspectrum of the global connectivity matrix Jij. The matrix Jij consists of a

full-rank component cij, the entries of which are drawn at random, and of a structured component of small dimensionality with fixed

entries. We focus on the limit of large networks; in that limit, an analytical prediction for the spectrum of its eigenvalues can be

derived.

Because of the 1=N scaling, thematrix norm of Pij is bounded asN increases. We can then apply results from randommatrix theory

(Tao, 2013) which predict that, in the large N limit, the eigenspectra of the random and the structured parts do not interact, but sum

together. The eigenspectrum of Jij therefore consists of two separated components, inherited respectively from the random and the

structured terms (Figure S1A). Similarly to (Girko, 1985), the random term cij returns a set of N� 1 eigenvalues which lie on the com-

plex plane in a compact circular region of radius g. In addition to this component, the eigenspectrum of Jij contains the non-zero
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eigenvalues of Pij: in the case of a rank-one matrix, one single outlier eigenvalue is centered at the position
P

imini=N = hminii. In
Figure S1B we measure both the outlier position and the radius of the compact circular component. We show that deviations

from the theoretical predictions are in general small and decay to zero as the system size is increased.

Going back to the stability matrix Sij = f
0 ðxÞJij, we conclude that a homogeneous stationary solution can lose stability in two

different ways, when either mTn=N or g become larger than 1=f
0 ðxÞ. We expect different kinds of instabilities to occur in the two

cases. When g crosses the instability line, a large number of random directions become unstable at the same time. As in (Sompo-

linsky et al., 1988), this instability is expected to lead to the onset of irregular temporal activity. When the instability is lead by the

outlier, instead, the trivial fixed point becomes unstable in one unique direction given by the corresponding eigenvector. When

g = 0, this eigenvector coincides exactly with m. For finite values of the disorder g, the outlier eigenvector fluctuates depending

on the random part of the connectivity, but remains strongly correlated withm (Figure S1C), which therefore determines the average

direction of the instability. Above the instability, as the network dynamics is completely symmetric with respect to a change of sign of

the input variables, we expect the non-linear boundaries to generate two symmetric stationary solutions.

Heterogeneous stationary solutions
A second type of possible stationary solutions are heterogeneous fixed points, in which different units reach different equilibrium

values. For such fixed points, the linearized stability matrix Sij is obtained by multiplying each column of the connectivity matrix Jij
by a different gain value (see Equation 41), so that the eigenspectrum of Sij is not trivially related to the spectrum of Jij.

Numerical investigations reveal that, as for Jij, the eigenspectrum of Sij consists of two discrete components: one compact set of

N� 1 eigenvalues contained in a circle on the complex plane, and a single isolated outlier eigenvalue (Figure S1D).

As previously noticed in (Harish and Hansel, 2015), the radius of the circular compact set r can be computed as in (Rajan and Ab-

bott, 2006; Aljadeff et al., 2015b) by summing the variances of the distributions in every column of Sij. To the leading order in N:

r =g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
j = 1

f02
	
x0j


vuut (43)

which, in large networks, can be approximated by the mean-field average:

r =g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi��
f02
i

��q
: (44)

Note that, because of the weak scaling in Pij, the structured connectivity term does not appear explicitly in the expression for the

radius. As the structured part of the connectivity determines the heterogeneous fixed point, the value of r however depends implicitly

on the structured connectivity term through h½f02
i �i, which is computed as a Gaussian integral over a distribution with mean m and

variance D0 given by Equation 40. In Figures S1D–S1F, we show that Equation 44 approximates well the radius of finite-size, numer-

ically computed eigenspectra. Whenever the mean-field theory predicts instabilities led by r, we expect the network dynamics to

converge to irregular non-stationary solutions. Consistently, at the critical point, where r = 1, the DMF equations predict the onset

of temporally fluctuating solutions (see later on in STAR Methods).

We now turn to the problem of evaluating the position of the outlier eigenvalue. In the case of heterogeneous fixed points, the struc-

tured and the random components of the matrix Sij are strongly correlated, as they both scale with the multiplicative factor f0ðx0j Þ,
which correlates with the particular realization of the random part of the connectivity cij. As a consequence, cij cannot be considered

as a truly random matrix with respect tomif
0ðx0j Þnj=N, and in contrast to the case of homogeneous fixed points, results from (Girko,

1985) do not hold.

We determined numerically the position of the outlier in finite-size eigenspectra (Figures S1D–S1F). We found that its value indeed

significantly deviates from the only non-zero eigenvalue of the rank-one structuremif
0 ðx0j Þnj=N, which can be computed in themean-

field framework (when r = 0, it corresponds to MmMnh½f0
i �i + MnkS

2
mh½f00

i �i). On the other hand, the value of the outlier coincides

exactly with the eigenvalue of mif
0 ðx0j Þnj=N whenever the random component cij is shuffled (black dots in Figure S1F). This obser-

vation confirms that the position of the outlier critically depends on the correlations existing between the rank-one structure

mif
0 ðx0j Þnj=N and the specific realization of the random bulk cij.

Mean-field analysis of transient dynamics and stability of stationary solutions
As for heterogeneous fixed points we were not able to assess the position of the outlying eigenvalue using randommatrix theory, we

turned to a mean-field analysis to determine transient activity. This analysis allowed us to determine accurately the position of the

outlier, and therefore the stability of heterogeneous fixed points. The approach exploited here is based on (Kadmon and Sompolin-

sky, 2015).

We consider the stability of the single unit activation xi when averaged across different realizations of the random connectivity and

its random eigenmodes. Directly averaging across realizations the network dynamics defined in Equation 6 yields the time evolution

of the mean activation mi of unit i:

_miðtÞ= � miðtÞ+mikðtÞ: (45)
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Weobserve that we canwrite: miðtÞ = mi~kðtÞ, where ~k is the low-pass filtered version of k: ð1 + d=dtÞ~kðtÞ = kðtÞ. Small perturbations

around the fixed point solution read: miðtÞ = m0
i + m1

i ðtÞ. The equilibrium values m0
i correspond to the DMF stationary solution

computed from Equation 28 and 40: m0
i = mik

0. The first-order perturbations thus obey:

_m1
i ðtÞ= � m1

i ðtÞ+mik
1ðtÞ; (46)

indicating that the decay timescale of the mean activity is inherited by the decay time constant of k1. An additional equation for the

time evolution of k1 thus needs to be derived.

When activity is perturbed, the firing activity fi of unit i can be evaluated at the first order: f0
i /f0

i + f1
i ðtÞ = fðx0i Þ + f

0 ðx0i Þx1i ðtÞ. As
a consequence, the first-order in k reads:

k1ðtÞ= �ni

�
f

0

x0i
�
x1i ðtÞ

��
: (47)

Summing Equation 47 to its time-derivative, we get:

_k1ðtÞ= � k1ðtÞ+
�
1+

d

dt

��
ni

�
f

0

x0i
�
x1i ðtÞ

��
: (48)

In order to simplify the r.h.s., we start by considering the average with respect to the randompart of the connectivity for a single unit

i. In order to compute ½f0 ðx0i Þx1i �, we explicitly build x0i and xti : = xiðtÞ as Gaussian variables centered respectively in m0
i and mt

i . We will

call DI0
0 and DIt

0 the variances of the two variables, and DI;t:0 their two-times correlation defined by DI;t:0 = ½xti x0i � � ½xti �½x0i �. We can then

write the two variables as

x0i =m0
i +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DI0

0 � DI;t:0

q
x1 +

ffiffiffiffiffiffiffiffiffi
DI;t:0

p
y

xti =mt
i +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DIt

0 � DI;t:0

q
x2 +

ffiffiffiffiffiffiffiffiffi
DI;t:0

p
y

(49)

The first-order response of xi is given by the difference between xti and x0i , and reads:

x1i =m1
i +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DIt

0 � DI;t:0

q
x2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DI0

0 � DI;t:0

q
x1: (50)

As in classical DMF derivations (Sompolinsky et al., 1988; Rajan et al., 2010; Kadmon and Sompolinsky, 2015), x1, x2and y are stan-

dard normal variables. By integrating over their distributions we can write:�
f

0

x0i
�
x1i
�
=

Z
Dx1

Z
Dx2

�
m1
i +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DIt

0 � DI;t:0

q
x2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DI0

0 � DI;t:0

q
x1

�Z
Dyf

0
�
m0
i +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DI0

0 � DI;t:0

q
x1 +

ffiffiffiffiffiffiffiffiffi
DI;t:0

p
y

�
: (51)

Integrating by parts as in Equation 38 we get:�
f

0

x0i
�
x1i
�
=m1

i

�
f0
i

�
+


DI;t:0 � DI0

0

��
f

00
i

�
(52)

where the Gaussian integrals ½f0
i � and ½f00

i � are evaluated using the fixed point statistics.

Note that, at the fixed point, DI;t:0 = DI0
0 . As a consequence, DI;t:0 � DI0

0 gives a first-order response:

DI;1:0: =DI;t:0 � DI0
0 =
�
x1i x

0
i

�� �x1i ��x0i �= �x1i x0i �� m0
i m

1
i (53)

which can be rewritten as a function of the global second-order statistics D1:0 = h½x1i x0i �i � h½x1i �ih½x0i �i as:
DI;1:0 =D1:0 � ��m1

i m
0
i

�� �m1
i

��
m0
i

��
=D1:0 � S2

m~k
0~k1:

(54)

Equation 54 can be rewritten in terms of the first-order perturbation for the global equal-time variance: D1
0 = Dt

0 � D0
0. We consider

that, by definition:

D1:0 =
XN
j = 1

x1j
vDt:0

vxtj

�����
0

D1
0 =
XN
j = 1

x1j
vDt

0

vxtj

�����
0

:

(55)
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We then observe that, when the derivatives are evaluated at the fixed point, we have:

vDt:0

vxtj

�����
0

=
1

2

vDt
0

vxtj

�����
0

; (56)

and we conclude that:

D1:0 =
1

2
D1

0 (57)

Equation 52 thus becomes: �
f

0

x0i
�
x1i
�
=mi ~k

1
�
f

0
i

�
+

�
D1

0

2
� S2

m~k
0~k1
��

f
00
i

�
: (58)

In a second step, we perform the average across different units of the population, by writingm and n as in Equation 34. After some

algebra, we get:�
ni

�
f

0

x0i
�
x1i ðtÞ

��
= ~k1

�ðMmMn + rSmSnÞ
��
f

0
i

��
+ rk0MmSmSn

��
f

00
i

���
+
D1

0

2

�
Mn

��
f

00
i

��
+ rk0SmSn

��
f

000
i

���
: = ~k1a+D1

0b

(59)

where constants a and b were defined as:

a= ðMmMn + rSmSnÞ
��
f

0
i

��
+ rk0MmSmSn

��
f

00
i

��
b=

1

2

�
Mn

��
f

00
i

��
+ rk0SmSn

��
f

000
i

���
:

(60)

The time evolution of k can be finally rewritten as:

_k1ðtÞ= � k1ðtÞ+
�
1+

d

dt

��
~k1a+D1

0b
�
; (61)

so that the time evolution of the perturbed variance must be considered as well.

