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SUMMARY

Sequential activation of neurons is a common feature
of network activity during a variety of behaviors,
including working memory and decision making.
Previous network models for sequences and mem-
ory emphasized specialized architectures in which
a principled mechanism is pre-wired into their
connectivity. Here we demonstrate that, starting
from random connectivity and modifying a small
fraction of connections, a largely disordered recur-
rent network can produce sequences and implement
working memory efficiently. We use this process,
called Partial In-Network Training (PINning), tomodel
and match cellular resolution imaging data from the
posterior parietal cortex during a virtual memory-
guided two-alternative forced-choice task. Analysis
of the connectivity reveals that sequences propagate
by the cooperation between recurrent synaptic inter-
actions and external inputs, rather than through
feedforward or asymmetric connections. Together
our results suggest that neural sequences may
emerge through learning from largely unstructured
network architectures.

INTRODUCTION

Sequential firing has emerged as a prominent motif of population

activity in temporally structured behaviors, such as short-term

memory and decision making. Neural sequences have been

observed in many brain regions including the cortex (Luczak

et al., 2007; Schwartz and Moran, 1999; Andersen et al., 2004;

Pulvermüller and Shtyrov, 2009; Buonomano, 2003; Ikegaya

et al., 2004; Tang et al., 2008; Seidemann et al., 1996; Fujisawa

et al., 2008; Crowe et al., 2010; Harvey et al., 2012), hippocam-

pus (Nádasdy et al., 1999; Louie and Wilson, 2001; Pastalkova

et al., 2008; Davidson et al., 2009), basal ganglia (Barnes et al.,

2005; Jin et al., 2009), cerebellum (Mauk and Buonomano,

2004), and area HVC of the songbird (Hahnloser et al., 2002;

Kozhevnikov and Fee, 2007). In all these instances, the observed

sequences span a wide range of time durations, but individual

neurons fire transiently only during a small portion of the full
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sequence. The ubiquity of neural sequences suggests that

they are of widespread functional use and thusmay be produced

by general circuit-level mechanisms.

Sequences can be produced by highly structured neural cir-

cuits or by more generic circuits adapted through the learning

of a specific task. Highly structured circuits of this type have a

long history (Kleinfeld and Sompolinsky, 1989; Goldman,

2009), e.g., as synfire chain models (Hertz and Prügel-Bennett,

1996; Levy et al., 2001; Hermann et al., 1995; Fiete et al.,

2010), in which excitation flows unidirectionally from one active

neuron to the next along a chain of connected neurons, or as

ring attractor models (Ben-Yishai et al., 1995; Zhang, 1996), in

which increased (central) excitation between nearby neurons

surrounded by long-range inhibition and asymmetric connectiv-

ity are responsible for time-ordered neural activity. These

models typically require imposing a task-specific mechanism

(e.g., for sequences) into their connectivity, producing special-

ized networks. Neural circuits are highly adaptive and involved

in a wide variety of tasks, and sequential activity often emerges

through learning of a task and retains significant variability. It is

therefore unlikely for highly structured approaches to produce

models with flexible circuitry or to generate dynamics with the

temporal complexity needed to recapitulate experimental data.

In contrast, random networks interconnected with excitatory

and inhibitory connections in a balanced state (Sompolinsky

et al., 1988), rather than being specifically designed for one single

task, have beenmodified by training to perform a variety of tasks

(Buonomano and Merzenich, 1995; Buonomano, 2005; Williams

and Zipser, 1989; Pearlmutter, 1989; Jaeger and Haas, 2004;

Maass et al., 2002, 2007; Sussillo and Abbott, 2009; Jaeger,

2003). Herewebuilt on these lines of research and askedwhether

a general implementation using relatively unstructured random

networks could create sequential dynamics resembling experi-

mental data. We used data from sequences observed in the

posterior parietal cortex (PPC) of mice trained to perform a two-

alternative forced-choice (2AFC) task in a virtual reality environ-

ment (Harvey et al., 2012), and we also constructed models

that extrapolated beyond these experimental data.

