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Abstract 
The theory of predictive processing posits that the nervous system uses expectations to process              
information predictively. Direct empirical evidence in support of this theory however has been             
scarce and largely limited to sensory areas. Here, we report a precise and adaptive neural               
mechanism in the frontal cortex of non-human primates consistent with predictive processing of             
temporal events. We found that the speed at which neural states evolve over time is inversely                
proportional to the statistical mean of the temporal distribution of an expected stimulus. This lawful               
relationship was evident across multiple experiments and held true during learning: when temporal             
statistics underwent covert changes, neural responses underwent predictable changes that          
reflected the new mean. Together, these results highlight a precise mathematical relationship            
between temporal statistics in the environment and neural activity in the frontal cortex that could               
serve as a mechanistic foundation for predictive temporal processing. 
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Introduction 
Since the early work of Hermann Helmholtz ​(​1​)​, the field of psychology has embraced the idea that                 
humans rely on prior knowledge to construct a coherent interpretation of raw sensory inputs.              
Central to this idea is the notion of internal models that represent statistical regularities in the                
environment ​(​2​– ​4​) and help us make better perceptual inferences ​(​5​)​, optimize behavioral            
responses ​(​6​)​, and swiftly adapt to environmental changes ​(​7​)​.  
 
Internal models establish lawful relationships between statistical regularities in the environment and            
neural signals in the brain ​(​8​– ​10​)​. However, the inherent complexities of circuits and signals in the                
nervous system have made the discovery and concrete characterization of such lawful relationships             
extremely challenging ​(​11​, ​12​)​. One influential hypothesis inspired by information-theoretic accounts           
of brain function ​(​13​, ​14​) is that prior statistics enable the brain to process incoming information                
predictively; i.e., in terms of deviations from expectations ​(​15​– ​17​)​. To do so, the nervous system is                
thought to encode the predictable components of sensory inputs, which are compared to the actual               
inputs once they become available ​(​18​, ​19​)​. Predictive processing has been touted as a canonical               
cortical computation and used to provide a functional account of a wide range of cortical               
phenomena, including the response properties of neurons in early visual cortex ​(​20​) and the logic of                
laminar information processing in cortical circuits ​(​21​, ​22 ​)​.  
 
The conceptual impact of this theory however has been far greater than evidence in its support.                
Here, we highlight three major gaps in our current understanding that the present study aims to                
address. First, high-resolution recordings in animal experiments have largely focused on how            
individual neurons in sensory areas encode sensory predictions ​(​11​, ​16​, ​23​, ​24​)​. For example, the               
foundational implications of predictive processing for efficient coding ​(​13​) have only been explored             
in terms of tuning properties of spatially-tuned sensory neurons ​(​25​)​. As such, evidence for              
predictive processing in higher-order cortical areas is still wanting ​(​26​)​. Second, the implications of              
predictive processing have typically been examined in terms of static firing rates of neurons and not                
their dynamics. Recent advances, in contrast, suggest that fundamental neural computations might            
be carried out through dynamic patterns of activity that emerge from interactions among populations              
of neurons ​(​27​– ​34​)​. Therefore, it is critical that we revisit predictive internal models in terms of                
population coding and dynamics. Finally, one strong appeal of the theory is that it makes               
quantitative predictions about the relationship between neural signals and environmental statistics.           
Experimentally however, it has proven challenging to establish such precise relationships, even for             
simple statistical properties such as the expected value of a stochastic variable.  
 
Here, we begin to address these outstanding questions based on analyses of neural activity in the                
frontal cortex of non-human primates. Using both old and new data, we uncover a precise               
mathematical relationship between neural activity and environmental statistics in the temporal           
domain: the speed at which neural responses evolve over time is inversely proportional to the               
average time that a stimulus is expected to occur. This lawful relationship was present across               
multiple independent experiments including a novel learning experiment wherein neural responses           
underwent predictable adjustments in accordance with changes in the mean of the distribution.  
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Results 
 
Behavioral and neural signatures of predictive processing in the ‘Ready-Set-Go’ task  
 
In a previous study, we trained two monkeys to perform a time interval reproduction task known as                 
‘Ready-Set-Go’ (RSG) ​(​28​) (​Figure 1A​). This task requires animals to (1) fixate a central spot, (2)                
measure a sample time interval (​t​s​) between two visual flashes (‘Ready’ followed by ‘Set’), and (3)                
produce a matching interval (​t​p​) immediately after Set by initiating a saccade (‘Go’) toward a visual                
target presented left or right of the fixation point. Animals performed this task in two conditions                
associated with two distinct ​t​s distributions (​Figure 1A, top right​). The conditions were cued              
explicitly by the color of the fixation spot and were interleaved across short blocks of trials                
(Methods). When the fixation spot was red, ​t​s was sampled from a ‘Short’ uniform distribution               
(480–800 ms). When the fixation spot was blue, ​t​s was sampled from a ‘Long’ distribution               
(800–1200 ms). The amount of reward monkeys received at the end of each trial decreased linearly                
with the magnitude of the relative error ((​t​p​-t​s​)/​t ​s​) (​Figure 1A, bottom left ​). 
 
A salient feature of behavior in this task is that responses regress toward the mean of the interval                  
distribution ​(​35​)​. We found a robust expression of this regression-to-the-mean phenomenon ​(​28​)            
causing opposite biases in the Short and Long conditions for the overlapping 800 ms interval               
(​Figure S1 ​). This observation suggests that animals measure time intervals predictively, i.e.,            
relative to the mean of the temporal distribution. Accordingly, we hypothesized that the neural              
activity in the measurement epoch of RSG (i.e., between Ready and Set) encodes the mean of the                 
interval distribution. 
 
To test this hypothesis, we analyzed neural activity (N=619 neurons for monkey G, N=542 for               
monkey H) in the dorsomedial region of the frontal cortex (DMFC; ​Figure S2 ​), an area that has                 
been strongly implicated in providing temporal control over behavior in humans ​(​36​– ​41​)​, monkeys             
(​42​– ​50​)​, and rodents ​(​51​– ​56​)​. During the measurement epoch, neurons had complex and            
heterogeneous response profiles that typically differed between the two conditions (​Figure 1B, S3​).             
Previous recordings in sensory and sensorimotor areas have reported a signature of prior             
expectations in terms of systematic changes in the baseline firing rate of individual neurons​(​57​– ​63​)​.              
Inspired by these previous findings, we performed a variety of analyses looking for systematic firing               
rate differences between the two conditions. At the level of individual neurons, differences in firing               
rates changed over time, and were unstructured (​Figure S4​) with activity sometimes stronger in the               
Short condition, and other times in the Long condition. Similarly, the normalized difference in firing               
rates across the population did not systematically differ between the two conditions (​Figure S4​). We               
also analyzed the difference between firing rates at the time of Ready, denoted Fr​0​, when the only                 
information available to the animal was the condition type. Although many neurons had different              
levels of activity depending on the condition, across the population, neurons were equally likely to               
be more or less active in the Short compared to the Long condition (two-sided paired-sample t-test,                
t​(617)=0.83, ​p​=0.40 for monkey G, ​t​(553)=-1.84, ​p​=0.07 for monkey H, ​Figure 1C​). Based on these               
results, we concluded that the expectation of the mean is not encoded by systematic firing rate                
differences across the two conditions. 
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Moving beyond static firing rates, we considered the possibility that the mean interval might be               
encoded in how firing rates change over time (i.e., neural dynamics). Recent work has highlighted               
the importance of neural dynamics in a wide array of tasks ​(​29​, ​32​, ​33​, ​64​)​. For example, it has                   
been shown that neural responses compress or stretch in time according to previously learned              
temporal contingencies ​(​47​, ​48​, ​65​, ​66​)​, a phenomenon referred to as ​temporal scaling​. Scaling has               
been reported during the planning of delayed movements ​(​51​, ​55​, ​67​– ​70​)​, but also when animals               
anticipate an external event ​(​54​, ​71​– ​73​)​. Neural responses in RSG exhibited a qualitatively similar              
temporal scaling between the two conditions; i.e., the activity profile in the Long condition often               
appeared as a stretched version of the activity profile in the Short condition (​Figure 1B​). To quantify                 
this scaling effect, we estimated the average rate of change (i.e., ‘speed’) of firing rate over the                 
measurement epoch for each neuron (Methods). Consistent with our qualitative observation, the            
speed across the population of neurons was on average larger in the Short compared to the Long                 
condition (two-sided paired-sample t-test, ​t​(617)=12.6, ​p​<10 ​-10 for monkey G, ​t​(545)=12.9, ​p​<10 ​-10           
for monkey H; ​Figure 1D, S4 ​). This finding suggests that although prior expectations were not               
encoded by an overall modulation of firing rates, they impacted the speed at which neural               
responses evolved over time. 
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Figure 1. Single neuron signatures of temporal expectations during time estimation. (A) ​Ready-Set-Go             
task. On every trial, the monkey measures a sample interval (​t​s ​) between the Ready and Set cue (visual                  
annulus flashed around the fixation point). After Set, the animal produces a matching interval (​t​p​) by making a                  
delayed saccade to a peripheral target (Go). Bottom left: reward function. The animal receives reward when ​t​p                 
is within a fixed window around ​t​s ​. Inside this window, the amount of reward decreases linearly with the                  
relative error (​t​p ​-​t​s​)/​t ​s ​. Top right: sample interval distributions. To modulate animals’ temporal expectations             
about the timing of the Set cue, ​t​s was sampled from one of two distributions Short (red) or Long (blue). The                     
distributions were interleaved in short blocks of trials (length: 4.0 ± 4.4 trials; uniform hazard) and indicated on                  
every trial by the color of the fixation point. ​(B) ​Firing rate of six example neurons during the measurement                   
epoch of the task, color-coded by condition. Shaded areas denote 95% CI obtained from bootstrap               
resampling (N=100). Firing rates were obtained after binning (​w​bin ​=20ms) and smoothing (​sd​kernel ​=40ms) spike             
counts averaged across trials. ​(C) Firing rate at the time of Ready (​Fr​0 ​) for the Long versus Short condition.                   
Each circle represents one neuron (N=619 for monkey G, N=542 for monkey H). ​Fr ​0 was computed in a                  
20-ms window immediately following Ready. The diagonal distribution shows the difference (​Fr​0 ​short - ​Fr ​0​long​)              
across the population of recorded neurons (paired t-test, ​p​=0.40 for monkey G, ​p​=0.07 for monkey H). ​(D)                 
Change in instantaneous firing rate (​dFr/dt​) averaged within the measurement epoch for the Long versus               
Short condition. Each circle represents one neuron. ​dFr/dt was computed as the absolute difference in firing                
rate between consecutive 20-ms bins average over the measurement epoch, normalized by the bin size.               
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Results were qualitatively unchanged if the duration of the averaging period in the Long condition was                
matched to that in the Short condition (i.e., averaging from Ready to Ready+800ms in both conditions). The                 
diagonal distribution shows that the change in firing rate (i.e., ‘speed’) across the population of neurons is                 
significantly higher in the Short compared to the Long condition (paired t-test, ​p​<10 ​-10 ​ for both monkeys). 
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Temporal scaling lawfully reflects the mean of experienced temporal distributions 
 