In order to isolate the evolution law of D0, we rewrite the activation variable xiðtÞ by separating the uniform and the heterogeneous

components: xiðtÞ = mðtÞ + dxiðtÞ. The time evolution for the residual dxiðtÞ is given by:

_dxiðtÞ= � dxiðtÞ+g
XN
j = 1

cijfðxjðtÞÞ+ ðmi �MmÞkðtÞ (62)

so that, squaring:�
ddxiðtÞ
dt

�2

+ 2dxiðtÞddxiðtÞ
dt

+ dxiðtÞ2 =g2
XN
j = 1

XN
k = 1

cijcikfðxjðtÞÞfðxkðtÞÞ+ ðmi �MmÞ2kðtÞ2 +gðmi �MmÞkðtÞ
XN
k = 1

cijfðxkðtÞÞ: (63)

Averaging over i and the realizations of the disorder yields:

dD0ðtÞ
dt

= � D0ðtÞ+g2
��
f2
i ðtÞ
��

+S2
mkðtÞ2 �

*"�
ddxiðtÞ
dt

�2
#+

: = � D0ðtÞ+Gðm;D0; kÞ �
*"�

ddxiðtÞ
dt

�2
#+ (64)

as by definition we have: h½dx2i ðtÞ�i = D0ðtÞ.
Expanding the dynamics of D0 to the first order, we get:

_D
1

0ðtÞ= � D1
0ðtÞ+m1vG

vm

����
0

+D1
0

vG

vD0

����
0

+ k1
vG

vk

����
0

: (65)
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Note that we could neglect the contributions originating from the last term of Equation 64 because they do not enter at the leading

order. Indeed we have:

v

vm

*"�
ddxiðtÞ
dt

�2
#+ �����

0

= 2

��
ddxiðtÞ
dt

v

vm

ddxiðtÞ
dt

�� ����
0

= 0 (66)

since temporal derivatives for every i vanish when evaluated at the fixed point.

A little algebra returns the last three linear coefficients:

vG

vm

����
0

= 2g2
��
fif

0
i

��
vG

vD0

����
0

=g2
���

f
02
i

��
+
��
fif

00
i

���
vG

vk

����
0

= 2S2
mk

0:

(67)

Collecting all the results together in Equation 61 we obtain:

_k1ðtÞ= � k1ðtÞ+ ak1ðtÞ+b

�
m1vG

vm

����
0

+D1
0

vG

vD0

����
0

+ k1
vG

vk

����
0

�
: (68)

By averaging Equation 45 we furthermore obtain:

_m1ðtÞ= � m1ðtÞ+Mmk
1: (69)

We finally obtained that the perturbation timescale is determined by the population-averaged dynamics:

d

dt

0@ m1

D1
0

k1

1A= �
0@ m1

D1
0

k1

1A+M
0@ m1

D1
0

k1

1A (70)

where the evolution matrix M is defined as:

M=

0@ 0 0 Mm

2g2
��
fif

0
i

��
g2
���

f
02
i

��
+
��
fif

}
i

���
2S2

mk
0

2bg2
��
fif

0
i

��
bg2

���
f

02
i

��
+
��
fif

}
i

���
b2S2

mk
0 + a

1A: (71)

Note that one eigenvalue of matrix M, which corresponds to the low-pass filtering between k and m, is always fixed to zero.

Equations 70 and 71 reveal that, during the relaxation to equilibrium, the transient dynamics of the first- and second-order statistics

of the activity are tightly coupled. DiagonalizingM allows to retrieve the largest decay timescale of the network, which indicates the

average, structural stability of stationary states.

When an outlier eigenvalue is present in the eigenspectrum of the stability matrix Sij, the largest decay timescale fromM predicts

its position. The corresponding eigenvector be contains indeed a structured component along m, which is not washed out by aver-

aging across different realizations of cij.

The second non-zero eigenvalue ofM, which vanishes at g = 0, measures a second and smaller effective timescale, which derives

from averaging across the remaining N� 1 random modes.

Varying g, we computed the largest eigenvalue ofM for corresponding stationary solutions of mean-field equations. In Figure S1F

we show that, when the stability eigenspectrum includes an outlier eigenvalue, its position is correctly predicted by the largest eigen-

value of M. The mismatch between the two values is small and can be understood as a finite-size effect (Figure S1E, gray).

To conclude, we found that the stability of arbitrary stationary solutions can be assessed by evaluating, with the help of mean-field

theory, both the values of the radius (Equation 44) and the outlier (Equation 71) of the stability eigenspectrum. Instabilities led by the

two different components are expected to reshape activity into two qualitatively different classes of dynamical regimes, which are

discussed in detail, further in STAR Methods, for two specific classes of structures.

Dynamical Mean Field equations for chaotic solutions
When a stationary state loses stability due to the compact component of the stability eigenspectrum, the network activity starts

developing irregular temporal fluctuations. Such temporally fluctuating states can be described within the DMF theory by taking

into account the full temporal auto-correlation function of the effective noise hi (Sompolinsky et al., 1988). For the sake of simplicity,

here we derive directly the mean-field equations for population-averaged statistics, and we eventually link them back to single unit

quantities.
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By differentiating twice Equation 11, and by substituting the appropriate expression for the statistics of the noise hi, we derive that

the auto-correlation function DðtÞ= h½xiðt + tÞxiðtÞ�i � h½xiðtÞ�i2 obeys the second-order differential equation:

€DðtÞ=DðtÞ � g2h½fiðtÞfiðt + tÞ�i � S2
mk

2: (72)

In this context, the activation varianceD0 coincideswith the peak of the full auto-correlation function:D0 = Dðt = 0Þ. We expect the

total variance to include a temporal term, coinciding with the amplitude of chaotic fluctuations, and a quenched one, representing the

spread across the population due to the disorder in cij and the structure imposed by the right-connectivity vector m.

In order to compute the full rate auto-correlation function h½fiðtÞfiðt + tÞ�i, we need to explicitly build two correlated Gaussian vari-

ables xðtÞ and xðt + tÞ, such that:

h½xiðtÞ�i= h½xiðt + tÞ�i=m��
x2i ðtÞ

��� h½xiðtÞ�i2 =
��
x2i ðt + tÞ��� h½xiðtÞ�i2 =D0

h½xiðt + tÞxiðtÞ�i � h½xiðtÞ�i2 =DðtÞ:
(73)

Following previous studies (Sompolinsky et al., 1988; Rajan et al., 2010), we obtain:

h½fiðtÞfiðt + tÞ�i=
Z

Dz

� Z
Dxf

	
m+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D0 � D

p
x +

ffiffiffiffi
D

p
z

�2

(74)

where we used the short-hand notationD : =DðtÞ and we assumed for simplicity D> 0. As we show later, this requirement is satisfied

by our final solution.

In order to visualize the dynamics of the solutions of Equation 72, we study the equivalent problem of a classical particlemoving in a

one-dimensional potential (Sompolinsky et al., 1988; Rajan et al., 2010):

€DðtÞ= � vV

vD
(75)

where the potential V is given by an integration over D:

VðD;D0Þ= � D2

2
+g2h½FiðtÞFiðt + tÞ�i+S2

mk
2D (76)

and FðxÞ = R x�N fðx0 Þdx0
. As the potential V depends self-consistently on the initial condition D0, the shape of the auto-correlation

function DðtÞ depends parametrically on the value of D0. Similarly to previous works, we isolate the solutions that decay monoton-

ically from D0 to an asymptotic value Dðt/NÞ : = DN, where DN is determined by dV=dD j D=DN
= 0. This translates into a first con-

dition to be imposed. A second equation comes from the energy conservation condition: VðD0;D0Þ = VðDN;D0Þ. Combined with the

usual equation for the mean m and the overlap k, the system of equations to be solved becomes:

m=Mmk

k=Mnh½fi�i+ rk
��
f

0
i

��
D2

0 � D2
N

2
=g2

�Z
DzF2

	
m+

ffiffiffiffiffiffi
D0

p
z


�
Z

Dz

� Z
DxF

	
m+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D0 � DN

p
x +

ffiffiffiffiffiffiffi
DN

p
z

�2�

+S2
mk

2ðD0 � DNÞ

DN =g2

Z
Dz

� Z
Dxf

	
m+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D0 � DN

p
x +

ffiffiffiffiffiffiffi
DN

p
z

�2

+S2
mk

2:

(77)

The temporally fluctuating state is therefore described by a closed set of equations for the mean activity m, the overlap k, the zero-

lag varianceD0 and the long-time varianceDN. The differenceD0 � DN represents the amplitude of temporal fluctuations. If temporal

fluctuations are absent,D0 = DN, and the system of equationswe just derived reduces to the DMFdescription for stationary solutions

given in Equation 40.

A similar set of equations can be derived for single unit activity. As for static stationary states, the mean activity of unit i is given by

mi =mik: (78)

The static variance around this mean activity is identical for all units and given by

DI
N =g2

Z
Dz

� Z
Dxf

	
m+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D0 � DN

p
x +

ffiffiffiffiffiffiffi
DN

p
z

�2

=DN � S2
mk

2 (79)

while the temporal component DI
T of the variance is identical to the population averaged temporal variance

DI
T =D0 � DN: (80)

To conclude, similarly to static stationary states, the structured connectivity Pij shapes network activity in the direction defined by

its right eigenvector m whenever the overlap k does not vanish. For this reason, the mean-field theory predicts in some parameter
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regions the existence of more than one chaotic solution. A formal analysis of the stability properties of the different solutions has not

been performed. We nevertheless observe from numerical simulations that chaotic solutions tend to inherit the stability properties of

the stationary solution they develop from. Specifically, when an homogeneous solution generates two heterogeneous bistable ones,

we notice that the former loses stability in favor of the latter.

We finally observe that the critical coupling at which the DMF theory predicts the onset of chaotic fluctuations can be computed by

imposing that, at the critical point, the concavity of the potential function VðDÞ is inverted (Sompolinsky et al., 1988; Harish and

Hansel, 2015):

d2VðD;D0Þ
dD2

����
DN

= 0 (81)

and the temporal component of the variance vanishes: D0 = DN. These two conditions are equivalent to the expression: 1= g2h½f02
I �i

where, as we saw, g2h½f02
i �i coincides with the squared value of the radius of the compact component of the stability eigenspectrum

(Equation 44). In the phase diagram of Figure 1B, we solved this equation for g to derive the position of the instability boundary from

stationary to chaotic regimes.

Spontaneous dynamics: structures overlapping on the unitary direction
In this section, we analyze in detail a specific case, in which the connectivity vectorsm and n overlap solely along the unitary direction

u = ð1;1;.1Þ=N. Within the statistical description of vector components, in this situation the joint probability density pðm; nÞ can be

replaced by the product two normal distributions (respectively, NðMm;S
2
mÞ and NðMn;S

2
nÞ). The mean values Mm and Mn represent

the projections ofm and n on the common direction u, and the overlap betweenm and n is given byMmMn. The componentsm and n

are otherwise independent, the fluctuations representing the remaining parts ofm and n that lie along mutually orthogonal directions.

In this situation, the expression for k simplifies to

k= hni½fi�i
=Mnh½fi�i (82)

so that a non-zero overlap k can be obtained only if the mean population activity h½fi�i is non-zero. Choosing independently drawnm

and n vectors thus slightly simplifies the mean-field network description. The main qualitative features resulting from the interaction

between the structured and the random component of the connectivity can however already be observed, and more easily under-

stood, within this simplified setting.

