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Fundamental Law of Memory Recall
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Human memory appears to be fragile and unpredictable. Free recall of random lists of words is a
standard paradigm used to probe episodic memory. We proposed an associative search process that can be
reduced to a deterministic walk on random graphs defined by the structure of memory representations. The
corresponding graph model can be solved analytically, resulting in a novel parameter-free prediction for the
average number of memory items recalled (R) out of M items in memory: R = /3zM /2. This prediction
was verified with a specially designed experimental protocol combining large-scale crowd-sourced free
recall and recognition experiments with randomly assembled lists of words or common facts. Our results
show that human memory can be described by universal laws derived from first principles.
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Human cognition is typically considered to be too
complex to be described by physics-style universal math-
ematical laws (see a notable exception in the form of a
universal law of generalization proposed in [1]). Human
memory in particular is a critically important mental
capacity that includes multiple processes, most crucially
acquisition, maintenance, and recall (see, e.g., [2]). While
human memory capacity for information is practically
infinite, all of the mentioned processes are not entirely
reliable, for example recall is often a challenging task even
when information being recalled is encoded in memory. An
important advantage for studying recall is that it can be
precisely quantified with a classical paradigm of “free
recall” (see, e.g., [3]). Typical experiments involve recall-
ing randomly assembled lists of words in an arbitrary order
after a brief exposure. When the presented list becomes
longer, the average number of recalled words grows but in a
sublinear way ([4—6]). The exact mathematical form of this
relation is controversial and was found to depend on the
details of experimental procedures, such as presentation
rate ([7]). In some studies, recall performance was found to
exhibit a power-law relation to the number of presented
words ([6]), but parameters of this relation were extremely
variable across different experimental conditions.

These observations seem to rule out any possibility that
memory recall can be described by a universal mathemati-
cal law that would hold for all experimental conditions and
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all people. Yet in this study we demonstrate with new
experiments that most of the variability in recall can be
accounted for by measuring the acquisition and mainte-
nance of information during the presentation phase of the
experiment, and when that is controlled, recall itself is
much more predictable. Moreover, relation between the
number of items in memory and the average fraction of it
that can be successfully recalled is described by a param-
eter-free analytical expression derived here from the deter-
ministic model introduced in [8,9]. In other words, despite
the overall unpredictability of human memory, some
aspects of it obey simple universal laws.

The proposed recall process is based on two principles:
(i) memory items are represented in the brain by over-
lapping random sparse neuronal ensembles in dedicated
memory networks. (ii) The next item to be recalled is the
one with a largest overlap to the current one, excluding the
item that was recalled on the previous step. The first
principle is a common element of most neural network
models of memory (see, e.g., [10,11]), while the second
one is specific to our model, expressing an associativity
principle in neuronal terms. More specifically, item repre-
sentations are chosen as random binary {0, 1} vectors
where each element of the vector chosen to be 1 with
small probability f < 1 independently of other elements.
Overlaps are defined as scalar products between these
representations. The model is illustrated in Fig. 1 (more
details in Supplemental Material [12]), where the matrix of
overlaps (“similarity matrix,” or SM) between 16 memory
representations is shown in Fig. 1(a). Figure 1(b) is a graph
that shows the transitions between memory items induced
by the SM. When the first item is recalled (say the first one
in the list), the corresponding row of the matrix, which
includes the overlaps of this item with all the others, is
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FIG. 1. Associative search model of free recall. (a) SM
(similarity matrix) for a list of 16 items (schematic). For each
recalled item, the maximal element in the corresponding row is
marked with a black spot, while the second maximal element is
marked with a red spot. (b) A graph with 16 nodes illustrates the
items in the list. Recall trajectory begins with the first node, and
proceeds to an item with the largest similarity to the current one
(black arrow) or the second largest one (red arrow) if the item with
the largest similarity is the one recalled just before the current one.
When the process returns to the 10th item, a second subtrajectory is
opened up (shown with thinner arrows) and converges to a cycle
after reaching the 12th node for the second time. (c) Comparison
between simulations with random symmetric similarity matrix
(blue line) and SM defined by random sparse ensembles
with sparsity f = 0.01 (yellow line), f = 0.05 (magenta line),
f = 0.1 (green line), and N = 100 000 number of neurons. Each
point is the mean of 10 000 simulations. Black line corresponds to

theoretical %IIL.