Although the phenomenon of temporal scaling is not new ​(​47​, ​48​, ​51​, ​54​, ​55​, ​65​– ​72​, ​74​, ​75​)​, its                  
functional implication is not understood. Different studies have offered an interpretation in terms of              
attention ​(​76​)​, anticipation ​(​77​, ​78​)​, or reward expectation ​(​71​, ​79​)​. These interpretations however             
are largely qualitative and do not specify the exact relationship between temporal scaling and              
experimentally-imposed temporal statistics.  
 
Here, we explore an alternative functional interpretation of temporal scaling that is grounded in the               
theory of predictive processing. According to this theory, neural signals ought to have a precise               
relationship to the statistics of sensory inputs: neural signals should represent what is expected ​(​11​,               
20​, ​25​) so that incoming information can be encoded relative to that expectation ​(​15​– ​17​)​.              
Accordingly, we hypothesized that temporal scaling in the Ready-Set epoch is adjusted in             
proportion to the mean of the interval distribution. We refer to this hypothesis as the               
mean-predictive-temporal-scaling (MPTS) hypothesis. MPTS makes a specific prediction: the speed          
at which neural activity evolves over time must be inversely proportional to the average time that the                 
stimulus is expected to occur (faster for earlier, slower for later). Equivalently, the ratio of speeds                
across different interval distributions should be exactly equal to the reciprocal ratio of the              
corresponding interval means. 
 
We tested this prediction first at the level of single neurons. If patterns of activity are scaled                 
according to the average interval, one should be able to reconstruct the firing rate of a neuron in the                   
Short condition based on its activity in the Long condition by applying a precise scaling operation                
(​Figure 2A​). Let us call and the firing rates of a neuron in the Short and Long     (t)rshort   (t)rlong             
conditions, and and , the corresponding mean intervals. Our hypothesis predicts that  μshort   μlong          

should be well approximated by , where the scaling factor ​is equal to the ratio(t)rshort       (λt)rlong      λ       
, which in our experiment, is . We thus fitted each neuron’s activity profile in the

μlong
μshort

      .56640 ms
1000 ms ≃ 1           

Short condition with a scaled version of its activity profile in the Long condition (see Methods and                 
Figure S3, S6 ​), and analyzed the fit to  across the population.λ   
 
We found that the distribution of scaling factors across the population was bimodal, with one peak                
near (no scaling), and another peak near the value predicted by MPTS, (Gaussian λ = 1            λ =

μlong
μshort

  

mixture model, mean±sd, M​1​=1.11±0.33, M​2​=1.60±0.14 for monkey G; M​1​=1.07±0.27, M​2​=1.58±0.15          
for monkey H; ​Figure 2B​). This bimodality suggested that the population comprised a mixture of               
two ensembles, a non-scaling and a scaling ensemble. To ensure that this dichotomy was present               
across task-modulated neurons, we repeated the same analysis across the subset of neurons             
which had the largest firing rate modulations during the measurement epoch. We sorted neurons by               
the amount of variance in their firing rate across time points in the measurement epoch and kept                 
neurons which contributed more than 0.1% of the total variance (150/741 neurons for monkey G,               
164/617 for monkey H; see Methods). The resulting distribution of scaling factors for this reduced               
population showed the same bimodality (M​1​=1.03±0.41, M​2​=1.58±0.18 for monkey G;          
M​1​=1.17±0.36, M​2​=1.59±0.16 for monkey H; ​Figure 2B ​). Together, these results provided evidence            
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that the activity profile of a subpopulation of neurons in DMFC was exactly scaled according to the                 
mean of the interval distribution. 
 
Because the amount of scaling varied from neuron to neuron, we next sought to quantify the scaling                 
effect at the population level. Following recent practices for high-dimensional neural datasets, we             
considered neural activity across the entire population as a state evolving in a high-dimensional              
state space where each dimension represents the activity of one neuron ​(​64​, ​80​)​. We first applied                
principal component analysis (PCA) to visualize how the dynamics in the two conditions unfolded              
between Ready and Set (Methods). Qualitatively, results were consistent with MPTS: the speed of              
neural trajectories appeared faster for the Short compared to the Long condition (​Figure 2C​).  
 
To test whether the speeds were quantitatively consistent with MPTS, we devised an analysis to               
measure speed differences between conditions (​Figure 2D​; see Methods). Briefly, we computed            
the time ( and ) necessary to travel the same distance along the Short and Long trajectory,  tshort   tlong              
starting from a fixed reference state. If the speed is faster in the Short compared to the Long                  
condition, we expect to have for any arbitrary distance. Moreover, if the speed exactly     tlong > tshort           
scales with the average interval in each condition, we expect a linear relationship between and              tlong   

, with a slope equal to the predicted scaling factor,  (​Figure 2E​).tshort
μlong
μshort

  
 
When we applied this analysis to the neural data, we found that the empirical scaling factor                
accurately matched the predicted value (95% CI contained the predicted scaling factor: [1.39 1.58]              
for monkey G, [1.50 1.64] for monkey H; ​Figure 2F ​), both at the level of individual sessions and                  
across animals (​Figure S7​). As a control, we generated a null distribution for the scaling factor after                 
randomly reassigning the condition type (Short vs Long) for each neuron. In that case, we expected                
and observed no significant speed differences (95% CI for scaling factor: [0.78 1.26] for monkey G,                
[0.88 1.14] for monkey H; ​Figure 2F, inset ​). Note that because speed differences across conditions               
emerged ~300 ms after Ready (​Figure S4​), we focused our analysis on the second half of the                 
measurement epoch. However, results were robust when the analysis was extended over the entire              
measurement epoch (​Figure S5​). Together, these results provide compelling evidence that the            
speed of neural population dynamics within DMFC is adjusted according to the mean expected              
interval within each condition and reveal a precise mathematical relationship between temporal            
scaling and experienced temporal statistics in accordance with MPTS.  
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Figure 2. Neural dynamics encodes the statistical mean of the distribution. (A) Schematic             
demonstration of the temporal scaling analysis for individual neurons. We fitted each neuron’s response              
profile in the Short condition ( , red) by a temporally-scaled version of the response in the Long     (t)rshort             
condition ( , blue). We predicted that the optimal scaling factor, , of the fitted response ( , grey) (t)rlong           λ      (λt)rlong   
would be equal to the ratio of the means of the two distributions, . ​(B) ​Distribution of scaling factors             /μμlong short       
across neurons in both monkeys (black: all neurons; grey: only neurons whose responses accounted for more                
than 0.1% of the total variance). Both the black and gray distributions had two peaks, one near unity (black                   
dashed line) and one near the predicted value (red line). We fitted a Gaussian mixture model to the        /μμlong short            
black distribution (black line) to estimate the location of the two peaks (Methods). The first peak (M1, black                  
triangle) was near unity (1.11±0.33 for monkey G, and 1.07±0.27 for monkey H; mean±sd), and the second                 
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peak (M2, red triangle) was near the predicted value (1.60±0.14 for monkey G, and 1.58±0.15 for monkey H).                  
(C) Population dynamics during the measurement epoch. We applied principal component analysis (PCA) to              
visualize neural trajectories associated with both conditions in the subspace spanned by the top 3 PCs (~75%                 
of total variance explained). Population dynamics described two parallel trajectories evolving at different             
speeds, as shown qualitatively by the spacing between consecutive states (bin size: 20 ms) along the                
trajectories (faster for Short, in red, compared to Long, in blue). ​(D) ​Schematic demonstration of the temporal                 
scaling analysis across the population. We estimated speed differences between the two conditions by              
computing the time needed to travel the same arbitrary distance (black segment) along the Short and Long          d         
trajectory ( and , respectively), starting from a common reference state (black square). Since  tshort   tlong            
immediately after Ready, responses were dominated by a non-specific, likely visually-evoked transient            
(​Figure S4 ​), we chose 400 ms after Ready as the reference state. However, the results were robust to the                   
choice of reference state (​Figure S5​). ​(E) ​For any distance traveled along the trajectories, we have by          d         
definition and . The ratio of speeds must therefore verify the relationship /t  vshort = d short   /tvlong = d long           