Stationary solutions
TheDMFdescription for stationary solutions reduces to a systemof two non-linear equations for the population averagedmean m and

variance D0:

m=MmMnh½fi�i : =Fðm;D0Þ
D0 =g2

��
f2
i

��
+S2

mM
2
nh½fi�i2 : =Gðm;D0Þ: (83)

The population averages h½fi�i and h½f2
i �i are computed as Gaussian integrals similarly to Equation 39. Equation 83 can be solved

numerically for m and D0 by iterating the equations up to convergence, which is equivalent to numerically simulating the two-dimen-

sional dynamical system given by

_mðtÞ= � m+ Fðm;D0Þ
_D0ðtÞ= � D0 +Gðm;D0Þ; (84)

since the fixed points of this dynamical system correspond to solutions of Equation 83. Gaussian integrals in the form of h½fi�i are
evaluated numerically through Gauss-Hermite quadrature with a sampling over 200 points. Unstable solutions can be computed

by iterating the same equations after having inverted the sign of the time variable in the first equation.

As the system of equations in Equation 83 is two-dimensional, we can investigate the number and the nature of stationary solutions

through a simple graphical approach (Figure S1G). We plot on the m� D0 plane the loci of points where the two individual equations

m=Fðm;D0Þ
D0 =Gðm;D0Þ (85)

are satisfied. In analogy with dynamical systems approaches, we refer to the two corresponding curves as the DMF nullclines. The

solutions of Equation 83 are then given by the intersections of the two nullclines.

To begin with, we focus on the nullcline defined by the first equation (also referred to as the m nullcline). With respect to m, Fðm;D0Þ is
an odd sigmoidal functionwhosemaximal slope depends on the value ofD0 andMmMn.When g= 0 andSm = 0, the input varianceD0

vanishes. In this case, the points of the m nullcline trivially reduce to the roots of the equation: m = MmMnfðmÞ, which admits either one

ðMmMn < 1Þ, or three solutions ðMmMn > 1Þ. Non-zero values of g and Sm imply finite and positive values of D0. As D0 increases, the

solutions to the equation m=MmMnh½fi�i vary smoothly, delineating the full nullcline in the m� D0 plane. As in the case without
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disorder (g= 0 and Sm = 0), for low structure strengths (MmMn < 1), the m nullcline consists of a unique branch: m= 0 cD0. At high

structure strengths ðMmMn > 1Þ, instead, its shape smoothly transforms into a symmetric pitchfork.

The D0 nullcline is given by the solutions of D0 =Gðm;D0Þ for D0 as function of m. As Gðm;D0Þ depends quadratically on m, the D0

nullcline has a symmetric V-shape centered in m = 0. The ordinate of its vertex is controlled by the parameter g, as the second

term of the second equation in 83 vanishes at m = 0. For m = 0, the slope of Gðm;D0Þ in D0 = 0 is equal to g2. As a consequence,

for g< 1, the vertex of the D0 nullcline is fixed in (0,0), while for g> 1, the vertex is located at D0 > 0 and an isolated point remains

at ð0;0Þ.
The stationary solutions of the DMF equations are determined by the intersections between the two nullclines. For all values of the

parameters, the nullclines intersect in m = 0, D0 = 0, corresponding to the trivial, homogeneous stationary solution. The existence of

other solutions are determined by the qualitative features of the individual nullclines, that depend onwhetherMmMn and g are smaller

or greater than one (Figure S1G). The following qualitative situations can be distinguished: (i) for MmMn < 1 and g< 1, only the trivial

solutions exist; (ii) forMmMn > 1, two additional, symmetric solutions exist for non-zero values of m andD0, corresponding to symmet-

ric, heterogeneous stationary states; (iii) for g> 1, an additional solution exist for m= 0 and, corresponding to a heterogeneous solution

in which individual units have non-zero stationary activity, but the population-average vanishes. For MmMn > 1, this solution can co-

exist with the symmetric heterogeneous ones, but in the limit of large g these solutions disappear (Figure S1G).

The next step is to assess the stability of the various solutions. As explained earlier on, the stability of the trivial state m = 0, D0 = 0

can be readily assessed using random matrix theory arguments (Figures S1A and S1B). This state is stable only for MmMn < 1 and

g< 1. AtMmMn = 1, it loses stability due to the outlying eigenvalue of the stability matrix, leading to the bifurcation already observed

at the level of nullclines. At g = 1, the instability is due to the radius of the bulk of the spectrum. This leads to a chaotic state, not

predicted from the nullclines for the stationary solutions.

The stability of heterogeneous stationary states is assessed by determining separately the radius of the bulk of the spectrum and

the position of the outlier (Figures S1D–S1F). The radius is determined from Equation 44. The outlier is instead computed as the lead-

ing eigenvalue of the stability matrix given in Equation 71. Note that in the present framework, where the overlap is defined along the

unitary direction, it is possible to show that the latter is equivalent to computing the leading stability eigenvalue of the effective

dynamical system introduced in Equation 84, linearized around the corresponding fixed point. The bifurcation obtained when the

outlier crosses unity is equivalent to the bifurcation predicted from the nullclines when the symmetric solutions disappear in favor

of the heterogeneous solution of mean zero (Figure S1G). For MmMn > 1, we however find that as g is increased, the radius of the

bulk of the spectrum always leads to a chaotic instability before the outlier becomes unstable. Correspondingly, the m= 0 and

D0 > 0 stationary state that exist for large g is never stable.

Chaotic solutions
For large g, the instabilities of the stationary points generated by the bulk of the spectrum are expected to give rise to chaotic dy-

namics.We therefore turn to the DMF theory for chaotic states, which are described by an additional variable that quantifies temporal

fluctuations. For the case studied here of connectivity vectors m and n overlapping only along the unitary direction, Equation 77

become
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As the system to be solved is now three-dimensional, graphical approaches have only limited use. Similarly to the stationary state,

a practical and stable way to find numerically the solutions is to iterate the dynamical system given by

_m= � m+ Fðm;D0;DNÞ
_D0 = � D0 +Gðm;D0;DNÞ
_DN = � DN +Hðm;D0;DNÞ:

(87)

where the double Gaussian integrals fromEquation 86 can be evaluated numerically as two nestedGauss-Hermite quadratures. Note

that stationary states simply correspond to solutions for which D0 = DN.

As for stationary solutions, different types of chaotic solutions appear depending on the values of the structure strengthMmMn and

the disorder strength g. If g> 1 and MmMn < 1, a single chaotic state exists corresponding to m= 0 and DN = 0, meaning that the

temporally averaged activity of all units vanishes, so that fluctuations are only temporal (Figure 1B red). As MmMn crosses unity,
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two symmetric states appear with non-zero values of m and DN. These states correspond to bistable heterogeneous chaotic states

(Figure 1B orange) that are analogous to bistable heterogeneous stationary states.

The critical disorder strength gB at which heterogeneous chaotic states emerge (gray boundary in the phase diagram of Figure 1) is

computed by evaluating the linear stability of the dynamics in 87 around the central solution ð0;D0;0Þ. A long but straightforward

algebra reveals that the stability matrix, evaluated in, is simply given by0BBBB@
MmMn

�
f

0�
0 0

0
g2

�
f2
�
+
�
Ff

0�� hFi�f0��
D0

0

0 0 g2
�
f

0�2

1CCCCA; (88)

such that gB corresponds to the value of the random strength g for which the largest of its three eigenvalues crosses unity.

Spontaneous dynamics: structures overlapping on an arbitrary direction
In the previous section, we focused on the simplified scenario where the connectivity vectorsm and n overlapped only in the unitary

direction. Here, we briefly turn to the opposite case where the overlap along the unitary direction u vanishes (i.e.,Mm = 0; Mn = 0), but

the overlap r along a direction orthogonal to u is non-zero. As we will show, although the equations describing the network activity

present some formal differences, they lead to qualitatively similar regimes. The same qualitative results apply as well to the general

case, where an overlap exists on both the unitary and an orthogonal direction.

The network dynamics can be studied by solving the DMF Equations 40 and 77 by setting m = 0. Stationary solutions are now

determined by:

k= rkSmSnh½f0
ið0;D0Þ�i : =Fðk;D0Þ

D0 =g2
��
f2
i ð0;D0Þ

��
+S2

mk
2 : =Gðk;D0Þ: (89)

Note that, in this more general case, the relevant first-order statistics of network activity is given by the overlap k, which now can

take non-zero values even when the population-averaged activity h½fi�i vanishes.
As in the previous case, the stationary solutions can be analyzed in terms of nullclines (Figure S2A). Themain difference lies in the k

nullcline given by k = rkSmSnh½f0
ið0;D0Þ�i. As both sides of the first equation are linear and homogeneous in k, two classes of solutions

exist: a trivial solution (k= 0 for any D0), and a non-trivial one (D0 = ~D0 for any k), with ~D0 determined by:��
f0
i



0; ~D0

���
= 1=ðrSmSnÞ: (90)

Because 0<f0ðxÞ< 1, Equation 90 admits non-trivial solutions only for sufficiently large overlap values: r> 1=SmSn. In conse-

quence, the k nullcline takes qualitatively different shapes depending on the value of r: (i) for r< 1=SmSn, it consists only of a vertical

branch k= 0 (ii) for r> 1=SmSn an additional horizontal branch D0 = ~D0 appears (Figure S2A).

The D0 branch is qualitatively similar to the previously studied case ofm and n overlapping along the unitary direction, with a qual-

itative change when the disorder parameter g crosses unity.

The stationary solutions are given by the intersections between the two nullclines. Although the shape of the k nullcline is

distinct from the shape of the m nullcline studied in the previous case, qualitatively similar regimes are found. The trivial stationary

state k = 0, D0 = 0 exists for all parameter values. When the structure strength rSmSn exceeds unity, two symmetric heteroge-

neous states appear with non-zero k values of opposite signs (but vanishing mean m). Finally for large g an additional state appears

with k = 0, D0 > 0.

Similarly to Figure 1, the solutions of Equation 89, which correspond to stationary activity states, are shown in blue in Figures

S2B–S2D.

In Figure S2B we address their stability properties: again we find that when non-centered stationary solutions exist, the central

fixed point becomes unstable. The instability is led by the outlier eigenvalue of the stability eigenspectrum. Similarly to Figure 1,

furthermore, the DMF theory predicts an instability to chaotic phases for high g values. As for stationary states, both heterogeneous

and homogeneous chaotic solutions are admitted (Figures S2C and S2D); heterogeneous chaotic states exist in a parameter region

where the values of g and r are comparable.