To address how much network structure is required for se-

quences like those observed in the recordings, we introduced

a new modeling framework called Partial In-Network Training

or PINning. In this scheme, any desired fraction of the initially

random connections within the network can be modified by a

synaptic change algorithm, enabling us to explore the full range

of network architectures between completely random and fully
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structured. Using networks constructed by PINning, we first

demonstrated that sequences resembling the PPC data were

most consistent with minimally structured circuitry, with small

amounts of structured connectivity to support sequential activity

patterns embedded in a much larger fraction of unstructured

connections. Next we investigated the circuit mechanism of

sequence generation in such largely random networks contain-

ing some learned structure. Finally, we determined the role se-

quences play in short-term memory, e.g., by storing information

during the delay period about whether a left or right turn was indi-

cated early in the 2AFC task (Harvey et al., 2012). Going beyond

models meant to reproduce the experimental data, we analyzed

multiple sequences initiated by different sensory cues and

computed the capacity of this form of short-term memory.

RESULTS

Sequences fromHighly Structured or RandomNetworks
Do Not Match PPC Data
Our study is based on networks of rate-based model neurons, in

which the outputs of individual neurons are firing rates and the

units are interconnected through excitatory and inhibitory synap-

ses of various strengths (Experimental Procedures). To interpret

the outputs of the rate networks in terms of experimental data,

we extracted firing rates from the calcium fluorescence signals

recorded in the PPC using two complementary deconvolution

methods (Figures 1C and 1D; see also Figure S1 and Experi-

mental Procedures). We defined two measures to compare the

rates from the model to the rates extracted from data. The first,

bVar, measures the stereotypy of the data or the network output

by quantifying the variance explained by the translation of an ac-

tivity profile with an invariant shape (Figure 1G; Experimental

Procedures). The secondmetric, pVar, measures the percentage

variance of the PPC data (Harvey et al., 2012) captured by the

different network outputs, and it is useful for tracking network

performance across different parameters (Figure 1H; Experi-

mental Procedures). bVar and pVar are used throughout this pa-

per (Figures 1, 2, 5, and 6).

Many models have suggested that highly structured synaptic

connectivity, i.e., containing ring-like or chain-like interactions,

is responsible for neural sequences (Ben-Yishai et al., 1995;

Zhang, 1996; Hertz and Prügel-Bennett, 1996; Levy et al., 2001;

Hermann et al., 1995; Fiete et al., 2010). We therefore first asked

how much of the variance in long-duration neural sequences

observed experimentally, e.g., in the PPC (Harvey et al., 2012),

measured asbVar, was consistentwith a bumpof activitymoving

across the network, as expected from highly structured connec-

tivity. The stereotypy of PPC sequences, which were averaged

over hundreds of trials and pooled across different animals,

was found to be quite small (bVar = 40% for Figures 1D and

2A). bVar was lower in both single-trial data (10%–15% for the

data in Figure S13 of Harvey et al., 2012) and trial-averaged

data from a singlemouse (15% for the data in Figure 2c of Harvey

et al., 2012). The small fraction of the variance explained by a

moving bump (low bVar), combined with a weak relationship be-

tween the activity of a neuron and anatomical location in the PPC

(Figure 5d in Harvey et al., 2012), motivated us to consider

network architectures with disordered connectivity composed
of a balanced set of excitatory and inhibitory weights drawn inde-

pendently froma randomdistribution (Experimental Procedures).

In random network models, when excitation and inhibition are

balanced on average, the ongoing dynamics have been shown

to be chaotic (Sompolinsky et al., 1988); however, the presence

of external stimuli can channel the ongoing dynamics in these

networks by suppressing their chaos (Molgedey et al., 1992; Bert-

schinger and Natschläger, 2004; Rajan et al., 2010, 2011). In ex-

periments, strong inputs have also been shown to reduce the

Fano factor and trial-to-trial variability associated with sponta-

neous activity (Churchland et al., 2010; White et al., 2012). Thus,

we asked whether PPC-like sequences could be constructed

either from the spontaneous activity or the input-driven dynamics

of random networks. We simulated a random network of rate-

based neurons operating in a chaotic regime (Figure 1A; Experi-

mental Procedures; N = 437, network size chosen to match the

dataset under consideration). The individual firing rates were

normalized by the maximum over the trial duration (10.5 s, Fig-

ure 1C) and sorted in ascending order of their times of center-of-

mass (tCOM),matching theprocedures applied to the experimental

data (Harvey et al., 2012). Although the resulting ordered sponta-

neous activitywas sequential (not shown, but similar toFigure 1B),

the level of extra-sequential background (bVar = 5% ± 2% and

pVar = 0.15% ± 0.1%) was higher than data. Sparsifying this

background activity by increasing the threshold of the sigmoidal

activation function increased bVar to a maximum of 22%, still

considerably smaller than the data value of 40% (Figure S4).