. If the ratio of speeds also abides by predicted by the MPTS/v /tvshort long = tlong short          /v /μvshort long = μlong short      
hypothesis, then it follows that , or equivalently, . Therefore,     /t /μtlong short = μlong short    μ /μ ) ttlong = ( long short short   
MPTS predicts that the mapping between and should be linear, and the slope of this mapping      tlong    tshort           
should be precisely equal to the predicted scaling factor, . ​(F) We plotted the mapping between         /μλ = μlong short        

and to estimate the empirical scaling factor relating the two neural trajectories. The mapping wastlong    tshort                
linear and diverged from the unity line with a slope close to the predicted value (95% CI for               /μ .56μlong short ≃ 1     
scaling factor: [1.39 1.58] for monkey G, [1.50 1.64] for monkey H). Overlaid with the mapping, the red line                   
shows the prediction constrained to have a slope equal to the value ; the intercept is chosen for            /μμlong short       
visualization to minimize the root-mean-squared-error between the prediction and the data. Inset: the slope of               
a regression model on the empirical mapping (black distribution for bootstrapped values) matches the              
predicted value (red line) and differs significantly from the null value obtained by randomly shuffling conditions                
separately for each neuron (grey distribution).  
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Predictive temporal scaling is not explained by motor preparation 
 
So far, we proposed that temporal scaling in the measurement epoch reflects a predictive process               
encoding the mean ​t​s​. However, since the RSG task requires ​t​p to match ​t​s​, one plausible alternative                 
explanation is that scaling is related to the average ​t​p​, and not the average ​t​s​. That is, scaling could                   
reflect the fact that the animal is preparing to produce a short or a long interval (on average),                  
depending on the condition. Indeed, many studies have found that when animals prepare a delayed               
motor response, the speed of dynamics during the motor preparation period scales with the              
instructed delay ​(​47​, ​48​, ​51​, ​55​, ​56​, ​65​, ​67​– ​69​)​. It is therefore possible that the speed modulations                 
in the measurement epoch are part of a global scaling that spans both Ready-Set and Set-Go                
epochs and is directly associated with the final motor preparation. 
 
To test this alternative explanation, we analyzed neural recordings in DMFC in a variant of RSG,                
which we refer to as RSGgains, in which the ​t​s and ​t​p distributions were dissociated ​(​29​)​. RSGgains                 
had the same basic skeleton as RSG: animals had to measure ​t​s between Ready and Set, and                 
produce ​t​p between Set and Go. However, the key aspect that differentiated RSGgains from RSG               
was that the two conditions in which the animals performed the task had the same ​t​s distribution but                  
different ​t​p distributions. Specifically, in one condition, ​t​p had to match ​t​s (same as RSG), while in a                  
second condition, ​t​p had to be equal to the measured ​t​s multiplied by 1.5 (gain=1 or 1.5,                 
respectively) (​Figure 3A​). Accordingly, RSGgains offered an ideal opportunity to verify that speed             
scaling during the measurement epoch was due to the distribution of ​t​s​, and not ​t ​p​. 
 
We applied the same set of analyses to DMFC activity (138 neurons in monkey C, 201 in monkey J)                   
in the RSGgains experiment. At the level of single neurons, activity during the measurement epoch               
did not exhibit any scaling effect between the two conditions (scaling factor across individual              
neurons, mean±sd, =0.96±0.14 for monkey C; =1.00±0.24 for monkey J; ​Figure 3B–C​). At the  λ     λ         
population level, neural trajectories were separated between the two gain conditions (​Figure 3D​),             
similar to what we observed between the Short and Long conditions of the regular RSG task                
(​Figure 2C​). When we computed the speed along the trajectories, however, we found no speed               
differences between the two gain conditions (95% CI for scaling factor: [0.87 1.12] for monkey C;                
[0.94 1.19] for monkey J; ​Figure 3E, S8 ​). This result is noteworthy, given that the only difference                 
between RSG and RSGgains was whether or not the distribution of ​t​s was the same in the two                  
conditions. The presence of precise speed scaling in RSG and lack thereof in the RSGgains               
provides clear evidence that speed differences in the measurement epoch reflect the expected             
value of ​t​s​, and not ​t ​p​. 
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Figure 3. RSGgains experiment to rule out motor preparation as an alternative explanation for              
temporal scaling. (A) ​To verify that the neural speed during the measurement epoch of RSG reflected the                 
underlying statistics of ​t​s​, and not that of ​t​p ​, we used a control experiment (‘RSGgains’) to dissociate the ​t​s and                    
t​p distributions. In contrast to regular RSG (top), in RSGgains (bottom) animals were exposed to two identical                 
sample interval distributions but had to produce either 1 (gain=1, red) or 1.5 (gain=1.5, blue) times the                 
measured interval ​(​29​)​. Similar to RSG, the gain condition was indicated to the animal by the color of the                   
fixation point. ​(B) Firing rate of four example neurons during the measurement epoch of RSGgains (between                
Ready and Set), color coded by condition. Shaded areas denote 95% CI obtained by standard bootstrapping                
(N=100). Note the absence of temporal scaling compared to ​Figure 1B ​. ​(C) Scaling analysis at the single                 
neuron level. We performed the same analysis as in ​Figure 2B on the RSGgains dataset (N=138 neurons for                  
monkey C, N=201 for monkey J). When we fitted the firing rate of each neuron in the g=1 condition based on                     
a scaled version of its firing rate in the g=1.5 condition, the distribution of scaling factors showed a single peak                    
at one (black dashed line). This indicates that there were no systematic speed differences across conditions                
at the single neuron level. ​(D) Population dynamics in RSGgains. We plotted neural trajectories associated               
with both gain conditions in the space spanned by the top 3 PCs (~90% of total variance explained). In                   
contrast to RSG (​Figure 2C​), there is no apparent speed difference along the trajectories. ​(E) Empirical                
scaling factor. Similar to ​Figure 2F ​, we measured speed differences along the trajectories by computing the                
mapping between ​t​g=1 and ​t​g=1.5 ​, i.e., the time necessary to travel an arbitrary distance on both trajectories.              d     
We estimated the empirical scaling factor by finding the slope of the mapping, and confirmed that both                 
conditions evolved at the same speeds (data lies on the unity line, in agreement with the prediction; 95% CI                   
for scaling factor: [0.87 1.12] for monkey C; [0.94 1.19] for monkey J). Inset: The regression slope of the                   
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mapping was not different from the null value (unity) obtained by shuffling conditions across neurons               
(unpaired ​t​-test on bootstrapped distributions, ​p​>0.05 for both monkeys).  
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Behavioral adaptation to new temporal statistics 
 
As a causal test for the MPTS hypothesis, we next sought to assess whether the speed of neural                  
dynamics would change if the animals had to adapt to new temporal statistics. Indeed, one of the                 
strong predictions of the theory is that predictive processing mechanisms should be adjusted             
flexibly to remain tuned to the current environmental statistics ​(​81​– ​86​)​. We thus conceived another              
variant of RSG, which we refer to as RSGadapt, in which we first sampled ​t​s from a fixed (‘pre’)                   
distribution, and then covertly switched to another (‘post’) distribution (​Figure 4A, inset​). We chose              
the post-distribution to be a single interval at one extremum of the pre-distribution (i.e., shortest or                
longest interval). This choice was motivated by three factors. First, choosing the post-interval within              
the pre-distribution guaranteed that the transition to post could not be instantaneously detected.             
Second, having a single post-interval allowed us to track neural changes associated with the same               
sensory input during adaptation. Finally, we reasoned that this choice would enable us to leverage               
the bias in ​t​p associated with the shortest and longest ​t​s to track adaptation behaviorally.               
Specifically, we predicted that adaptation to a single ​t​s at either end of the pre-distribution would be                 
accompanied by a gradual removal of the bias associated with the reproduction of that ​t​s​. We also                 
performed preliminary behavioral experiments in which the post-distribution included more than one            
interval (data not shown) but did not pursue that design as the behavioral adaptations were too slow                 
and did not accommodate an analysis of neural changes within single electrophysiology sessions. 
 