Response to external inputs
In this section, we examine the effect of non-vanishing external inputs on the network dynamics. We consider the situation in which

every unit receives a potentially different input Ii, so that the pattern of inputs at the network level is characterized by the N-dimen-

sional vector I = fIig. The network dynamics in general depend on the geometrical arrangement of the vector I with respect to the

connectivity vectors m and n. Within the statistical description used in DMF theory, the input pattern is therefore characterized by

the first- and second-order statisticsMI and SI of its elements, as well as by the value of the correlations SmI and SnI with the vectors

m and n. In geometric terms,MI quantifies the component of I along the unit direction u, while SmI andSnI quantify the overlaps withm
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and n along directions orthogonal to u. For the sake of simplicity, here we consider two connectivity vectors m and n that overlap

solely on the unitary direction (r = 0). The two vectors thus read (see Equation 34):

m=Mm +Smx1
n=Mn +Snx2:

(91)

The input pattern can overlap with the connectivity vectors on the common (u) and on the orthogonal directions (x1 and x2). It can

moreover include further orthogonal components of strength St. The most general expression for the input vector can thus be writ-

ten as:

I=MI +
SmI

Sm

x1 +
SnI

Sn

x2 +Sth (92)

where h is a standard normal vector. We first focus on the equilibrium response to constant inputs, and then turn to transient

dynamics.

The mean-field equations in presence of external inputs can be derived in a straightforward fashion by following the same steps as

in the input-free case. We start by considering the statistics of the effective coupling term, which is given by xiðtÞ = hiðtÞ + IiðtÞ, with

hiðtÞ defined as in Equation 20. We can then exploit the statistics of hiðtÞ which have been computed in the previous paragraphs to

obtain the equation for the mean activity:

mi = ½xi�=mik+ Ii: (93)

Equation 93 indicates that the direction of the average network activity is determined by a combination of the structured recurrent

connectivity and the external input pattern. The final direction of the activation vector in the N-dimensional population space is

controlled by the value of the overlap k, which depends on the relative orientations ofm, n and I. Its value is given by the self-consis-

tent equation:

k= hni½fi�i
=
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(94)

as both vectors m and I share non-trivial overlap directions with n.

The second-order statistics of the noise are given by:�
xiðtÞxjðt + tÞ�= dijg

2h½fiðtÞfiðt + tÞ�i+mimjk
2 + ðmiIj +mjIiÞk+ Ii Ij: (95)

Averaging across the population we obtain:

h½xiðtÞxiðt + tÞ�i � h½xiðtÞ�i2 =g2
��
f2
i

��
+S2

mk
2 + 2SmIk+S2

I : (96)

The first term of the r.h.s. represents the quenched variability inherited from the random connectivity matrix, while

S2
m =S2

mk
2 + 2SmIk+S2

I represents the variance induced by the structure, which is inherited from both vectors m and I (Equation 93).

From Equation 92, the variance of the input reads:
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The final DMF equations to be solved are given by the following system:

m=Mmk+MI
€D=D� �g2h½fiðtÞfðt + tÞ�i+S2

mk
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which, similarly to the caseswe examined in detail so far, admits both stationary and chaotic solutions. As for spontaneous dynamics,

the instabilities to chaos are computed by evaluating the radius of the eigenspectrum of the stability matrix Sij (Equation 44). The sta-

bility matrix can admit an outlier eigenvalue as well, whose value can be predicted with a mean-field stability analysis. Extending the

arguments already presented in the previous paragraphs allows to show that the effective stability matrix M is given by:

M=

0@ 0 0 Mm
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with:

a=MmMn

��
f0
i

��
+MmSnI

��
f00
i

��
b=

1

2

�
Mn

��
f}
i

��
+SnI

��
f000
i

���
:

(100)

As in the input-free case, when the stability eigenspectrum contains one outlier eigenvalue, its position is well predicted by the largest

eigenvalue of M.

In the following, we refer to Figure 2 and analyze in detail the contribution of every input direction to the final network dynamics.

In Figure 2D (left), we consider a unit-rank structure whose vectors m and n are orthogonal: Mm = Mn = 0. The input direction is

orthogonal to the connectivity vectors:SmI = SnI = 0, so that the input strength is quantified by the amplitude of the component along

h ðStÞ. In this configuration, because of Equation 94, the amount of structured activity quantified by k systematically vanishes.

In Figure 2D (center), we consider again orthogonal connectivity vectors, but we take an input pattern which overlaps with n along

x2. We keep St = 1 fixed and we vary the component of the input along n by increasing SnI. As can be seen from the equation for k

(Equation 98), the overlapSnI between the input and the left vector n has the effect of increasing the value of k, which would otherwise

vanish since the structure has null strength ðMn = 0Þ. In response to the input, a structured state emerges. From the same equation,

furthermore, one can notice that the SnI term has the effect of breaking the sign reversal symmetry ðx/� xÞ that characterizes the

mean-field equations in the case of spontaneous dynamics.

In Figure 2D (right), we include strong non-vanishing structure strengths ðMmMn = 3:5Þ. In absence of external activity, the network

dynamics thus admit two bistable solutions (Figure 1). We consider an input pattern that correlates with n but is orthogonal to the

structure overlap direction (MI = 0, SnI > 0). In this configuration, the external input has the effect of disrupting the symmetry between

the two stable solutions. For sufficiently strong input values, one of the two stable solutions disappears by annihilating with the un-

stable one.

In Figure S4C, we show that the value of the critical input strength for which one of the two stable solution disappears can be

controlled by an additional external input that overlaps with n on a different, orthogonal direction. Specifically, in Figure S4C, we

tune the additional input along the direction of the structure overlap u. This input component can be thought as a modulatory signal

which controls the way the network dynamics process the input stimulus along x2. In models of computational tasks that employ non-

linear input responses (Figure 4), a modulatory input along the structure overlap can regulate the threshold value of the input strength

that the network has learnt to detect. Similarly, in Figures 5 and 6, modulatory inputs are used to completely block the response to the

non-relevant input stimulus, so that the readout can produce context-dependent outputs.

Asymmetric solutions
A major effect of external inputs is that they break the sign reversal symmetry ðx/� xÞ present in the network dynamics without

inputs. As a consequence, in the parameter regions where the network dynamics admit bistable structured states, the two stable

solutions are characterized by different statistics and stability properties.

To illustrate this effect, we focus on the simple case where the external input pattern I overlaps with the connectivity vectorsm and

n solely on the unitary direction (MIs0, SmI = SnI = 0). The solutions of the system of equations corresponding to stationary states

can be visualized with the help of the graphical approach, which unveils the symmetry breaking of network dynamics induced by

external inputs (Figure S4D).

Similarly to the input-free case, the D0 nullcline consists of a symmetric V-shaped curve. In contrast to before, however, the vertex

of the nullcline is no longer fixed in ð0; 0Þ, but takes positive ordinate values also at low g values. The value of Gð0;D0Þ, indeed, does
not vanish, because of the finite contribution from the input pattern S2

I .

The nullcline curves of m are instead strongly asymmetric. For low MmMn values, one single m nullcline exists. In contrast to the

input-free case, this nullcline is no longer centered in zero. As a consequence, it intersects the D0 nullclines in one non-zero point,

corresponding to a unique heterogeneous stationary solution. As MmMn increases, a second, separated branch can appear. In

contrast to the input-free case, the structure strength at which the second branch appears is not always equal to unity, but depends

on the mean value of the input. If MmMn is strong enough, the negative branch of the nullcline can intersect the D0 nullcline in two

different fixed points, while a third solution is built on the positive m nullcline. As g increases, the two intersections on the negative

branch become closer and closer and they eventually collapse together. At a critical value gB, the network activity discontinuously

jumps from negative to positive mean solutions.

As they are no longer symmetrical, the stability of the positive and the negative fixed points has to be assessed separately, and

gives rise to different instability boundaries. Computing the position of the outlier reveals that, when more than one solution is

admitted by the mean-field system of equations, the centered one is always unstable.

As the stability boundaries of different stationary solutions do not necessarily coincide, in presence of external input patterns the

phase diagram of the dynamics are in general more complex (Figures S4A–S4C). Specifically, hybrid dynamical regimes, where one

static solution co-exists with a chaotic attractor, can be observed.
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Transient dynamics
We now turn to transient dynamics evoked by a temporal step in the external input (Figure 2B). We specifically examine the projection

of the activation vector and its average onto the two salient directions spanned by vectors m and I.

The transient dynamics of relaxation to a stationary solution can be assessed by linearizing the mean-field dynamics. We compute

the time course of the average activation vector mi, and we finally project it onto the two orthogonal directions which are indicated in

the small insets of Figure 2B.

Similarly to Equation 45, the time evolution of mi is governed by:

_miðtÞ= � miðtÞ+mikðtÞ+ IiðtÞ (101)

so that, at every point in time:

miðtÞ=mi~kðtÞ+ eIi ðtÞ; (102)

where ~kðtÞ and eIi ðtÞ coincide with the low-pass filtered versions of kðtÞ and IðtÞ.
When the network activity is freely decaying back to an equilibrium stationary state, eIi ðtÞ coincides with a simple exponential relax-

ation to the pattern Ii. The decay timescale is set by the time evolution of activity (Equation 6), which is taken here to be equal to unity:eIi ðtÞ= Ii +


Iici � Ii

�
e�t: (103)

The timescale of ~kðtÞ is inherited from the dynamics of kðtÞ. We thus refer to our mean-field stability analysis, and we compute the

relaxation time of the population statistics kðtÞ as the largest eigenvalue of the stability matrixM. The eigenvalue predicts a time con-

stant tr , which is in general larger than unity. As a consequence, the relaxation of kðtÞ obeys, for small displacements:

kðtÞ= k0 +


kic � k0

�
e
� t
tr ; (104)

where the asymptotic value of k0 is determined from the equilibrium mean-field equations (Equations 98). Finally, the time course of

~kðtÞ is derived as the low-pass filter version of Equation 104 with unit decay timescale.

Rank-two connectivity structures
In the following paragraphs, we provide the detailed analysis for network models with rank-two connectivity structures. The struc-

tured component of the connectivity can be written as:

Pij =
m

ð1Þ
i n

ð1Þ
j

N
+
m

ð2Þ
i n

ð2Þ
j

N
; (105)

where the vector pairs mð1Þ and mð2Þ, nð1Þ and nð2Þ are assumed to be linearly independent.

As in the case of unit-rank structures, we determine the network statistics by exploiting the link between linear stability analysis and

mean-field description. The study of the properties of eigenvalues and eigenvectors for the low-dimensional matrix Pij helps to pre-

dict the complex behavior of activity above the instability and to restrict our attention to the cases of interest.

The mean activity of the network in response to a fixed input pattern Ii is given by:

mi = k1m
ð1Þ
i + k2m

ð2Þ
i + Ii: (106)

The final direction of the population activity is thus determined by the overlap values k1 = hnð1Þi ½fi�i and k2 = hnð2Þi ½fi�i.
The expression of the mean-field equations for the first- and second-order statistics are determined by the geometrical arrange-

ment of the connectivity and the input vectors. Similarly to the unit-rank case, the simplest mean-field solutions correspond to sta-

tionary states, which inherit the structure of the most unstable eigenvectors of the connectivity matrix Jij. The stability of the

heterogeneous stationary states can be assessed as before by evaluating separately the value of the radius (Equation 44) and the

position of the outliers of the linear stability matrix Sij.

Similarly to the unit-rank case, it is possible to compute the position of the outlier eigenvalues by studying the linearized dynamics

of the network statistics close to the fixed point, that is given by:

d

dt

0BB@
m1

D1
0

k11
k12

1CCA= �

0BB@
m1

D1
0

k11
k12

1CCA+M

0BB@
m1

D1
0

k11
k12

1CCA: (107)

Note that, in klk , the subscript k = 1; 2 refers to the left vector nðkÞ with which the overlap is computed, while the superscript l = 0;1

indicates the order of the perturbation away from the fixed point.