Next we added time-varying inputs to the random network to

represent the visual stimuli in the virtual environment (right panel

of Figure 1A; Experimental Procedures). The sequence obtained

bynormalizing andsorting the rates from the input-driven random

network did not match the PPC data (bVar = 10% ± 2% and

pVar = 0.2% ± 0.1%; Figures 1B, left panel of 1H, and S4).

External inputs and disordered connectivity were insufficient

to evoke sequences resembling the data (Figure 1B), which are

more structured and temporally constrained (Figures 1C, 1D,

and 2A compared to Figure 1B). Therefore, sequences like those

observed during timing and memory experiments (Harvey et al.,

2012) are unlikely to be an inherent property of completely

random networks. Furthermore, since neural sequences arise

during the learning of various experimental tasks, we asked

whether initially disordered networks could also be modified by

training to produce realistic sequences.

Temporally Constrained Neural Sequences Emergewith
Synaptic Modification
To construct networks that match the activity observed in the

PPC, we developed a training scheme, Partial In-Network

Training or PINning, in which a user-defined fraction of synap-

ses were modified (Experimental Procedures). In this synaptic

modification scheme, the inputs to individual model neurons

were compared directly with target functions or templates

derived from the experimental data (Fisher et al., 2013), on

both left and right correct-choice outcome trials from 437

trial-averaged neurons, pooled across six mice, during a

2AFC task (Figures 2A and 5D). During training, the internal syn-

aptic weights in the connectivity matrix of the recurrent network

were modified using a variant of the recursive least-squares
Neuron 90, 128–142, April 6, 2016 ª2016 Elsevier Inc. 129
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Figure 1. StereotypyofPPCSequencesandRandomNetworkOutput

(A) Schematic of a randomly connected network of rate neurons (blue) oper-

ating in a spontaneously active regime and a few example irregular inputs

(orange traces) are shown here. Random synapses are depicted in gray. Note

that our networkswere at least asbig as the size of the data under consideration

(Harvey et al., 2012) andwere typically all-to-all connected, but only a fractionof

these neurons and their interconnections are depicted in these schematics.

(B) When the individual firing rates of the random (untrained) network driven

by external inputs in (A) were normalized by the maximum per neuron and

sorted by their times of center-of-mass (tCOM), the activity appeared ordered.

However, this sequence contained large amounts of background activity

relative to the PPC data (bVar = 12%, pVar = 0.2%).

(C) Calcium fluorescence (i.e., normalized DF=F) data were collected from 437

trial-averaged PPC neurons during a 10.5 s-long 2AFC experiment from both

left and right correct-choice outcomes, pooled from six mice. Vertical gray

lines indicate the time points corresponding to the different epochs of the task:

the cue period ending at 4 s, the delay period ending at 7 s, and the turn period

concluding at the end of the trial, at 10.5 s.

(D) Normalized firing rates extracted from (C) using deconvolutionmethods are

shown here (see also Figure S1).

(E) The firing rates from the 437 neurons shown in (D) were realigned by their

tCOM and plotted here.

(F) (Inset) A typical waveform (Rave in red), obtained by averaging the realigned

rates shown in (E) over neurons, and a Gaussian curve with mean = 0 and

variance = 0.3 (f(t), green) that best fit the neuron-averaged waveform are

plotted here. (Main panel) Residual activity not explained by translations of the

best fit to Rave, f(t), is shown here.

(G) Variance in the population activity explained by translations of the best fit to

Rave, f(t), is ameasure of the stereotypy (bVar). Left panel shows the normalized

firing rates from four example PPC neurons (red) from (D) and the curves f(t) for

each neuron (green); bVar = 40% for these data. Right panel shows the

normalized firing rates of four model neurons (red) from a network generating

an idealized sequence (see also Figure S2A) and the corresponding curves f(t)

for each (green); bVar = 100% here.

(H) Variance of the PPC data explained by the outputs of different PINned net-

works is given by pVar and illustrated with four example neurons here. The left

panel shows thenormalizedfiring ratesof fourexamplePPCneurons (red)picked

from (D) and four model neuron outputs from a random network driven by time-

varying external inputs (gray, network schematized in A) with no training (p = 0).