We performed this manipulation in the same two monkeys used in the first experiment. Under the                
pre-distribution (​t​s between 660–1020 ms, mean: 840 ms), animals showed the characteristic biases             
toward the mean (​Figure 4A–B​). When we switched to the longest interval (​t​s = 1020 ms), animals’                 
responses immediately after the switch were indistinguishable from pre-switch (Wilcoxon rank sum            
test, ​Z​=0.99 ​, p​=0.32 for monkey G, ​Z​=-1.22 ​, p​=0.22 for monkey H), but then gradually adjusted               
over thousands of trials until responses were no longer biased. This was quantitatively confirmed by               
comparing the distribution of produced intervals early and late post-switch (two-sided unpaired t-test             
on ​t​p distributions of the first and last 400 trials after the switch, ​t​(1012)=-9.31, ​p​<10 ​-10 for monkey                 
G, ​t​(778)=-5.92, ​p​<10 ​-8 for monkey H). This adaptation was robust across animals and across              
experiments using either the shortest or the longest ​t​s as the post-interval (​Figure S9​). One               
potential concern with using a single interval is that animals may choose to ignore the measurement                
epoch altogether and produce the desired ​t​p from memory. We performed additional adaptation             
experiments that included catch trials to verify that animals continued to measure the single interval               
in the post condition (​Figure S9​).  
 
Neural adaptation to new temporal statistics 
 
To examine the gradual changes associated with this adaptation at the neural level, we recorded               
DMFC activity (92 neurons in monkey G, 50 in monkey H) during a single session where animals                 
experienced a change in interval statistics. Tracking changes of neural activity during learning is              
challenging because the recordings need to be 1) stable throughout the learning process, and 2)               
high-yield so that we can estimate neural states based on small numbers of trials during learning.                
Therefore, as a prerequisite, we first developed a custom recording approach that ensured the              
required stability and high-yield (see Methods and ​Figure S10​).  
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To examine the neural correlates of learning, we first asked if the new temporal statistics had any                 
consistent effect on the baseline firing rate of individual neurons. To do so, we computed the                
average firing rate of each neuron over the measurement epoch using ~400 trials, both immediately               
before and after the switch. For the majority of neurons, mean firing rates had changed as a result                  
of adaptation (72% (66/92) for monkey G, 58% (29/50) for monkey H, ​Figure 4C​). However, similar                
to the two-context experiment, the direction of change was not systematic across neurons: on              
average, neurons were equally likely to increase or decrease their baseline firing rate between pre               
and post (two-sided paired t-test, ​t​(91)=0.21, ​p​=0.83 for monkey G, ​t​(59)=-2.56, ​p​=0.01 for monkey              
H; ​Figure S11 ​). This result indicated that adaptation impacted firing rates, but the change did not                
involve systematic increase or decrease of the firing rates. 
 
Next, we sought to test whether the activity changes were consistent with the temporal scaling of                
neural responses in proportion to the new mean interval (MPTS hypothesis). Given the mean of the                
post- and pre-distributions ( = 1020 ms and = 840 ms), MPTS predicts that the speed   μpost     μpre         
should slow down by a factor of . The slowing down of dynamics was already       .21λ = 840 ms

1020 ms ≃ 1         
evident at the level of single neurons (​Figure 4C​), many of which appeared to stretch in time after                  
the switch. To test the prediction quantitatively, we estimated speed differences at the population              
level between pre and post. Using the same analysis used in the two-context experiment, we found                
that the speed was adjusted to its predicted value robustly across the two monkeys (95% CI for                 
scaling factor: [1.09 1.28] for monkey G, [1.11 1.38] for monkey H, ​Figure 4D–E​). The data also                 
rejected the alternative hypotheses according to which the speed might reflect either the shortest or               
the longest interval of the distribution. Indeed, the latter predicts that the speed should not have                
changed between pre and post ( ) while the former predicts a scaling factor of     λ = 1020 ms

1020 ms = 1          
. Both values were not included in the 95% confidence interval of the empirical.55λ = 660 ms

1020 ms ≃ 1               
scaling factor. Neural changes were thus fully consistent with animals adjusting their temporal             
expectations to the new distribution mean. This finding strengthens the validity of MPTS as it               
establishes a causal link between the interval mean and the speed of neural dynamics.   
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Figure 4. Behavioral and neural adaptation to changes in temporal statistics. (A–B) To assess how               
behavioral and neural responses would be affected by a covert change in temporal statistics, we challenged                
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animals with a variant of RSG (called RSGadapt). In RSGadapt (top), we first sampled ​t​s from a ‘pre’                  
distribution (660–1020 ms), and then covertly switched (in this case) to the longest interval of the                
pre-distribution (‘post’). The plot shows the time series of ​t​p produced by the animal pre and post-switch. Each                  
dot represents one trial, and ​t​p are shown in chronological order, color-coded according to the associated ​t​s​.                 
After the switch (vertical black arrow), ​t​p gradually adjusted over thousands of trials until the initial bias toward                  
the mean of the pre-distribution disappeared. The red line shows the running mean of ​t​p post-switch (window:                 
300 trials). ​(C) ​Following the switch in interval statistics, we hypothesized that neural activity would adjust to                 
reflect the new average interval. Because the mean of the post-distribution ( = 1020 ms) was longer than           μpost       
the mean of the pre distribution ( = 840 ms), the MPTS hypothesis predicted that the speed should slow      μpre             
down by a scaling factor of . The plot shows the firing rate of six example neurons      /μ .21λ = μpost pre ≃ 1            
pre-switch (blue) and early post-switch (dark pink). The number of trials pre and early post was matched                 
(~400 trials immediately before and after the switch). Changes in neural responses were qualitatively in line                
with our prediction: many of the neurons appeared to stretch their activity profiles post compared to                
pre-switch. ​(D–E) Empirical scaling factor early post-switch. Similar to ​Figure 2F ​, we measured speed              
differences between pre and early post activity by computing the mapping between ​t​pre and ​t​post early​, i.e., the                  
time necessary to travel an arbitrary distance on both trajectories. The resulting mapping diverged from the       d           
unity line with a slope close to the predicted value (95% CI for scaling factor: [1.09 1.28] for monkey          /μμpost pre           
G, [1.11 1.38] for monkey H). Inset: distribution of scaling factors of bootstrapped data (black) and the                 
corresponding null distribution (grey) obtained after randomly shuffling the condition (pre vs post) for each               
neuron. 
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Neural changes precede behavioral changes during adaptation to new interval statistics 
 
At this point, we have established a tight mathematical relationship between changes in temporal              
statistics and neural adaptation: when the interval distribution changes, the speed of dynamics in              
DMFC is adjusted to quantitatively reflect the new mean interval. One important remaining question              
is whether the neural changes are caused by the new interval statistics or whether they reflect                
changes in the behavior, for example, through reafference (​Figure 5A​). If behavioral adaptation             
were to precede speed adjustments, we would not be able to reject the possibility that the neural                 
changes in DMFC are a consequence of behavioral adaptation. In contrast, if speed adjustments              
were to precede behavioral adaptation, we would be able to conclude that neural changes are               
caused by the introduction of the new temporal statistics. To distinguish between these two              
possibilities, we examined the timescale of speed adjustments in DMFC to that of behavioral              
adaptation. 
 