In order to compute the elements of the linear stability matrix M, we follow and extend the reasoning discussed in details for the

unit-rank case. We start by considering the time evolution of the linearized activity m1
i , which similarly to Equation 45 reads:

_m1
i ðtÞ= � m1

i +m
ð1Þ
i k11 +m

ð2Þ
i k12: (108)
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At every point in time, we can write: mt
i = m

ð1Þ
i ~kt1 + m

ð2Þ
i ~kt2, where ~ktk is the low-pass filtered version of ktk : ð1 + d=dtÞ~ktk = ktk .

In the case of orthogonal (zero mean), random connectivity vectors, we get:

_m1ðtÞ= � m1; (109)

so that the elements in the first row of M vanish. In analogy with Equation 64, the linearized dynamics of D0 gives instead:
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Similarly to the unit-rank case (Equation 47), in order to determine the linear response of k1 we need to compute:
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A similar expression can be derived for k12.

In general, the integrals in the r.h.s. can be expressed in terms of the perturbations ~k11, ~k
1
2 andD1

0, leading to expressions of the form:
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(112)

Applying the operator ð1+d=dtÞ to the Equation 111 allows to reshape the results in the final matrix form:
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where the values of the constants a and b depend on the geometric arrangement of the structure and the input vectors.

In the following, we consider several specific cases of interest. Note that the non-linear network dynamics is determined by the

relative orientation of the structure and input vectors, but also by the characteristics of the statistical distribution of their elements.

In contrast to the cases we analyzed so far, the precise shape of the distribution of the entries in the connectivity vectors can play an

important role when the rank of Pij is larger than unity. In the following, we focus on the case of broadly, normally distributed patterns.

Rank-two structures with null overlap
The simplest case we consider consists of rank-two matrices whose four connectivity vectors mð1Þ, mð2Þ, nð1Þ, and nð2Þ are mutually

orthogonal. From the point of view of responses to inputs, networks with this structure behave as superpositions of two independent

unit-rank structures.

Similarly to the unit-rank case, if the connectivity vectors are orthogonal, the network is silent in absence of external inputs: k1 =

k2 = 0. A single homogeneous state – stationary or chaotic – is the unique stable attractor of the dynamics. Consistently, the eigens-

pectrum of Jij does not contain any outlier, since every eigenvalue of Pij vanishes.

In order to compute the eigenspectrum of Pij, we can rotate the matrix onto a basis defined by an orthonormal set of vectors, and

compute its eigenvalues in the transformed basis. For simplicity, we consider an orthonormal set whose first four vectors are built

from the connectivity vectors:

u1 =a1m
ð1Þ

u2 =a2m
ð2Þ

u3 =a3n
ð1Þ

u4 =a4n
ð2Þ;

(114)

where the coefficient ak ðk = 1;.; 4Þ denote the normalization factors. In this basis, the first four rows and columns of the rotated

matrix P
0
ij read:

P
0
ij =

1

N

0BBBBBBBB@

0 0
1

a1a3

0

0 0 0
1

a2a4

0 0 0 0

0 0 0 0

1CCCCCCCCA
; (115)

all the remaining entries being fixed to 0. From the present matrix form, it easy to verify that all the eigenvalues of P
0
ij, and thus all the

eigenvalues of Pij, vanish. Note that rewriting Pij in an orthonormal basis simplifies the search for its eigenvalues also inmore complex

cases where the connectivity vectors share several overlap directions. In those cases, a proper basis needs to be built starting from

the connectivity vectors through a Gram-Schmidt orthonormalization process.
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As a side note we observe that, even though P
0
ij (and thusPij) admits only vanishing eigenvalues, its rank is still equal to two. Indeed,

the rank can be computed asNminus the dimensionality of the kernel associated toP
0
ij, defined by any vector x obeyingP

0
x = 0. AsP

0
ij

contains N� 2 empty rows, the last equations impose two independent contraints on the components of x. As a consequence, the

dimensionality of the kernel equals N� 2, and the rank is equal to two.

We turn to responses that are obtained in presence of external inputs. We examine the network dynamics in response to a normal-

ized input I which partially correlates with one of the left-connectivity vectors, here nð1Þ:

I= nð1ÞSnI

S2
n

+ x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2

I �
S2

nI

S4
n

s
: (116)

Similarly to the unit-rank case, we find that I elicits a network response in the plane I� mð1Þ. The overlap values are given by:

k1 =SnI

��
f0
i

��
k2 = 0;

(117)

and they can be used to close the mean-field equations together with the equation for the first (m = 0) and second-order statistics. In

the case of stationary states we have:

D0 =g2
��
f2
i

��
+S2

m



k21 + k22

�
+S2

I : (118)

Similar arguments allow to derive the two equations needed for the chaotic states.

In order to assess the stability of the stationary states, we evaluate the position of the outliers in the stability eigenspectrum by

computing the eigenvalues of M (Equation 113). In the case of orthogonal structures and correlated input patterns I, a little algebra

reveals that all the a values vanish, while we have:

b1 =
1

2
SnI

��
f00
i

��
b2 = 0:

(119)

We conclude that the first and the last row ofM always vanish. Furthermore, the second and the third rows are proportional one to

the other. As a consequence, the stability analysis predicts at most one outlier eigenvalue, which is indeed observed in the spectrum

(not shown). The outlier is negative, as the effect of introducing inputs in the direction of the left vector nð1Þ is to further stabilize the

dynamics. As it will be shown, more than one outlier can be observed in the case where the low-dimensional structure involves over-

lap directions.

Rank-two structures with internal pairwise overlap
As a second case, we consider structured matrices where the two connectivity pairs mð1Þ and nð1Þ, mð2Þ and nð2Þ share two different

overlap directions, defined by vectors y1 and y2. We set:

mð1Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2 � r21

q
x1 + r1y1

mð2Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2 � r22

q
x2 + r2y2

nð1Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2 � r21

q
x3 + r1y1

nð2Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2 � r22

q
x4 + r2y2:

(120)

where S2 is the variance of the connectivity vectors and r21 and r22 quantify the overlaps along the directions y1 and y2.

By rotating Pij onto the orthonormal basis that can be built frommð1Þ andmð2Þ by orthogonalizing the left vectors nð1Þ and nð2Þ, one
can easily check that the two non-zero eigenvalues of Pij are given by l1 = r21 and l2 = r22. They correspond, respectively, to the two

right-eigenvectors mð1Þ and mð2Þ. In absence of external inputs, an instability is thus likely to occur in the direction of the mðkÞ vector
which corresponds to the strongest overlap.

We specifically focus on the degenerate condition where the two overlaps are equally strong, r1 = r2 = r, and any combination of

mð1Þ and mð2Þ is a right-eigenvector. The mean-field equations for the first-order statistics read:

k1 = r2k1
��
f

0
i

��
k2 = r2k2

��
f

0
i

��
:

(121)

Similarly to Equation 89, the two equations admit a silent ðk1 = k2 = 0Þ and a non-trivial state, determined by two identical conditions

which read:

1= r2
��
f

0
ið0;D0Þ

��
: (122)

The equation above determines the value of D0. Note that the non-trivial state exists only for r> 1.
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A second condition is imposed by the equation for the second-order momentum which reads, for stationary solutions:

D0 =g2
��
f2
i

��
+S2



k21 + k22

�
: (123)

As the value of D0 is fixed, the mean-field set of equations fixes only the sum k21 + k22, but not each single component. The mean-

field thus returns a one-dimensional continuum of solutions, the shape of which resembles a ring of radius
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 + k22

q
in themð1Þ �mð2Þ

plane (see Figures S5D and S5E). Similarly to the unit-rank case, the value of the radius can be computed explicitly by solving numer-

ically the twomean-field equations (three in the case of chaotic regimes), and depends on the relative magnitude of r2 compared to g

(Figure S5F). Highly disordered connectivities have the usual effect of suppressing non-trivial structured solutions in favor of homo-

geneous and unstructured states. For sufficiently high g values, furthermore, structured solution can display chaotic dynamics (Fig-

ures S5E and S5F, red).

A linear stability analysis reveals that the one-dimensional solution consists of a continuous set of marginally stable states. Similarly

to the orthogonal vectors case, the position of the outliers in the eigenspectra of Sij can be evaluated by computing the reduced sta-

bility matrix M, which reads:

M=

0BB@
0 0 0 0

2g2
��
fif

0
i

��
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���
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+
��
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+
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��
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��
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��
+
��
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1CCA; (124)

with:

a11 = r2
��
f0
i

��
b1 =

1

2
r2k01

��
f000
i

�� (125)

and

a22 = r2
��
f

0
i

��
b2 =

1

2
r2k02

��
f000
i

��
:

(126)

As shown in Figure S5G, diagonalizing the stability matrix M returns the values of two distinct outlier eigenvalues. The third non-

zero eigenvalue of M lies instead systematically inside the compact component of the spectrum, and corresponds to an average

measure of the timescales inherited by the randommodes. One of the two outliers is tuned exactly to the stability boundary for every

value of the parameters which generate a ring solution. This marginally stable eigenvalue is responsible for the slow dynamical time-

scales which are observed in numerical simulations of the network activity (Figures S5D and S5E).

The DMF predictions formally hold in the limit of infinite-size networks; in simulations of finite-size networks, the dynamics instead

always converge on a small number of equilibrium spontaneous states located on the ring (see Figures S5D and S5E). The equilibrium

reached in a given situation is determined by the corresponding realization of the random part of the connectivity, and the initial con-

ditions. Different realizations of the random connectivity lead to different equilibrium states, which all however lie on the predicted ring

(see Figures S5D and S5E). For a given realization of the random connectivity, transient dynamicsmoreover show a clear signature of

the ring structure. Indeed the points on the ring are close to stable and form a slow manifold. The convergence to the equilibrium

activity is therefore very slow, and the temporal dynamics explore the ring structure.

We next examine how the structured, ring-shaped solution is perturbed by the injection of external input patterns.

We consider an input pattern I of variance S2
I . When I does not share any overlap direction with the left vectors nð1Þ and nð2Þ, the

mean-field equations are affected solely by an extra termSI which needs to be included in the equation for the second-order statistics

(Equation 123). As the equations for the first-order statistics do not change, the one-dimensional degeneracy of the solution persists.

The extra term S2
I however decreases the value of the radius of the ring.