searched for the maximal element (14th element in this
case), and hence the 14th item is recalled next. This process
continues according to the above rule (black arrows), unless
it points to an item that was just recalled in the previous
step, in which case the next largest overlap is searched (red
arrows). After a certain number of transitions, this process
begins to cycle over already visited items. This happens
either the first time a previously recalled item is reached
again, or the process could make some number of tran-
sitions over previously recalled items [items 10,14,1 in
Fig. 1(b)] to open up a new trajectory (items 13,5,11,12)
until finally converging to a cycle. After the cycle is
reached, no new items can be recalled.

In our previous publication ([8]) we showed that the
average number of recalled items (recall capacity, or R)
scales as a power-law function of the number of items in the
list, L with exponent that depends on sparseness parameter
f. Here we focus on the sparse limit of this model, f < 1,
when one can neglect the correlations between different
elements of the SM and replace it by a random symmetric
matrix (see, e.g., [16], for biological motivation for con-
sidering a very sparse encoding). We show below that while
the corresponding graph model has a history-dependent
transition rule and hence is more complex than the standard
family of graphs resulting from random mappings (see,
e.g., [17]), it can still be solved analytically in terms of the
average number of items visited before converging to
a cycle.

It is instructive to first consider the simpler case of a fully
random asymmetric SM with independent elements. In this
case, transitions between any two items are equally likely,
with probability 1/(L — 1). When an item is reached for the
second time the process enters into a cycle. Therefore the
probability that k out of L items will be retrieved is simply

k =378 (/L) k —k2/2L
~ i=1 1
~—e ~X—e N ( )

where we considered a limit of large number of items in
the list (L > 1) and assumed that L > k> 1, which is
confirmed a posteriori below. The average number of
recalled words can then be calculated as

=
~ \/Z/wxze_x 12dx
0
L
=\ 7 (2)

which is a well known result in random graphs litera-
ture ([17,18]).

When the SM is symmetric, as in our case, the statistics
of transitions in the corresponding graph is more compli-
cated (see the Supplemental Material [12] for more details
about the derivation). In particular, the probability for a
transition to one of the previously recalled items scales as
1/(2L) rather than 1/L as in the case of asymmetric SMs,
and hence the average length of trajectory until the first
return converges to \/zL. Moreover, with probability 1/3
the trajectory then turns towards previous items and opens
up a new route until again hitting a previously recalled
item, etc. Taken together, the chance that recall trajectory
enters a cycle after each step asymptotically equals to
1/(2L) x2/3 =1/(3L), as opposed to 1/L for the fully
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random matrix, and hence the R can be obtained by
replacing L by 3L in Eq. (2):

3
Rz,/ngz.nfL, (3)

see Fig. 1(c) for the comparison of this analytical estimate
with numerical simulations of the model. We emphasize
that Eq. (3) does not have any free parameters that could be
tuned to fit the experimental results. Hence, both the
exponent and coefficient of this power law expression
are a result of the assumed recall mechanism; in other
words, this equation constitutes a true prediction regarding
the asymptotic recall performance for long lists of items as
opposed to earlier theoretical studies. Here we present the
results of our experiments designed to test this prediction.