Our initial analyses already provided evidence that neural activity changed rapidly after the switch              
(i.e., ~400 trials after the switch, ​Figure 4C ​). To quantify the timescale of neural changes rigorously,                
we computed how the scaling factor changed throughout adaptation using a 100-trial window             
running over the entire session (Methods). With this finer-grained analysis, we were able to confirm               
that ~200 trials post-switch, the population speed was significantly different from pre-switch and not              
significantly different from its final predicted value (95% CI for scaling factor, [1.13 1.44] for monkey                
G, [1.04 1.46] for monkey H; ​Figure 5B–E​). By comparison, animals’ behavior in the same               
post-switch trial window was statistically indistinguishable from pre-switch (two-sided unpaired t-test           
on ​t​p distributions, ​t​(167)=0.97, ​p​=0.33 for monkey G, ​t​(162)=-0.38, ​p​=0.71 for monkey H, ​Figure              
5D–E​). This observation rules out the possibility that neural changes were purely driven by              
behavioral changes, and further supports the notion that changes in the neural speed reflected the               
dynamic adjustments of animals’ temporal expectations. 
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Figure 5. Timescale of neural and behavioral adaptation. (A) ​In the adaptation experiment, we found both                
behavioral and neural changes. One possibility (correlational path, in grey) is that neural changes were the                
indirect result of behavioral changes. For instance, changes in animals’ responses during adaptation to the               
new temporal statistics could affect neural activity through reafference and accumulate over trials to lead to                
persistent neural changes. Alternatively (causal path, in black), changes in statistics may have directly caused               
the observed neural changes, independent of behavioral adaptation. To dissociate between these two             
possibilities, we compared the timescale of neural and behavioral changes. Neural changes preceding             
behavioral changes would be consistent with the causal path, while behavioral changes preceding or              
co-occurring with neural changes would favor the correlational path. ​(B–C) To assess the timescale of neural                
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adaptation following the switch in interval statistics, we examined how the empirical scaling factor changed in                
a 100-trial window (50% overlap) running throughout the session. To perform this analysis, we first computed                
a reference trajectory (​traj​ref ​) obtained by combining all trials (pre- and post-switch). We then computed the                
neural trajectory associated with each 100-trial block (​traj​block ​). To estimate the scaling factor associated with a                
particular block, we plotted the mapping between ​t​block and ​t​ref ​, corresponding to the time needed to travel an                  
equal distance along ​traj​block and ​traj​ref​, respectively. We calculated the slope of this mapping (obtained via  d                
linear regression) for each block and normalized it by the average slope across all pre-switch blocks.                
Pre-switch slopes were thus expected to lie around unity, and subsequently reach their predicted value (               

; red line). The data were in agreement with this prediction and showed that the speed rapidly/μλ = μpost pre                  
adjusted to its predicted value. Shaded areas denote 95% CI obtained from bootstrapping. ​(D–E) ​A direct                
comparison of scaling factors (left) and produced intervals (right) pre-switch (blue arrow in panel B and C)                 
versus post-switch (orange arrow) show that neural changes preceded behavioral changes. Roughly 200             
trials following the switch, the neural speed had already adjusted (95% CI for scaling factor in the trial window,                   
[1.13 1.44] for monkey G, [1.04 1.46] for monkey H), while animals’ behavior was virtually unchanged                
compared to pre switch (two-sided unpaired t-test on tp distributions, t(167)=0.97, p=0.33 for monkey G,               
t(162)=-0.38, p=0.71 for monkey H). 
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Discussion 
 
Predictive processing is among the most influential theories in neurobiology. Critical to this theory is               
the notion that the nervous system represents statistical regularities in the environment in the form               
of an internal model ​(​2​– ​4​)​. The internal model encodes the predictable component of sensory inputs               
such that only residual errors from a priori predictions undergo further processing ​(​20​– ​22​)​.             
However, the degree to which this theory can be applied broadly to explain neural mechanisms is                
still an active area of research ​(​26​)​. Our work extends and strengthens the case for this theory in a                   
few important directions. First, current accounts of predictive processing are typically limited to             
modulations of static firing rates and thus cannot be straightforwardly extended to scenarios in              
which the information processing involves dynamics ​(​18​, ​57​– ​63​, ​85​)​. Our work identifies a signature              
of predictive processing directly based on adjustments of neural dynamics. Second, prior work on              
predictive processing has been largely limited to information processing in the context of ‘where’              
and ‘what’ questions ​(​13​, ​14​, ​20​, ​25​, ​87​– ​91​)​, and not ‘when’ questions. This is somewhat surprising                
given the well-known capacity of humans to predict the timing of events in the future ​(​92​)​. By virtue                  
of working in the domain of time, our work highlights the relevance of predictive processing in the                 
temporal domain. Third, evidence for predictive processing has been largely limited to early sensory              
areas ​(​11​, ​23​, ​24​)​. Our work serves as an example of how this theory may explain neural                 
observations in higher-order brain areas. Finally, and perhaps most importantly, our work provides a              
precise mathematical formulation of how neural signals precisely reflect the mean of temporal             
statistics. 
  
Our results reveal a signature of predictive processing through the adjustment of neural dynamics              
based on experienced temporal statistics. In particular, we hypothesized and found compelling            
evidence that when awaiting a future event that can occur at different times, neural responses               
speed up or slow down in accordance with the statistical mean of the expected times. Converging                
evidence from several experiments made a strong case for this interpretation. First, the distribution              
of temporal scaling factors across single neurons in DMFC revealed a sharp and distinct peak at the                 
value predicted by our hypothesis. Second, modulations of the speed of dynamics estimated by an               
unbiased analysis of neural trajectories across the population of neurons in individual animals and              
experimental sessions quantitatively matched the predictions of our hypothesis. Third, a control            
experiment verified that the modulation of speed was specifically related to the anticipated             
distribution of sensory events and not the ensuing motor response. Fourth, a novel learning              
experiment revealed that the speed adjustments were causally linked to temporal statistics of the              
environment. Importantly, in all these experiments, data was not consistent with the alternative             
hypothesis that temporal expectations are encoded by overall changes in baseline firing rates.  
 
Like most discoveries, ours raises more questions than it answers. Here, we highlight some of the                
most pressing ones. First and foremost, what does the lawful relationship between neural speed              
and mean interval imply as a computational algorithm? This relationship establishes a form of              
invariance in the neural space: it guarantees that when the brain measures elapsed time, the neural                
trajectory may reach a fixed desired state at the expected mean interval irrespective of the               
underlying distribution. Consistent with this idea, we found evidence in our data that neural              
population activity reaches an invariant state at the mean interval and that a linear readout could                
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decode deviations around this state to measure elapsed time directly in terms of prediction errors               
(​Figure S12 ​). Invariances of this kind are important as they could be the manifestation of a latent                 
coding space that confers flexibility and generalization ​(​93​, ​94​)​. In the context of our finding, the                
brain may leverage this invariant distance metric to make relational inferences that generalize             
across contexts. For example, this organization would cause an interval that is one standard              
deviation away from the mean to be mapped onto the same neural distance to the mean                
irrespective of the distribution. Under suitable assumptions about noise, this scaling effect may             
provide a natural explanation for the scalar variability in time interval judgments ​(​95​)​. Similarly, this               
invariance may allow a criterion for categorical judgments to readily generalize to new stimuli ​(​96​)​.               
In our own work, the rapid adjustments of the neural speed in the RSGadapt learning experiment                
may have benefited from this representational invariance to perform rapid directed explorations in             
the neural space (e.g. meta-learning) ​(​97​– ​102​)​. Specifically, modulations of speed based on the             
mean interval may serve to map time distributions onto a fixed range of desired states ​(​82​, ​85​, ​86​,                  
103​– ​105​)​, such that systematic changes in the mean would result in systematic prediction errors              
away from the desired states which in turn can drive efficient learning through directed exploration               
(​15​)​. Building on these observations, future work could examine whether this invariance is present              
and how it may facilitate rapid learning in other domains such as speed-accuracy tradeoff ​(​106​,               
107​)​ or the temporal control of attention ​(​78​, ​108​)​. 
 
Juxtaposing our finding relating temporal scaling to the mean of an interval distribution with previous               
work reporting temporal scaling during time interval discrimination ​(​55​, ​65​, ​109​) and production ​(​28​,              
29​, ​47​, ​48​, ​56​, ​69​, ​73​, ​75​, ​110​, ​111​) raises the question of whether these phenomena are                 
computationally related. We propose that all these observations may be unified under the theory of               
predictive processing, and the only thing that differentiate between them is the nature of what is                
being predicted. In our work, animals had to estimate a time interval, and thus it is natural for the                   
system to predict the expected value of the distribution. In time interval discrimination task, scaling               
may accommodate the measurement of test intervals relative to the criterion. Finally, in motor timing               
tasks, scaling may serve as a prediction for the time of reward, which might be essential for                 
reward-based learning and incorporating delay discounting information into reward prediction errors           
(​112​, ​113​)​. Scaling during motor planning may also play a role in predicting the sensory               
consequences of actions, which is thought to be an integral part of motor control ​(​114​)​. Our findings                 
thus point to a unifying functional explanation of the phenomenon of temporal scaling commonly              
observed in timing tasks across species and brain areas ​(​43​, ​48 ​, ​55 ​, ​65 ​– ​69​, ​75 ​)​. 
 