When the input contains a component which overlaps with one or both left vectors nð1Þ and nð2Þ, the degeneracy in the two equa-

tions for k1 and k2 is broken. As a consequence, the one-dimensional solution collapses onto a unique stable point. Consider for

example an input pattern of the form:

I=SI

	 ffiffiffiffiffiffiffiffiffiffiffiffi
1� a

p
x3 +

ffiffiffi
a

p
x4



: (127)

The equations for the first order become:

k1 =

�
r2k1 +SI

ffiffiffiffiffiffiffiffiffiffiffiffi
1� a

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2 � r2

q ���
f0
i

��
k2 =

�
r2k2 +SI

ffiffiffi
a

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2 � r2

q ���
f0
i

�� (128)
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or, alternatively:

k1 =
SI

ffiffiffiffiffiffiffiffiffiffiffiffi
1� a

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2 � r2

q ��
f0
i

��
1� r2

��
f0
i

��
k2 =

SI

ffiffiffi
a

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2 � r2

q ��
f0
i

��
1� r2

��
f0
i

�� :

(129)

The values of k1 and k2 are thus uniquely specified, and can be computed by iterating the two equations together with the expres-

sion for the second-order statistics:

D0 =g2
��
f2
i

��
+S2



k21 + k22

�
+S2

I : (130)

In a similar way, the presence of correlated external inputs affect the values of the entries of the reduced stability matrix M:

b1 =
1

2

�
r2k01 +SI

ffiffiffiffiffiffiffiffiffiffiffiffi
1� a

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2 � r2

q ���
f000
i

��
b2 =

1

2

�
r2k02 +SI

ffiffiffi
a

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2 � r2

q ���
f000
i

��
:

(131)

In Figures S5H and S5I, we focus on the case of an external input pattern aligned with x3 (and thus nð1Þ). We fix a = 0, that implies

k2 = 0.

Solving the mean-field equations reveals that, according to the strength of the input SI, one or three fixed points exist. When the

input is weak with respect to the structure overlap r2, two fixed points appear in the proximity of the ring, along the direction defined

by the axis k2 = 0 (Figure S5H, top). In particular, when I positively correlates with nð1Þ, only the fixed point with positive value of k1 gets

stabilized. The remaining two solutions are characterized by one outlier eigenvalue which lays above the instability boundary, and are

thus unstable. On the other hand, when the input is sufficiently strong, solely the stable fixed point survives (Figure S5H, bottom).

Activity is then robustly projected in the direction defined by the right vector mð1Þ.

Rank-two structures for oscillations
We finally consider the following configuration:

mð1Þ =ax1 + ry1
mð2Þ =ax2 + ry2
nð1Þ =ax3 + ry2 +gry1
nð2Þ =ax4 � ry1;

(132)

where the right- and the left-connectivity vectors share two cross-overlap directions y1 and y2. Note that the vectors in one of the two

pairs, mð1Þ � nð2Þ, are negatively correlated. A second overlap is introduced internally to the mð1Þ � nð1Þ pair, and scales with the

parameter g. The directions xj, with k = 1;.;4, represent uncorrelated terms. Note that different values of a affect quantitatively

the network statistics, but they do not change the phase diagram in Figure S8A.

By rotating Pij on a proper orthonormal basis, one can check that its eigenvalues are given by:

l± =
gr2

2

 
1±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4

g2

s !
; (133)

and they are complex conjugate for g< 2. In this case, the internal overlap g has the effect of returning a non-vanishing real part. The

two complex conjugate eigenvectors are given by:

e± =
	
� g

2
mð1Þ +mð2Þ



± i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi����1� 4

g2

����
s

mð1Þ: (134)

The eigenspectrum of Jij = gcij +Pij inherits the pair of non-zero eigenvalues of Pij. When g< 1 and g< 2, the trivial fixed point thus

undergoes a Hopf bifurcation when the real part of l crosses unity (Figure S8A, blue). When g> 2, instead, the two eigenvalues are

real. One bifurcation to bistable stationary activity occurs when the largest eigenvalue l+ crosses unity (Figure S8A, gray).

On the boundary corresponding to the Hopf bifurcation, the frequency of instabilityuH is determined by the imaginary part of Equa-

tion 133. At the instability, the oscillatory activity of unit i can be represented as a point on the complex plane. Since close to the bifur-

cation we can write:

mi = e+
i e

iuHt + c:c: ; (135)
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its coordinates are given by the real and the imaginary part of the ith component of the complex eigenvector e+ . The phase of oscil-

lation can then be computed as the angle defined by this point with respect to the real axis. Note that the disorder in the elements of

the eigenvector, which is inherited by the random distribution of the entries of the connectivity vectorsmð1Þ andmð2Þ, tends to favor a

broad distribution of phases across the population.

In the limit case where the real and the imaginary parts of the complex amplitude of the oscillators are randomly and independently

distributed, the population response resembles a circular cloud in the complex plane. In this case, the phase distribution across the

population is flat. Note that a completely flat phase distribution can be obtained for arbitrary frequency values by adopting a rank-two

structure where an internal overlap of magnitude gr2 exists between vectors mð2Þ and nð2Þ as well.

In the present case, for every finite value of g, the real and the imaginary part of e+
i are anti-correlated throughmð1Þ (Equation 134).

Correlations tend to align the network response on twomain and opposite phases, as shown in the phase histograms of Figures S8C

andS8D. The distribution of phases becomes sharper and sharper in the g/2 limit, as the distribution in the complex plane collapses

on the real axis.

The phase distribution across the population is reflected in the shape of the closed orbit defined by activity on themð1Þ �mð2Þ plane,
whose components are given by k1 and k2. The phase of the oscillations in k1 (resp. k2) can be computed by projecting the eigen-

vector e+ on the right-connectivity vectors nð1Þ and nð2Þ:

k1 = jk1 j eiðF1 +uHtÞ + c:c:=
D
n
ð1Þ
i ½fi�

E
k2 = jk2 j eiðF2 +uHtÞ + c:c:=

D
n
ð2Þ
i ½fi�

E (136)

By using Equations 134 and 135 we get, in the linear regime:
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����
s #

eiuHt + c:c:

(137)

while:

k2 =
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n
ð2Þ
i m
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i

E
� g
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D
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i

E
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g2

����
s #

eiuHt + c:c:

=

"
r2
g

2
� ir2
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g2

����
s #

eiuHt + c:c:

(138)

When g is close to 2, the complex amplitudes of k1 and k2 vanish. However, their real parts have different signs. We thus get:

F2 = 0, F1 = p. As a consequence, at large g values, the oscillatory activity in k1 and k2 tends to be strongly in anti-phase.

Stationary solutions can be instead easily analyzed with the standard mean-field approach. The equations for the first order sta-

tistics read:

k1 =


gr2k1 + r2k2

���
f0
i

��
k2 = � r2k1

��
f0
i

��
:

(139)

The two equations can be combined together to give the following condition on h½f0
i �i, which in turn determines the value of D0:

r4
��
f0
i

��2 � gr2
��
f0
i

��
+ 1= 0: (140)

The mean-field equations thus admit two solutions, given by:

��
f0
i

��
±
=

g

2r2

 
1+ ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4

g2

s !
(141)

which, similarly to Equation 133, take real values for g> 2. Because of the constraints on the sigmoidal activation function, the mean-

field solutions are acceptable only if
��h½f0

i �i
�� < 1. As it can be easily checked, the condition h½f0

i �i� < 1 coincides with imposing l+ > 1.

We conclude that two stationary solutions exist above the instability boundary of the trivial fixed point (Figure S8A, gray). A second

pair of solutions appears for h½f0
i �i+ < 1, which coincide with l� > 1 (Figure S8A, dashed), where the second outlier of Jij becomes

unstable. This second pair of solutions is however always dynamically unstable, as it can be checked by evaluating the outliers of
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their stability matrix through Equation 113. The coefficients of the reduced matrix M read:

a11 =gr2
��
f0
i

��
a12 = r2

��
f0
i

��
b1 =

1

2
r2


k20 +gk10

���
f00
i

�� (142)

and

a21 = � r2
��
f0
i

��
a22 = 0

b2 = � 1

2
r2k10

��
f00
i

��
:

(143)

On the phase diagram boundary corresponding to g = 2, the stable and the unstable pair of stationary solutions annihilate and

disappear. At slightly smaller values of g ðg(2Þ, the network develops highly non-linear and slow oscillations which can be thought

of as smooth jumps between the two annihilation points (Figure S8D).

IMPLEMENTATION OF COMPUTATIONAL TASKS

Go-Nogo discrimination
Here we describe and analyze the unit-rank implementation of the Go-Nogo discrimination task (Figure 3).

The network receives inputs specified byN-dimensional vectors Ik . In every trial, the input vector coincides with one among the two

vectors IA and IB, representing respectively the Go and the Nogo stimuli. The components of the two input patterns are generated

independently from a Gaussian distribution of mean zero and variance SI. As the components of the inputs are uncorrelated, the

two vectors are mutually orthogonal in the limit of large N.

The network activity is readout linearly through a vector w generated from a Gaussian distribution of mean zero and variance S2
w.

The readout value is given by:

z=
1

N

XN
i = 1

wifðxiÞ: (144)

We fix the connectivity vectorsm and n such that: (i) the readout is selective, i.e., zs0 if the input is IA and z= 0 for the input IB; (ii) the

readout is specific to the vectorw, i.e., it is zero for any readout vector uncorrelated withw. The simplest network architecture which

satisfies these requirements is given by:

m=w
n= IA;

(145)

i.e., the right-connectivity vectorm corresponds to the readout vector, and the left-connectivity vector corresponds to the preferred

stimulus IA.

The response of the network can be analyzed by referring to the stationary and chaotic solutions of Equation 98. In the case

analyzed here, the connectivity vectors have no overlap direction, so we set Mm = Mn = MI = SmI = 0, which implies m = 0. The

first-order network statistics are determined by the overlap SnI between the left-connectivity vector and the input vector. As the

left-connectivity is given by IA, SnI is the overlap between the current input pattern I and the preferred pattern IA, and it takes values

SnI =S2
I during the Go stimulus presentation and SnI = 0 otherwise. From Equation 94 we have:

k= hni½fi�i
=
�
IAi ½fi�

�
:

(146)

As a consequence, when the Go stimulus is presented ðI = IAÞ:
k=S2

I

��
f0
i

��
; (147)

while the first-order statistics k vanishes in response to any orthogonal pattern IB.

When activity is read out by the specific decoding vector w, the readout value is:
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z= hwi½fi�i
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�
wi

Z
Dzf

�
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ffiffiffiffiffiffi
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0

q
z

��
=

�
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Z
Dzf

�
wik+ Ii +

ffiffiffiffiffiffi
DI

0

q
z

��
= kS2

w

��
f0
i

��
;

(148)

while we trivially obtain z= 0 for any decoding set orthogonal to both connectivity vectors m and n.

In Figure 3C, we display the transient dynamics predicted by the mean-field theory within them� I plane. In order to compute the

predicted trajectory, we use Equations 103 and 104, where the slowest time-scale of k is computed by diagonalizing the reduced

stability matrix in Equation 99.

In Figure 3G, we test the generalization properties of a network which responds to two Go patterns IA1 and IA2 . We examine the

response to a normalized mixture input defined as:

I=
ffiffiffi
a

p
IA1 +

ffiffiffiffiffiffiffiffiffiffiffiffi
1� a

p
IA2 ; (149)

so that the variance of the total input is fixed and equal to S2
I . We set n = IA1 + IA2 , so that the equation for the first-order statis-

tics reads:

k=
�
IA1i½fi�

�
+
�
IA2i½fi�

�
=
	 ffiffiffi

a
p

+
ffiffiffiffiffiffiffiffiffiffiffiffi
1� a

p 

S2

I

��
f0
i

��
:

(150)

Detection of a continuous noisy stimulus
In Figure 4, we construct a network model which performs a Go-Nogo detection task on a one-dimensional continuous stimulus.