For thisexample,pVar=0.2%.The rightpanel shows thesamePPCneuronsas in

the left panel in red, alongwith fourmodel neuronoutputs fromasparselyPINned

network with p = 12% plastic synapses. For this example, pVar = 85%.
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(RLS) or first-order reduced and controlled error (FORCE)

learning rule (Haykin, 2002; Sussillo and Abbott, 2009) until

the network rates matched the target functions (Experimental

Procedures). Crucially, the learning rule was applied only to all

the synapses of a randomly selected and often small fraction

of neurons, such that only a fraction p (pN2 << N2) of the total

number of synapses was modified (plastic synapses, depicted

in orange in Figures 2B, 5A, and 6A). While every neuron had

a target function, only the outgoing synapses from a subset

of neurons (i.e., from pN chosen neurons) were subject to

the learning rule (Figure 2B; Experimental Procedures). The

remaining elements of the synaptic matrix remained unmodified

and in their random state (random synapses, depicted in gray

in Figures 1A, 2B, 5A, and 6A). The PINning method therefore

provided a way to span the entire spectrum of possible neural

architectures, from disordered networks with random connec-

tions (p = 0 for Figures 1A and 1B), through networks with

partially structured connectivity (p < 25% for Figures 2, 5, and

6), to networks containing entirely trained connections (p =

100%, Figures 3D–3F).
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Figure 2. Partial In-Network Training Matches PPC-like Sequences

(A) This is identical to Figure 1C.

(B) Schematic of the activity-based modification scheme we call Partial In-Network Training or PINning is shown here. Only the synaptic weights carrying inputs

from a small and randomly selected subset, controlled by the fraction p of theN = 437 rate neurons (blue), were modified (plastic synapses, depicted in orange) at

every time step by an amount proportional to the difference between the input to the respective neuron at that time step (zi(t), plotted in gray) and a target

waveform (fi(t), plotted in green), the presynaptic firing rate rj, and the inverse cross-correlation matrix of the firing rates of PINned neurons (denoted by the

matrix P; see Experimental Procedures). Here the target functions for PINning were extracted from the rates shown in (A).

(C) Normalized activity from the network with p = 12% plastic synapses (red circle in D). This activity was temporally constrained, had a relatively small amount of

extra-sequential activity (bVar = 40% for C and A), and showed a good match with data (pVar = 85%).

(D) Effect of increasing the PINning fraction, p, in a network producing a single PPC-like sequence as in (A), is shown here. pVar increased from 0 for random

networks with no plasticity (i.e., p = 0) to pVar = 50% for p = 8% (not shown) and asymptoted at pVar = 85% as pR 12% (highlighted by red circle, outputs in C).

(E) The total magnitude of synaptic change to the connectivity as a function of p is shown here for the matrix, JPINned, 12%. The normalized mean synaptic change

grew from a factor of�7 for sparsely PINned networks (p = 12%) to�9 for fully PINned networks (p = 100%), producing the PPC-like sequence. This means that

individual synapses changed more in small-p networks, but the total change across the synaptic matrix was smaller.

(F) Dimensionality of the sequence is computed by plotting the cumulative variance explained by the different principal components (PCs) of the 437-neuron

PINned network generating the PPC-like sequence (orange circles) with p = 12% and pVar = 85%, relative to a random network (p = 0, gray circles). When

p = 12%, Qeff = 14, and smaller than the 38 for the random untrained network. Inset shows Qeff (depicted in red circles) of the manifold of the overall network

activity as p increased.
We first applied PINning to a network with templates obtained

from a single PPC-like sequence (Figures 2A–2C), using a range

of values for the fraction of plastic synapses, p. Modification of

only a small percentage (p = 12%) of the connections in a disor-

dered network was sufficient for its sequential outputs to

become temporally constrained (bVar = 40%) and to match the

PPC data with high fidelity (pVar = 85%, Figure 2C; see Experi-

mental Procedures for cross-validation analysis). Although

our networks were typically as large as the size of the experi-

mental dataset (N = 437 for Figures 1 and 2 and N = 569 for Fig-

ure 5), our results are consistent both for larger N networks and

for networks in which non-targeted neurons are included to
simulate the effect of unobserved but active neurons present in

the data (Figure S3). The dependence of pVar on p is shown in

Figure 2D.

Figure 2D quantifies the amount of structure needed

for generating sequences in terms of the relative fraction of

synapses modified from their initially random values, but

what is the overall magnitude of synaptic change required?

As shown in Figure 2E, we found that, although the individual

synapses changed more in sparsely PINned (small p) net-

works, the total amount of change across the synaptic con-

nectivity matrix was smaller (other implications are described

subsequently).
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Figure 3. Properties of PINned Connectivity Matrices

(A) Synaptic connectivitymatrix of a 500-neuron network with p = 8%producing an idealized sequencewith pVar = 92% (highlighted by a red circle in Figure S2B),

denoted by JPINned, 8%, and that of the randomly initialized network with p = 0, denoted by JRand, are shown here. Color bars indicate in pseudocolor the

magnitudes of synaptic strengths after PINning.