The universality of the above analytical expression for R
seems to contradict our everyday observations that people
differ in terms of their memory effectiveness depending, e.g.,
on their age and experience. Moreover, it is at odds with
previous experimental studies showing that performance in a
free recall task strongly depends on the experimental pro-
tocol, for example presentation rate during the acquisition
stage (see, e.g., [19-27]) and the extent of practice [28,29].
Since most of the published studies only considered a limited
range of list lengths, we performed free recall experiments on
the Amazon Mechanical Turk® platform for list lengths of
8,16,32,64,128,256, and 512 words, and two presentation
rates: 1 and 1.5 seconds per word. To avoid practice effects,
each participant performed a single free recall trial with a
randomly assembled list of words of a given length. The
results confirm previous observations that recall performance
improves as the time allotted for acquisition of each word
increases, approaching the theoretical prediction of Eq. (3)
from below [see Fig. 2(a)].

We reasoned that some or all of the variability in the
experimentally observed R could result from the variability
in the number of words that remain in memory as candidates
for recall after the list is presented. In particular, some of the
words could be missed at presentation, while others could be
acquired but later erased or degraded. It seems reasonable
that acquisition depends on various factors, such as atten-
tion, age of participants, acquisition speed, etc. One should
then correct Eq. (3) for R, replacing the number of presented
words L with the number of words in memory after the
whole list is presented, M:

R~ \/37”71\4 (4)

To test this conjecture, we designed a novel experimental
protocol that involved performing both recall and recog-
nition experiments on the same group of participants. Each
participant performed one recognition and one recall trial
with lists of the same number of words (but different words

(a) (b)
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FIG.2. Human recall and recognition performance. (a) Average
number of words recalled as a function of the number of words
presented. Black line: Eq. (3). Yellow line: experimental results
for presentation rate 1.5 sec /word. Green line: experimental
results for presentation rate 1 sec /word. The error in R is a
standard error of the mean. (b) Estimated average number of
encoded words or sentences for lists of different lengths. Black
dashed line corresponds to perfect encoding, green line corre-
sponds to presentation rate 1 sec /word and yellow line to
presentation rate 1.5 sec /word; blue line corresponds to lists
of short sentences (see text for details). The error in M is
computed with bootstrap procedure [30]. (c) Average number of
words (sentences) recalled as a function of the average number of
encoded words (sentences). Green line: experimental results for
presentation rate 1 sec /word. Yellow line: experimental results
for presentation rate 1.5 sec /word. Blue line: experimental
results for short sentences. The error in R is a standard error
of the mean, while the error in M is computed with bootstrap
procedure (see the Supplemental Material [12] for details).

between recognition and recall) and under identical presen-
tation conditions, including presentation rate, in order to
independently evaluate the average number of words in
memory, and the average number of words recalled.
Following [5], at the end of presentation we showed each
participant a pair of words, one from the list just presented
(target) and one randomly chosen lure, requesting to report
which word was from the list. The average number of words
remaining in memory (M) was then estimated from the
fraction of correctly recognized words (¢) by assuming that
if a target word was still encoded at the end of presentation, it
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will be chosen during recognition test, otherwise the
participant will randomly guess which of the two words
is a target: M = L(2¢ — 1). Importantly, each participant
performed a single recognition test, to avoid the well known
effect of “output interference” between subsequent recog-
nition tests for a single list (see, e.g., [31]).

Figure 2(b) shows the estimated average M as a function
of list length L (see the Supplemental Material [12] for
details of the analysis). Results confirm that M increases
with time allotted to presentation of each word. Standard
error of the mean for the number of encoded words across
participants, for each list length and each presentation
speed, was estimated with a bootstrap procedure by
randomly sampling a list of participants with replacement
([30], see the Supplemental Material).

In Fig. 2(c) experimentally obtained R (yellow and
green lines) is compared with the theoretical prediction
of Eq. (4) (black line), where M is the average number of
encoded words, estimated in the recognition experiment.
Remarkably, agreement between the data and theoretical
prediction is very good for both presentation rates,
even though the number of encoded and recalled words
is very different in these two conditions for each value of
list length. We also performed multiple simulations of
our recall algorithm ([8,9]) and found that it captures
the statistics of the recall performances as accessed
with bootstrap analysis of the results (see Fig. S1 in the
Supplemental Material [12]).