The stimulus consists of an input of time-varying amplitude cðtÞI. As in Figure 3, the input direction I is a centeredGaussian vector of

variance S2
I . The strength value cðtÞ includes a stationary component c together with additive white noise of standard deviation s.

Less importantly, we include in the input an orthogonal component of quenched noise of unitary variance. The network output is

defined at the level of an orthogonal readout as in Equation 144, and the task consists in responding to the stimulus when the strength

of the input c is larger than a given threshold.

We obtain highly non-linear readout responses by considering non-vanishing overlaps between the connectivity vectorsm and n.

The simplest setup consists of taking:

m=w+ rmy
n= I+ rny;

(151)

where y is a standard Gaussian vector which defines a direction common to m and n, but orthogonal both to w and I.

For this configuration, as in Equation 94, themean-field equation for the first-order statistics includes two terms, generated respec-

tively by the input and the rank-one structure:

k=


rmrnk+ c S2

I

���
f0
i

��
: (152)

Before the stimulus presentation (c = 0, s = 0), the structure overlap rmrn is strong enough to generate two bistable solutions (Fig-

ure 1). We set the negative k solution to represent the Nogo condition, and we initialize the network in this state. To have a zero output

in this condition, we add an offset to the readout.

When an input along the preferred direction is presented ðc> 0Þ, two asymmetric solutions exist only when the strength of the input

c is not too large (Figure 2D, right). When the correlation c is large, instead, only the positive branch of the solution is retrieved (Fig-

ure 2D, right). As a consequence, the average value of k (and thus the readout signal) jumps to positive values, which define the Go

output condition.

More generally, in order to compute the network performance (Figure 4G), the network is said to respond to the stimulus if the

readout z at the end of the stimulus presentation takes values larger than one half of the readout value expected for the upper state.

The threshold value for c at which the bistability disappears is mostly determined by the strength of the structure overlap, but de-

pends also the input and readout parameters SI and Sw. For practical purposes, in order to obtain the model implementation illus-

trated in Figure 4, we first fix the values of SI = 1:2, Sw = 1:2 and rn = 2. We then tune the value of rm in order to obtain a threshold

value for c close to 0.5. This leads to rm = 2.

In Figure 4F we vary rm and we show that the value of the threshold decreases to zero as the structure strength rmrn decreases

from its original value (rmrn = 4). Rank-one structures characterized by different strengths thus correspond to different thresholds, but

also induce different dynamical time-scales in the network. As a rough estimate of this time-scale, we compute the inverse of the

outlier eigenvalue from the stability matrix of the fixed point corresponding to the Go resting state ðc = 0Þ. The value of the outlier

can be computed from the linearizedmean-field equations (Equation 71). We show that arbitrarily large time-scales are only obtained
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by decreasing the value of the structure strength to the critical point where the two bistable branches of the solution emerge from the

trivial fixed point. In this configuration, the threshold detected by the network is arbitrarily small.

Contextual modulation of threshold value
Here we briefly illustrate how the threshold of detection can be controlled by an additional modulatory input (Figure 5B). Modulatory

inputs are used in Figures 5 and 6 to implementmore complex taskswhich require context-dependent responses to stimuli. Any input

direction which overlaps with the left-connectivity vector n and is orthogonal to the stimulus axis I can serve as modulatory input. For

simplicity, we consider modulatory inputs which are aligned with the overlap direction y (see Equation 151). The total external input to

the network contains the modulatory component gy together with the stimulus term cðtÞI, where g is a scalar which controls the

strength of the modulation. The mean-field equation for the first-order statistics reads:

k=


rmrnk+ rng+ c S2

I

���
f

0
i

��
: (153)

Equation 153 indicates that the modulatory component of the input acts as a constant offset to the stimulus strength. Its net effect

is to shift the response curve of the network along the x axis (Figure 5B) by an amount directly regulated by the parameter g. Varying g

thus results in network models which detect variable threshold values.

Rank-two structures for context-dependent computations
Here we provide details on the rank-two implementation of the context-dependent tasks. The same model has been used for both

tasks in Figures 5 and 6.

The stimuli consist of combinations of two different features A and B that correspond to inputs along two directions IA and IB,

generated as Gaussian random vectors of variance S2
I . Contextual cues are represented as additional inputs along directions IctxA

and IctxB of unit variance. The total input pattern to the network on a given trial is therefore given by:

IðtÞ= cAðtÞIA + cBðtÞIB +gAIctxA +gBIctxB: (154)

The values cA and cB express the strength of the stimulus along the two feature directions. They are given by the sum of stationary

average values (cA, cB), and temporary fluctuating components generated from independent realizations of white noise with standard

deviation s. In the simple discrimination version of the task (Figure 5), inputs are noise-free ðs= 0Þ and consist of a single feature in

each trial (cA = 1 and cB = 0 or vice versa). In the evidence integration version of the task (Figure 6), inputs are noisy ðs> 0Þ and include

non-zero average components along both feature directions. Finally, the parameters gA and gB control the two modulatory inputs

which are taken in the directions defined by IctxA and IctxB.

In order to implement context-dependent computations, we define a unique readout signal zðtÞ by using a common readout set w

of unit variance (Equation 144), to which we add an offset so that the baseline Nogo output is set to zero. The network is said to

respond to the stimulus if the value of the total readout at the end of the stimulus presentation takes values larger than one half of

the largest predicted value for the upper state.

The rank-two connectivity matrix we consider is given by:

mð1Þ = yA + rmIctxA + bmw
nð1Þ = IA + rnIctxA + bnw
mð2Þ = yB + rmIctxB + bmw
nð2Þ = IB + rnIctxB + bnw;

(155)

where vectors yA and yB represent the orthogonal components of the right-connectivity vectors and are generated as Gaussian vec-

tors of fixed variance (for simplicity, we set Sy = SI).

For our choice of the parameters, the network solves the two different tasks by relying on the strongly non-linear responses gener-

ated by the interplay between the recurrent connectivity and the feed-forward inputs (details given below).

For weak input values, the network dynamics is characterized by two stable attractors (Figure 6F). As in Figure 4, we initialize the

network in the state characterized by negative k1 and k2 values before the stimulus presentation. This dynamical attractor corre-

sponds to the Nogo state. For strong input strengths, the network can jump to the Go state, defined as the stable attractor charac-

terized by positive k1 and k2 values.

The rank-two connectivity matrix has been designed as an extension of the unit-rank recurrent connectivity employed in Figure 4.

We started by setting:

mð1Þ = yA + rmIctxA
nð1Þ = IA + rnIctxA
mð2Þ = yB + rmIctxB
nð2Þ = IB + rnIctxB:

(156)

Note that, because the only overlap directions (IctxA and IctxB) are internal to themð1Þ � nð1Þ andmð1Þ � nð1Þ pairs, Equation 156 de-

scribes a rank-two structure which generates a continuous ring attractor as in Figures S5D–S5I (gray circles in Figure 6F).
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The readout zðtÞ should detect the presence of both stimuli directions. As a consequence, it should be sensitive to both overlap

values k1 and k2. For this reason, we introduce a common term in the four connectivity vectors that is aligned to the common readout

(Equation 155).

Introducing a common overlap direction has the effect of destabilizing the continuous attractor dynamics along the direction k1 = k2

(dashed line in Figure 6F), where two stable and symmetric fixed points are generated. The equations for the first-order spontaneous

dynamics read indeed:

k1 =
�
nð1Þ½fi�

�
= rmrnk1

��
f

0
i

��
+ bmbnðk1 + k2Þ

��
f

0
i

��
k2 =

�
nð2Þ½fi�

�
= rmrnk2

��
f

0
i

��
+ bmbnðk1 + k2Þ

��
f

0
i

�� (157)

from which the value of k1 = k2 = k can be derived by dividing and multiplying together the two equations. The final readout signal

contains a contribution from both first-order statistics:

zðtÞ= hwi½fi�i= bmðk1 + k2Þ
��
f

0
i

��
: (158)

The input-driven dynamics of the network are determined by the interplay between the structure strength and the contextual and

stimulus inputs. Crucially, the modulatory inputs along IctxA and IctxB are used to gate a context-dependent response. Similarly to Fig-

ure 5B, a strong and negative gating variable along IctxA can completely suppress the response to stimulus IA, so that the readout

signal is left free to respond to IB.

The overall effects of the inputs on the dynamics can be quantified by solving themean-field equations. For the first-order statistics,

we obtain:

k1 =
��
f

0
i

���
rmrnk1 + bmbnðk1 + k2Þ+ cAS

2
I + rngA

�
k2 =

��
f

0
i

���
rmrnk2 + bmbnðk1 + k2Þ+ cBS

2
I + rngB

� (159)

while the second-order gives, in the case of stationary regimes:

D0 =g2
��
f2
i

��
+S2

w



k21 + k22

�
+ b2

m



k21 + k22

�
+S2

I



c2
A + c2

B

�
+ ðrmk1 +gAÞ2 + ðrmk2 +gBÞ2: (160)

Figures S5L–S5M displays the values of the first-order statistics and the readout response in the two contexts. Note that, when the

response to IA (resp. IB) is blocked at the level of the readout, the relative first-order statistics k1 (resp. k2) does not vanish, but actively

contributes to the final network response.

The average activation variable of single neurons contains entangled contributions from themain directions of the dynamics, which

are inherited both from the external inputs and the recurrent architecture:

mi = ½xi�=


yA;i + rmIctxA;i + bmwi

�
k1 +



yB;i + rmIctxB;i + bmwi

�
k2 + cAI

A
i + cBI

B
i +g1IctxA;i +g2IctxB;i: (161)

In Figures 5E and 6D, we project the averaged activation mi in the directions that are more salient to the task. The projection along

w, which reflects the output decision, is proportional to the readout value (Equation 158). The input signals affect instead the average

activity through the values of k1 and k2, but can be also read out directly along the input directions. Note that the projection on the

input direction IA (resp. IB) is proportional to the signal cA (resp. cB) regardless of the configuration of the modulatory inputs selecting

one input channel or the other.

In practical terms, in order to obtain the network architecture that has been used in Figures 5 and 6, we fixed the parameters step by

step.We first considered input patterns only along IA (cB = 0), andwe fixed two arbitrary values of bm and bn. In particular, we consid-

ered intermediate values of b. Large values of b tend to return large activity variance, which requires evaluating with very high pre-

cision the Gaussian integrals present in the mean-field equations. Small values of b bring instead the network activity closer to a

continuous-attractor structure, and turn into larger finite-size effects. In a second step, we fix rm and rn such that the network detects

normalized input components along IA only when they are larger than a threshold value, that is taken around 0.5. We then looked for a

pair of gating variables strengths ½gA;gB�which completely suppresses the response to IA by extending the range of bistable activity.

The opposite pattern can be used to block the response in IB and allow a response in IA.

Once the response in IA has been blocked, it can be verified that the network solely responds to inputs which contain a response

along IB that is larger than a threshold close to 0.5. Note that, as in Figures S5L–S5M, different values of cA only minimally affect the

exact position of the threshold.

To conclude, we remark that this procedure leaves the freedom of fixing the network parameters in many different configurations.