In our experiments, we only tested uniform time distributions. It seems plausible that the results               
would hold for other symmetric unimodal distributions such as Gaussian. In contrast, for multimodal              
distributions, the mean interval may no longer be a good predictor. For example, for a bimodal                
distribution with two distinct modes, the system might adjust the speed to predict the two modes                
sequentially ​(​77​, ​115​) or use different groups of neurons (or subspaces) to generate predictions in               
parallel ​(​116​– ​118​)​. In addition to predicting the mean, future work could investigate how the              
nervous system represents higher order moments such as variance and skewness. Currently, there             
is no definitive answer for how neurons encode variance although recent findings have suggested a               
functional role for nonlinear representations ​(​9​, ​28​)​. It is also not known how the brain represents                
skew in a distribution even though humans can be exquisitely sensitive to it ​(​119​)​. For skewed                
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distributions, the scaling may continue to reflect the mean or may instead represent another statistic               
such as the mode ​(​120​)​. Finally, it is important to extend our findings to more elaborate                
sensorimotor tasks that involve both spatial and temporal uncertainty such as interception tasks             
(​121​– ​123​)​, intuitive physics tasks ​(​124​, ​125​)​, or more complex agent-based pursuit tasks            
(​126​– ​128​)​. These extensions will be critical for developing a comprehensive theory of how the              
nervous system learns spatiotemporal error distributions ​(​129​) and use that information to update             
internal predictions.  
 
Finally, our learning experiment revealed that the nervous system learns to predict external events              
long before behavior can react to them. Influential theoretical ​(​130​) and behavioral studies ​(​131​,              
132​) have highlighted the potential utility of learning predictions before actions. Specifically, it has              
been hypothesized that predictions, which rely on ​forward internal models, serve to teach ​inverse              
models that control actions. Our work sets the stage for a direct experimental test of this hypothesis                 
and provides a powerful platform for studying how predictive processing contributes to learning             
during sensorimotor behavior. 
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Methods 
 
All experimental procedures conformed to the guidelines of the National Institutes of Health and              
were approved by the Committee of Animal Care at the Massachusetts Institute of Technology.              
Experiments involved four awake behaving rhesus macaques (Macaca mulatta; ID: G and H for              
RSG2-prior and RSGadapt; weight: ~8 kg; age: 5 years old; ID: C and J for RSGgains). Animals                 
were head-restrained and seated comfortably in a dark and quiet room and viewed stimuli on a                
23-inch monitor (refresh rate: 60 Hz). Eye movements were registered by an infrared camera and               
sampled at 1kHz (Eyelink 1000, SR Research Ltd, Ontario, Canada). The MWorks software             
package (​https://mworks-project.org ​) was used to present stimuli and to register eye position.            
Neurophysiology recordings were made by 1 to 3 24-channel laminar probes (V-probe, Plexon Inc.,              
TX) through a bio-compatible cranial implant whose position was determined based on stereotaxic             
coordinates and structural MRI scan of the animals. Analyses of both behavioral and             
electrophysiological data were performed using custom MATLAB code (Mathworks, MA). 
 
Behavioral task 
 
RSG trial structure 
Monkeys performed a time interval reproduction task known as the ‘Ready-Set-Go’ (RSG) task ​(​28​,              
133​)​. Each trial began with animals maintaining their gaze on a central fixation point (white circle:                
diameter 0.5 deg; fixation window: radius 3.5 deg) presented on a black screen. Upon successful               
fixation, and after a random delay (uniform hazard; mean: 750 ms, min: 500 ms), a peripheral target                 
(white circle: diameter 0.5 deg) was presented 10 degree left or right of the fixation point and stayed                  
on throughout the trial. After another random delay (uniform hazard; mean: 500 ms, min: 250 ms),                
the Ready and Set cues (white annulus: outer diameter 2.2 deg; thickness: 0.1 deg; duration: 100                
ms) were sequentially flashed around the fixation point. Following Set, the animal had to make a                
proactive saccade (self-initiated Go) toward the peripheral target so that the produced interval (​t​p​,              
between Set and Go) matched the sample interval (​t​s​, between Ready and Set). The trial was                
rewarded if the relative error, |​t​p​-​t​s​|/​t ​s​, was smaller than 0.2. If the trial was rewarded, the color of the                   
target turned green, and the amount of juice delivered decreased linearly with the magnitude of the                
error. Otherwise, the color of the target turned red, and no juice was delivered. The trial was                 
aborted if the animal broke fixation prematurely before Set, or did not acquire the target within 3 ​t​s                 
after Set. After a fixed inter-trial interval, the fixation point was presented again to indicate the start                 
of a new trial. To compensate for lower expected reward rate in the Long condition due to longer                  
duration trials (i.e., longer ​t​s values), we set the inter-trial intervals of the Short and Long conditions                 
to 1220 ms and 500 ms, respectively. 
  
RSG2-prior experiment 
In RSG2-prior (​Figure 1 and 2​), the sample interval, ​t​s​, was sampled from one of two discrete                 
uniform distributions, with 5 values each between 480–800 ms for Short, and 800–1200 ms for               
Long. The distributions alternated in short blocks of trials (min of 5 trials for G, 3 trials for H, plus a                     
random sample from a geometric distribution with mean 3, capped at 25 trials for G, 20 trials for H),                   
and was indicated to the animal by the color of the fixation point (red for Short, blue for Long). On                    
half the trials, and only in this first experiment, monkeys were required to acquire the peripheral                
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target (at Go) using a hand-held joystick (‘hand trials’) instead of a saccade (‘eye trials’). However,                
for consistency with the other experiments (RSGgains and RSGadapt) which did not include hand              
trials, we only analyzed eye trials in this study. 
 
RSGgains experiment 
To verify that neural dynamics during the measurement epoch of the RSG task did not depend on                 
the intervals produced by the animals, we analyzed neural recordings of two other monkeys              
(monkey C and J) performing a variant of RSG (‘RSGgains’; ​Figure 3 ​). Full details of the task and                  
experimental setup can be found in ​(​29​)​. Briefly, in this control experiment, ​t​s was always sampled                
from the same discrete uniform distribution (7 values between 500–1000 ms) but animals had to               
apply a multiplicative gain (gain=1 or 1.5) to the measured interval before reproducing it. That is,                
animals had to produce either 1 or 1.5 times ​t​s​, depending on the condition. Similar to the 2-prior                  
task, the condition type alternated in blocks of trials, and was indicated by the color of the fixation                  
point. 
 
RSGadapt experiment 
In RSGadapt (​Figure 4, 5 and 6​), ​t​s was first sampled from a pre-distribution (5 values between                 
660–1020 ms), and then became equal to a single interval, either the shortest or the longest value                 
of the pre-distribution. The switch was not cued and occurred unpredictably during the session              
(typically between 500 and 800 trials after the start of the session to guarantee that there were                 
enough trials both before and after the switch for physiology and for behavioral adaptation to               
happen with a single session). As a control, on some behavioral sessions, we introduced catch               
trials meant to probe animals on a different interval post-switch and verify that they were still                
measuring time even when exposed to a single interval (​Figure S9​). The catch trials were rare                
(~6%) and unpredictable. Prior to recordings, and during behavioral training, animals experienced            
only a few of these adaptation sessions (12 out of 132 sessions over 239 days for monkey G, 17                   
out of 121 sessions over 274 days for monkey H), which were also interleaved with a series of                  
‘wash-out’ sessions with no switch. This was done to prevent overtraining the animals on these               
switches.  
 
Electrophysiology 
 
Recording procedure 
In RSG2-prior and RSGadapt, we used 2 to 3 laminar V-probes to record neural activity acutely in                 
the dorsomedial frontal cortex (DMFC), comprising the supplementary eye field (SEF), the            
presupplementary motor area (pre-SMA), and the dorsal portion of the supplementary motor area             
(SMA). ​Figure S2 shows the exact electrode penetration sites on an MRI reconstruction of each               
animal’s brain. In RSGgains, recordings were done using 1 to 2 laminar V-probes inserted in the                
same area within DMFC ​(​29​)​. Signals were amplified, bandpass filtered, sampled at 30 kHz, and               
saved using the CerePlex data acquisition system (Blackrock Microsystems, UT). Spikes from            
single- and multi-units were sorted offline using the Kilosort software suite ​(​134​)​.  
 
Recording stability 
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In RSG2-prior and RSGgains, experimental conditions (Short vs Long, gain=1 vs 1.5) were             
interleaved over relatively short blocks of trials (<100 trials); recording stability in these experiments              
was therefore not a concern when comparing neural activity across conditions ​(​28​, ​29​)​. In              
RSGadapt, however, we had to track neural activity over the course of an entire recording session                
(~2-3 hours). We imposed a 1h settling time between electrode insertion and the onset of               
recordings to minimize electrode drift during the session. ​Figure S10 shows one example raster              
plot demonstrating stable spiking activity across trials. Recording stability was further confirmed by             
a more detailed analysis of spike waveforms (see ​Figure S10 for raw waveform traces) based on                
the approach used in ​(​135​)​. For every cluster extracted from spike sorting, we considered each               
spike waveform as a time series summarized as a point in a 60-dimensional space and computed                
the Mahalanobis distance between each waveform and the average waveform (across all spikes).             
This resulted in a distribution of distances, which we fitted to a chi-squared distribution following               
(​135​)​. We calculated the likelihood of each spike belonging to this fitted distribution, and any spike                
whose likelihood was lower than a fixed threshold was considered as an outlier. The threshold was                
defined as the inverse of the total number of spikes for that cluster. This analysis provided us with a                   
single number (percent of outlier spikes) for every cluster, and allowed us to assess recording               
stability. In the analyzed RSGadapt sessions, we found that only 1% for monkey G, and 0% for                 
monkey H of identified clusters had a percent of outlier spikes greater than 10%. 
 