Experiments presented above, as well as the vast
majority of previous recall experiments, were performed
with lists of words. To test the generality of our model
prediction, we generated a set of 325 short sentences
expressing common knowledge facts, such as “Earth is
round” or “Italians eat pizza,” etc. We repeated our experi-
ments with random lists of 8,16,32,64, and 128 such
sentences, each presented for 3.5 seconds (see the
Supplemental Material [12] for more details of the analy-
sis). As shown in Figs. 2(b) and 2(c), performance with lists
of sentences is very close to that of words with 1.5 words
per second presentation rate, albeit with some small
deviations towards lower levels.

Discussion.—The results presented in this Letter show
that the relation between the number of words in memory
and the number of recalled words conforms with remark-
able precision to the analytical, parameter-free expression
Eq. (4), derived from a deterministic associative search
model of recall. The relation between these two independ-
ently measured quantities holds even though both of them
strongly depend on the number of presented words and on
the presentation rate. We further confirmed the generality of
Eq. (4) by repeating the experiments with lists of short
sentences expressing common knowledge facts. Hence it
appears that memory recall is a more universal process than
memory acquisition and maintenance. The crucial aspect of
the model is the similarity matrix between the items that

determines the recall transitions, but the precise nature of
this matrix beyond its statistics across the presented lists
and/or across participants does not have to be specified. It
seems plausible that different people will have different
similarity matrices, reflecting their unique language expe-
rience, which makes direct estimation of it rather challeng-
ing. However, our previous study ([32], see also [33])
showed that recall transitions are sensitive to the measure of
semantic similarity called latent semantic analysis (LSA),
which represents the number of times two words appear
together in a representative corpora of natural text ([34]).
This indicates that there is some degree of universality in
interword similarities across all people.

Several influential computational models of recall were
developed in cognitive psychology that incorporate inter-
active probabilistic search processes (see, e.g., [35-40]).
These cognitive models have multiple free parameters that
can be tuned to reproduce the experimental results on recall
quite precisely, including not only the number of words
recalled but also the temporal regularities of recall, such as
primacy, recency and temporal contiguity effects [20,22,41].
However, most of the free parameters lack clear biological
meaning and cannot be constrained before the data are
collected; hence the models cannot be used to predict the
recall performance but only explain it a posteriori. Our recall
model can be viewed as a radically simplified version of
the classical search of associative memory model (SAM),
see [35]. In both models, recall is triggered by a matrix
of associations between the items, which in SAM is built
up during presentation according to a rather complex set
of processes, while in our model is simply assumed to be
a fixed, structure-less symmetric matrix (see Fig. 1).
Subsequent recall in SAM proceeds as a series of attempted
probabilistic sampling and retrievals of memory items, until
a certain limiting number of failed attempts is reached after
which recall terminates. In our model, this is replaced by a
deterministic transition rule that selects the next item with
the strongest association to the currently recalled one. As a
result, recall of new items terminates automatically when the
algorithm begins to cycle over already recalled items,
without a need to any arbitrary stopping rule. Finally,
SAM assumes that all the presented words are stored into
long-term memory to different degrees, i.e., could in
principle be recalled, while in the current study we assume
that only a certain fraction of words remain in memory at the
end of presentation to become candidates for recall. This
assumption is confirmed a posteriori by the collapse of
R vs M curves for different presentation rates (see the
Supplemental Material [12] for more detailed argumenta-
tion). We also neglected the well-documented effects of
short-term memory on free recall (see, e.g., [42]), which are
very small in our data (see the Supplemental Material [12]).

We consider it little short of a mystery that with these
radical simplifications, the model predicts the recall per-
formance with such a remarkable precision and without the
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need to tune a single parameter. Future theoretical and
experimental studies should be pursued to probe which
aspects of the model are valid and which are crucial for the
obtained results.
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