The complex rank-two architecture leads to larger finite-size effects than the respective unit-rank setup which acts as a single de-

tector of correlations. In particular, the error at the level of the readout is larger but it decays with the system size, as expected for

deviations induced by finite-size effects (Figure S5N). Finally, note that when the noise in the input stimuli becomes extremely large,

the network loses its ability to respond in a totally context-dependent fashion, as strong fluctuations in the non-relevant stimulus

become likely to elicit a response.
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METHOD DETAILS FOR MAIN FIGURES

Figure 1
In this figure, Sm = Sn = 1:0. Note that the precise position of the instability to chaos depends on the value of Sm. The connectivity

vectorsm and n were generated from bivariate Gaussian distributions (meansMm andMn, variances Sm and Sn, correlation r). Here

we display the case wherem and n overlap only along the unitary direction (Mm > 0; Mn > 0, r = 0, see STAR Methods). As shown in

Figure S2, qualitatively similar regimes are obtained when the overlap is defined on an arbitrary direction. C-D: Network simulations

were performed starting from initial conditions centered aroundm and �m. Activity is integrated up to T = 800. In simulations, N =

5000, and statistics are averaged over 15 different connectivity realizations. The error bars, when visible, correspond to the standard

deviation of the mean (as in every other figure, if not differently specified).

Figure 2
In this figure, g = 0:8. Other parameters are set as in Figure 1. B: The asymptotic input parameters are indicated by gray dots in D

(middle). The simulation results (dark gray traces) correspond to 20 trajectories for different network realizations (different trajectories

strongly overlap). We simulated Ntr = 20 different networks, each consisting of N= 3500 units. In every network realization, the

random part of the connectivity cij is varied, while the low-rank part minj is kept fixed. I (resp. m) scale: 0.7 (resp. 0.25) units.

D: The external input is increased along nt, the component of n that is perpendicular to the overlap direction.

Figure 3
The input and the readout vectors are Gaussian patterns of standard deviation S = 2. C (right): Colored traces: 20 trajectories from

different network realizations (different trajectories strongly overlap). We simulated Ntr = 20 different realizations of the network, each

consisting ofN= 2500 units. In every network realization, the random part of the connectivity cij is generated independently, while the

low-rank partminj is kept fixed. I
A, IB andm scale: 1.5 units. D: Here, and in every plot if not differently stated, r indicates the Pearson

correlation coefficient. F: The PC axis are determined by analyzing separately the trials corresponding to the Go (top) and the Nogo

(bottom) stimuli. Connectivity is measured as the average reciprocal synaptic strength; it includes both the random and the unit-rank

components and it is averaged across network realizations. Note that the value of the correlation coefficient r increases with the

number of realizations Ntr and the structure strength.

Figure 4
The input and the readout vectors are Gaussian patterns of standard deviationS = 1:2. The overlap between the connectivity vectors

m and n leading to non-linear responses is quantified by rm = rn = 2:0. B: The input is generated as white noise of mean c= 0:6 and

standard deviation s= 0:4 (the noise trace in the figure is only for illustration purposes). The red dashed line indicates the threshold in

the implemented network. C: The gray bar indicates the time point at which the network output is measured. Here and in the following

figures, the readout includes an offset, so that the baseline value is set to zero. D: We simulated many input noise traces for Ntr = 4

different realizations of the network, each consisting of N= 2500 units. In every network realization, the random part of the connec-

tivity cij is varied, while the low-rank part minj is kept fixed. Trajectories are smoothed with a Gaussian filter of standard deviation

equal to one normalized time unit. I (resp. m) scale: 0.5 (resp. 3.5) units. F: The structure strength corresponds to the overlap

rmrn. The effective timescale is measured as the inverse of the value of the outlier eigenvalue of the stability matrix for c = 0. G:

The psychometric curve was measured across Ntr = 100 different realizations. The network produces an output to the stimulus if

at the end of the stimulus presentation (vertical gray line in B) the value of the readout z is larger than one half of the largest readout

value predicted by the theory. H: Details as in Figure 3F.

Figure 5
The stimuli vectors are Gaussian patterns of standard deviation S = 1:2. We furthermore set: g = 0:8, bm = 0:6, bn = 1, rm = 3,

rn = 1:6. The amplitudes of the two context directions are fixed to ½0:08;�0:14� (resp. ½ � 0:14;0:08�) during the context A (resp.

context B) trials. B: We consider in this case a unit-rank network as in Figure 2D, and we show in the two panels the network

response for two different values of the input strength along the overlap axis (we set, respectively, MI = � 0:3 and 0.6). Details

on the effect of contextual modulation on the full rank-two model are further illustrated in Figures S5L–S5N. E: We simulated

Ntr = 4 different realizations of the network, each consisting of N= 3000 units. In every network realization, the random part of

the connectivity cij is varied, while the low-rank part minj is kept fixed. IA and IB (resp. w) scale: 1.0 (resp. 2.0) units. F: The network

performance was measured across Ntr = 50 different network realizations of size N = 7500. The network produces an output to the

stimulus if at the end of the stimulus presentation (vertical gray line in D) the value of the readout z is larger than one half of the

largest readout value predicted by the theory. G: Details as in Figure 3F.

Figure 6
The stimuli vectors are Gaussian patterns of standard deviation S = 1:2. We furthermore set: g = 0:8, bm = 0:6, bn = 1, rm = 3, rn =

1:38. The amplitudes of the two context directions are fixed to ½0:08;�0:18� (resp. ½ � 0:18; 0:08�) during the context A (resp.

context B) trials. B: Here cA = 0:6 and cB = 0:1, while the standard deviation of the noise in the input is s= 0:3 (the noise trace in
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the figure is only for illustration purposes). D: We simulated many noisy input traces for Ntr = 5 different realizations of the network,

each consisting ofN= 4000 units. In every network realization, the random part of the connectivity cij is varied, while the low-rank part

minj is kept fixed. For the sake of clarity, only correct trials have been included. IA and IB (resp.w) scale: 1 (resp. 1.5) units. E: Network

performance was measured across Ntr = 50 different network realizations of size N = 7500.

QUANTIFICATION AND STATISTICAL ANALYSIS

In this section, we briefly describe the analysis techniques that have been applied to the datasets generated fromdirect simulations of

activity in finite-size networks (Figures 2, 3, 4, 5, and 6).

Dimensionality reduction
In order to extract from the high-dimensional population activity the low-dimensional subspace which contains most of the relevant

dynamics, we performed dimensionality reduction via a standard Principal Component (PC) analysis.

To begin with, we constructed the activation matrix X. In X, every column corresponds to the time trace of the activation variable

xiðtÞ for unit i, averaged across trials. We indicate as trials different network simulations, where different noisy inputs, or different

quenched noise in the random connectivity matrix have been generated (details are specified in the figure captions). The activation

matrix X is normalized through Z-scoring: to every column, we subtract its average over time, andwe divide by its standard deviation.

Note that Z-scoring distorts the shape of the population trajectory in the phase space. For this reason, in order to facilitate the com-

parison with the trajectory predicted by the mean-field theory, in Figure S3 we more simply consider the mean-subtracted matrix X.

Applying the PCA analysis to one of the two data formats impacts the results from a quantitative point of view, but does not change

their general validity.

The principal components (PC) are computed as the normalized eigenvectors felgl = 1;.;N of the correlationmatrixC = XTX. The PC

are sorted in decreasing order according to the corresponding real eigenvalue ll. The activation matrix X can be projected on the

orthonormal basis generated by the PC vectors by computing: X
0
= XE, where E is the N3N matrix containing the PC eigenvectors

ordered as columns. The variance explained by the l-th PC mode el can be computed as the l-th entry on the diagonal of the rotated

correlation matrix C
0
= X

0TX
0
.

While in our network models the low-rank part of the connectivity determines a purely low-dimensional dynamics (Figure S3A), the

random part of the connectivity generates a continuum of components whose amplitude is determined by strength of the random

connectivity g with respect to the connectivity and input vectors. In Figure 2, where g = 0:8, the low-dimensional nature of the dy-

namics is revealed by considering averages across several ðNtr = 20Þ realizations of the random connectivity. In Figure S3B, we illus-

trate the result of performing PCA on the activity generated by a single network. In this case, even if more PC components contribute

to the total variance, the two first axis bear a strong resemblance with the directions predicted with the theory. In Figure S3Cwe show

that, in the same spirit, a PCA analysis can be used to extract the relevant geometry of the network model also when activity is

strongly chaotic.

In order to more easily connect with the theoretical predictions, we systematically applied dimensionality reduction on datasets

constructed from the activation variable xi. We verified that our results still hold, from a qualitative point of view, when the analysis

is performed on the non-linearly transformed variables fðxiÞ. In the network models we considered, the activation variables fðxiÞ
indeed form a non-linear but dominantly low-dimensional manifold in the phase space. The axes predicted by the mean-field theory

determine the dominant linear geometry of this manifold, and can be still captured (although less precisely) by looking at the first PC

components.

Linear regression
In order to estimate how single units in the network are tuned to different task variables (such as input stimuli or decision variables), we

used a multi-variate linear regression analysis.

To this end, we considered the full population response xki ðtÞ, where k = 1;.;Ntr indicates the trial number. Following (Mante et al.,

2013), our aimwas to describe the network activation variables as linear combinations of theM relevant task variables. In Figure 3, the

two variables we considered were the strength of the Go and of the Nogo inputs, that we indicate here with cGo and cNogo:

xki ðtÞ= bGo
i;t cGoðkÞ+ b

Nogo
i;t cNogoðkÞ: (162)

In a Go, or in a Nogo trial, only one of the two strength coefficients is non-zero. In Figure 4, the two relevant task variables are

assumed to be the input strength along I, quantified by c, and the network output, quantified as the value of the readout z at the

end of the stimulus presentation:

xki ðtÞ= b
input
i;t cðkÞ+ bchoice

i;t zðkÞ: (163)
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In Figures 5 and 6, the relevant variables are four: the strength of stimuli A and B, the trial context and the network output. We

thus have:

xki ðtÞ= bA
i;tcAðkÞ+ bB

i;tcBðkÞ+ + bctx
i;t yðkÞ+ bchoice

i;t zðkÞ: (164)

where the context variable is represented by a unique symbolic variable y, which takes value y = 1 in context A and y = � 1 in

context B.

More generally, we indicate with bni;t the regression coefficient of unit i with respect to the task feature n at time t. The vector

bi;t = fbni;tgn=1;::;M indicates the collection of theM variables regressors for a given unit at the time point t. We compute the regression

coefficients by defining a matrix F of size M3 Ntr , where every row contains the value of the M relevant task variables across trials.

The regression coefficient vectors are then estimated by least-square inversion:

bi;t =


FFT

��1
Fxi;t (165)

where the vector xi;t is constructed by collecting across trials the value the activation variable of unit i at time t.

In order to get rid of the time dependence of our result, we simply consider the coefficients bi;t at the time point where the two-

dimensional array bi;t for every i has maximal norm (Mante et al., 2013). The resulting set of M-dimensional vectors bi contains the

regression coefficients of unit i with respect to theM relevant task variables. The N-dimensional regression axis for a given task var-

iable n is finally constructed by collecting the n-th components of bi across different population units: fbni gi =1;::;N.

DATA AND SOFTWARE AVAILABILITY

Software was written in the Python (http://python.org) programming languages. Implementations of algorithms used to compute

quantities presented in this study are available at: https://github.com/fmastrogiuseppe/lowrank/.
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