As an additional safeguard against instabilities, we systematically discarded clusters whose firing            
rate (averaged over the entire measurement epoch of the task) dropped below 1 spike per second.                
This guaranteed that neurons which disappeared over the course of the session (or were coming               
from noise) were not included in the analyses. The number of clusters (single or multi-unit activity)                
respectively for the RSG2-prior and RSGadapt experiments was 741 and 92 for monkey G, and 617                
and 50 for monkey H. For the RSGgains experiment, the number of single/multi-units was 138 for                
monkey C, 201 for monkey J.  
 
Behavioral analyses 
 
For behavioral analysis, we used a probabilistic mixture model to identify and reject outlier trials.               
Specifically, we calculated the likelihood of each ​t​p (corresponding to a given ​t​s​) coming from either                
a task-relevant Gaussian distribution, or from a lapse distribution which we modelled as a uniform               
distribution extending from the time of Set up to 3 ​t​s​. Any trial which was more likely to come from                   
the lapse distribution was considered as an outlier (<5% trials) and discarded before further              
analyses.  
 
Single neuron analyses 
 
Firing rates were obtained by binning spiking data (20-ms bins for RSG2-prior and RSGgains,              
30-ms bins for RSGadapt), and smoothing using a Gaussian kernel (standard deviation of 40 ms).               
In addition, bootstrapped firing rates were generated via resampling trials with replacement (100             
repeats). The number of trials where the visual target randomly appeared left or right of the fixation                 
point were always matched before averaging across trials. 
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Estimating the rate of change of neural activity 
To verify that the rate of change of neural activity (i.e., ‘speed’) was faster in the Short compared to                   
the Long condition (​Figure 1D​), we computed the absolute difference in firing rates between              
consecutive 20-ms time bins and averaged these differences over the entire measurement epoch.             
We verified that the resulting speed difference across conditions was not due to the longer duration                
of the measurement epoch in the Long condition. When we matched the measurement epoch for               
the Short and the Long condition (i.e., restricting the analysis between Ready and the longest ​t​s of                 
the Short condition), speed differences were qualitatively unchanged.  
 
Scaling analysis at the single neuron level  
To assess how much single neuron activity profiles ‘stretched’ or ‘compressed’ in time across              
conditions (​Figure 2A​), we devised an analysis to reconstruct patterns of activity in the Short               
condition based on a scaled version of the pattern of activity in the Long condition. If we call                  (t)rshort  
and the pattern of activity of one neuron in the Short and the Long condition, respectively, (t)rlong                 
our analysis searched for the set of parameters that minimized the difference            

, where was the scaling factor, and and allowed for gain and[(γ r (λt) ) (t)]long + δ − rshort
2   λ       γ   δ      

baseline modulations across conditions. Example fits as well as distributions of fitted parameters             
are shown in ​Figure S3 and S6​.  
 
To better understand the source of the bimodality in the distribution of scaling factors across               
neurons (​Figure 2B​), we sub-selected neurons which had the largest firing rate modulations during              
the measurement epoch. We sorted neurons by the amount of variance in their firing rate across                
time points in the measurement epoch and kept neurons which contributed more than 0.1% of the                
total variance (150/741 for monkey G, 164/617 for monkey H). 
 
Gaussian mixture model 
To quantify the bimodality of the distribution of scaling factors across the population of neurons, we                
fitted a simplified Gaussian mixture model to the distribution. To do so, we first estimated the                
probability density of the empirical distribution (Gaussian kernel density estimator, ​ksdensity in            
Matlab). We then ran an optimization procedure (​fminsearch​) to minimize the           
root-mean-squared-error (RMSE) between the estimated probability density and the sum of two            
Gaussian probability density functions (pdf), each parametrized by their mean, variance and a gain              
factor multiplying the entire pdf. 
 
Population-level analysis 
 
With the exception of the neural trajectories shown in the space of principal components (​Figure               
2C, 3D​), all population-level analyses were performed using all the neurons (i.e., no dimensionality              
reduction was applied).  
 
Temporal mapping analysis 
To measure speed differences between neural trajectories (e.g., Short versus Long), we relied on a               
new ‘temporal mapping’ method inspired from the KiNeT analysis originally introduced in ​(​29​)​. For              
every state on the Short trajectory, we first computed the time elapsed ( ) and the distance            tshort     
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traveled ( ) from a fixed reference state on the trajectory defined at (relative to Ready).  dshort            tref     
was calculated as the sum of the Euclidean distance between consecutive states along the dshort                

trajectory between and . Next, we found the state on the Long trajectory whose distance (  tref   tshort             
) from the reference state was closest to , and marked the corresponding time ( ). dlong          dshort       tlong  

Finally, we plotted as a function of , which we refer to as the ​temporal mapping, ​and   tlong      tshort           
computed the slope of this mapping to estimate the scaling factor related to speed differences               
across conditions.  
 
Mathematically, if we call and the firing rate of neuron at time respectively in the    (i)rj

short   (i)rj
long       j    i     

Short and Long condition, then for every , we calculated  as follows:tshort > tref tlong  
 

 
 
For RSG2-prior and RSGadapt (​Figure 2F, 4D–E​), the reference state was defined at 400 ms after                
Ready. This choice was motivated by the observation that, early after Ready, neural responses              
were largely dominated by a non-specific visual transient with equal speeds across conditions             
(​Figure S4 ​). We however ensured that our results were unaffected if the reference state was               
defined earlier in the measurement epoch (​Figure S5​). For RSGgains (​Figure 3E, S8​), where the               
speeds were hypothesized to be equal throughout the measurement epoch, the reference state was              
defined at Ready. 
 
To compute the scaling factor associated with the two trajectories (i.e., slope of the temporal               
mapping), we proceeded in three steps. First, we identified the time point when the mapping started                
to diverge from the unity line (i.e., when becomes different from ). We call this time point        tshort     tlong       

. Second, we identified the time point when became equal to . We call this timetonset         tlong     ax(t )m short      
point . Finally, we used linear regression to estimate the scaling factor as the slope of the tof fset                 
temporal mapping between  and .tonset tof fset  
 
Running-window speed analysis 
For the running-window speed analysis in the adaptation experiment (​Figure 6B-C​), we adjusted             
the analysis to ensure better statistical power. We first computed a global neural trajectory obtained               
by averaging population activity across all trials (pre and post-switch combined). We then computed              
the block-specific trajectory by averaging population activity in a 100-trial window (which we ran              
over the entire session; overlap between windows: 50%). The temporal mapping and the associated              
scaling factor (slope) were computed between the global trajectory and each block trajectories.             
Because the number of trials that went into each block trajectory was relatively small, individual               
temporal mappings were noisy. We therefore increased the number of points used in the regression               
analysis to compute the slope by placing the reference state at the time of Ready. Finally, we                 
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normalized the scaling factor in each block by the average scaling factor computed across all blocks                
during pre-switch. This normalization guaranteed that (1) the scaling factors post-switch could be             
directly tested against the predicted value , and (2) the potential bias introduced by      /μ  μpost pre         
including the early portion of the measurement epoch to compute the mapping slope was canceled               
out.  
 
In one monkey (monkey H), the running-window speed analysis displayed large fluctuations toward             
the end of the session, i.e., after the neural changes had already converged to their predicted value.                 
For this monkey and this analysis only, we relied on the waveform stability criterion to reject                
neurons which had more than 1% of outlier spikes (see Recording stability section above). This led                
to a decrease in the number of neurons included in the analysis (18 out 50) but was sufficient to                   
resorb the large fluctuations. 
 
Principal component analysis 
PC trajectories (​Figure 2C, 3D​) were obtained by gathering smoothed firing rates in a 2D data                
matrix where each column corresponded to a neuron, each row corresponded to a given time point                
in the measurement epoch. To obtain a common set of principal components for different conditions               
(e.g., Short vs Long, or gain = 1 vs 1.5), we concatenated PSTHs for the different conditions along                  
the time dimension. We then applied principal component analysis and projected the original data              
onto the top 3 PCs, which explained about 75% of total variance in RSG2-prior, and 85% in                 
RSGgains.  
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Figure S1. Monkey behavior in the RSG2-prior experiment. When exposed to two distributions of sample               
intervals (red for Short, blue for Long), animals systematically bias their responses toward the mean of each                 
distribution (black arrows). Dots represent single trials; open circles show the average ​t​p​ per each individual ​t​s​.  
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Figure S2. Recording sites for RSG2-prior and RSGadapt experiments. MRI surface reconstruction            
showing individual recording sites for both monkeys. Each dot represents one recording site; red for               
RSG2-prior experiment, green for RSGadapt. AS: arcuate sulcus; CS: central sulcus; PS: principal sulcus.  
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Figure S3. Single neuron activity during RSG2-prior measurement epoch. Red for Short, blue for Long,               
black for scaled version of Long fitted to Short (see Methods and ​Figure S6 ​). Lambda is the fitted scaling                   
factor. Shaded areas denote 95% CI obtained via standard bootstrapping.  
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Figure S4. Differences in firing rate and speed across RSG2-prior conditions. Top: Difference in firing               
rates between the Short and Long condition throughout the measurement epoch of the task. Each black line                 
represents one neuron; the red line represents the average difference across neurons. This difference              
fluctuated around zero and was unstructured across time points. Middle: Normalized differences in firing rates               
between the Short and Long condition throughout the measurement epoch of the task. Each black line                
represents one neuron; the red line represents the average difference across neurons. Similar to top, the                
normalized difference fluctuated around zero and was unstructured across time points. Bottom: Normalized             
differences in the rate of change of firing rates between the Short and Long condition. Black line shows                  
average across neurons; shaded area denotes 95% CI. 
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Figure S5. Early versus late dynamics during the measurement epoch of RSG2-prior. ​During the              
Ready-Set epoch of the task, ​neural responses had qualitatively different dynamics early (Ready – 400 ms)                
compared to late (400 ms – Set). Early dynamics tended to be non-condition specific, while late dynamics                 
showed robust differences in speed across conditions (see upper panel for an example neuron; as well as                 
Figure S4 ​). To confirm this observation rigorously, we performed a cross-temporal principal component             
analysis (PCA) quantifying the amount of subspace overlap between the activity in the early vs late window of                  
both Short and Long conditions. Results are summarized in a heatmap shown in the middle row: each cell (i,                   
j) shows the percent of total variance explained when projecting the data of condition/window (i) onto the top 3                   
PCs computed from condition/window (j). Consistent with our qualitative observations, the overlap between             
early and late in each condition was smaller than the overlap across conditions for a given window. This result                   
prompted us to define the reference state in our speed analysis (​Figure 2F​) at Ready+400ms to focus on the                   
late part of the dynamics. Defining the reference state at Ready instead of Ready+400ms leads to a slight                  
underestimation of the scaling factor (bottom row; grey distribution deviates from the predicted value              

; 95% CI [1.33 1.53] for monkey G, [1.39 1.48] for monkey H). This reflects the fact that early.56λ =
μlong

μshort
≃ 1                     
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during the measurement epoch, dynamics is dominated by non-condition specific patterns of activity which              
bias the scaling factor towards unity. However, if we project the data onto the subspace associated with the                  
late period of the measurement epoch (variance explained >85%), the resulting scaling factor matches the               
prediction even when the reference state is defined at Ready (black distribution overlaps with the predicted                
value; 95% CI [1.42 1.61] for monkey G, [1.48 1.61] for monkey H).  
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Figure S6. Parameter fits for temporal scaling in RSG2-prior. Top: each neuron’s activity profile in the                
Short condition ( ) was fitted with a scaled version of its activity in the Long condition ( ). The  (t)rshort               (t)rlong   
fitting procedure minimized the reconstruction error between and , where is the scaling       (t)rshort   (λt)γ rlong + δ    λ     
factor, and and allow for gain and baseline modulations across conditions. Bottom: distribution of fitted   γ    δ              
parameters across neurons in both monkeys. The red line on the distributions shows the predicted value            λ       

, where  and  is the average time interval in the Short and Long condition, respectively.λ =
μlong

μshort
μshort μlong  
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Figure S7. Temporal mapping across sessions in RSG2-prior. Top: each thin line represents one session               
(N=12 for monkey G; N=17 for monkey H), the thick line represents the average across sessions, the dashed                  
line is the unity. Bottom: Scaling factor (mapping slope) for monkey G (squares) and monkey H (circles) as a                   
function of recorded neurons in each session. Red line shows the predicted value .λ =

μlong

μshort
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Figure S8. Temporal mapping and instantaneous speed in RSGgains. Top: absolute instantaneous            
speed was computed as the Euclidean distance between consecutive states separated by 20-ms bins.              
Throughout the measurement epoch, speeds did not diverge across conditions (red for g=1, blue for g=1.5).                
Bottom: temporal mappings for both monkeys lie along the unity (dashed) line, indicating no relative speed                
differences across conditions. Histograms show distributions of scaling factors for the bootstrapped data (dark              
grey) and a null distribution obtained by randomly shuffling conditions across neurons (light grey). 
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Figure S9. Monkey behavior on catch trials and different post intervals in RSGadapt. Left: to ensure                
animals were still measuring the sample time interval even when exposed to a single interval, we introduced                 
rare (~6%) ‘catch’ trials in which ​t​s was different from the post (‘delta’) interval. In sessions where the delta                   
interval was chosen to be the longest of the pre-distribution, the catch interval was chosen as the second                  
longest interval of the pre-distribution. Bottom: ​t​p distributions associated with delta (dark blue) and catch (light                
blue) trials were significantly different (two-sided unpaired-sample t-test, p<10 ​-10 for both monkeys), indicating             
that animals continued to measure time while adapting to the new distribution (dark and light green                
distributions confirm the adaptation between early and late post-switch on the delta interval). Right: to test the                 
robustness of behavioral adaptation, we ran sessions in which the post-interval was the shortest interval of                
the pre-distribution. Comparison of ​t​p distributions early (dark green) and late (light green) post-switch              
confirmed that the animals successfully adapted (p<10 ​-5 for both monkeys). Introduction of catch trials in               
these sessions further confirmed that animals continued to measure time post-switch.  
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Figure S10. Recording stability and example raster plot during RSGadapt. Top: To verify the stability of                
our recordings, we plotted the waveforms at different stages of the recording session during the adaptation                
experiment (blue for pre-switch; light, intermediate, dark orange for early, middle, late post-switch). For              
visualization, waveforms are spatially arranged to match their recording sites on the three V-probes              
(superficial to deep from top to bottom). Bottom: one example neuron’s raster plot (see Figure 4C for the                  
PSTH associated with that unit). Spikes are aligned to Ready (red); orange dots show Set, green dots show                  
Go. For clarity, pre-switch trials have been sorted by ​t​s ​, however in the experiment, ​t​s was randomly sampled.                  
Trials post-switch (above horizontal black line showing the transition) are shown in chronological order. 
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Figure S11. Differences in firing rate before and during adaptation in RSGadapt. We plotted the baseline                
activity of each neuron at the time of Ready (20-ms window following Ready) in the pre (abscissa) and early                   
post (ordinate) condition. Pre and early post had the same number of trials (~400 trials immediately before                 
and after the switch). Each dot represents one neuron. The diagonal distribution shows that there were no                 
systematic differences in firing rates across the population (​p​>0.01 for both monkeys). 
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Figure S12. Invariance of neural states across conditions in RSG2-prior. Speed modulations across             
conditions based on the mean interval may allow the neural trajectory to reach an invariant state at the mean                   
expected time of Set irrespective of the underlying time distribution. Deviations away from this state at the                 
time of Set may in turn allow the system to measure intervals in terms of a prediction error. We performed two                     
complementary analyses to test this idea. First, we asked whether neural dynamics near the state associated                
with the mean interval (i.e., mean state) was self-similar across conditions (top). To do so, we computed the                  
local tangent at the mean state for each trajectory (i.e., mean tangent; large red and blue arrows in the left                    
panel). We then calculated the angle between the mean tangent of one condition and the local tangents                 
computed along the trajectory of the other condition (smaller pink and purple arrows). For any given state, the                  
local tangent was computed by connecting the states immediately preceding and following that state (bin size:                
20 ms). In both animals (middle and right columns), we found that the angle was minimum when the tangents                   
were computed near the mean state, suggesting that local dynamics was most similar around the two mean                 
states. Next, we asked whether we could define a hyperplane slicing the two trajectories near the mean state                  
to linearly decode elapsed time in terms of prediction errors (bottom). Importantly, the hyperplane needed to                
be ​common to both trajectories if the system is to leverage a shared coding scheme to measure prediction                  
errors irrespective of the time distribution. We chose the hyperplane (grey plane) which contains the average                
of the two mean states and whose normal vector (black vector) is the average of the two tangent vectors at                    
the corresponding means. We then calculated the distance to the hyperplane for each neural state along both                 
trajectories (by convention, the distance was positive when the state lay on the side of the hyperplane toward                  
which the normal vector pointed). Finally, we plotted distance to the hyperplane as a function of elapsed time                  
relative to the mean interval in each condition separately. For both monkeys, distance vs relative time had a                  
monotonic profile, confirming that a common hyperplane can be used to linearly decode time intervals as                
prediction errors away from the mean. 
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