(B) Influence of neurons away from the sequentially active neurons was estimated by computing the mean (circles) and the standard deviation (lines) of the

elements of JRand (in blue) and JPINned, 8% (means in orange, standard deviations in the red lines) in successive off-diagonal stripes away from the principal

diagonal. These quantities are plotted as a function of the inter-neuronal distance, i� j. In units of i – j, 0 corresponds to the principal diagonal or self-interactions,

and the positive and the negative terms are the successive interaction magnitudes a distance i – j away from the primary sequential neurons.

(C) Dynamics from the band averages of JPINned, 8% are shown here. The left panel is a synthetic matrix generated by replacing the elements of JPINned, 8% by their

means (orange circles in B). The normalized activity from a network with this synthetic connectivity is shown on the right. Although there was a localized bump

around i – j = 0 and long-range inhibition, these features led to fixed-point activity (right panel).

(D) Same as (A), except the connectivity matrix from a fully PINned (p = 100%) network, denoted by JPINned, 100%, is shown.

(E) Same as (B), except comparing JPINned, 100% and JRand. Band averages (orange circles) were bigger and more asymmetric compared to those for JPINned, 8%.

Notably, these band averages were also negative for i – j = 0 and in the neighborhood of 0.

(F) Logarithm of the probability density of the elements of JRand (gray squares), JPINned, 8% (yellow squares), and, for comparison, JPINned, 100% (red squares) is

shown here.

(G) Same as (C), except showing the firing rates from the mean JPINned, 100%. In contrast with JPINned, 8%, the band averages of JPINned, 100% could be sufficient to

evoke a Gaussian bump qualitatively similar to the moving bump produced by a ring attractor model, since its movement is driven by the asymmetry in the mean

connectivity.
To uncover how the sequential dynamics are distributed

across the population of active neurons in PINned networks,

we used principal component analysis (PCA) (e.g., Rajan et al.,

2011; Sussillo, 2014; and references therein). For an untrained

random network (here with N = 437 and p = 0) operating in a

spontaneously active regime (Experimental Procedures), the

top 38 principal components accounted for 95%of the total vari-

ance (therefore, the effective dimensionality, Qeff = 38; gray cir-

cles in Figure 2F). In comparison, Qeff of the data in Figure 1D

is 24. In the network with p = 12% with outputs matching the

PPC data, the dimensionality was lower (Qeff = 14; orange circles

in Figure 2F). Qeff asymptoted around 12 dimensions for higher
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p values (inset of Figure 2F). The circuit dynamics are therefore

higher dimensional for the output of the PINned network than

for a sinusoidal bump attractor, but lower than the data.

Circuit Mechanism for Sequential Activation through
PINning
To develop a simplified prototype for further investigation of the

mechanisms of sequential activation, we created a synthetic

sequence idealized from data, as long as the duration of the

PPC sequence (10.5 s, Figure 2A). We first generated a Gaussian

curve, f(t) (green curve in inset of Figure 1F and left panel of Fig-

ure S2A) that best fit the average extracted from the tCOM-aligned



PPC data (Rave, red curve in inset of Figure 1F and left panel of

Figure S2A). The curve, f(t), was translated uniformly over a

10.5-s period to derive a set of target functions (N = 500, right

panel of Figure S2A, bVar = 100%). Increasing fractions, p, of

the initially random connectivity matrix were trained by PINning

with the target functions of the idealized sequence. As before,

pVar increased with p, reached pVar = 92% at p = 8% (red circle

in Figure S2B), asymptoting at p � 10%. The plasticity required

for producing the idealized sequence was therefore smaller than

the p = 12% required for the PPC-like sequence (Figure 2D), due

to the lack of the idiosyncrasies present in the data, e.g., irregu-

larities in the temporal ordering of individual transients and back-

ground activity off the sequence.

Two features are critical for the production of sequential activ-

ity. The first is the formation of a subpopulation of active neurons

(bump), maintained by excitation between co-active neurons

and restricted by inhibition. The second is an asymmetry in the

synaptic inputs from neurons ahead in the sequence and those

behind, needed to make the bump move. We therefore looked

for these two features in PINned networks by examining both

the structure of their connectivity matrices and the synaptic cur-

rents into individual neurons.

In a classic moving bump/ring attractor network, the synaptic

connectivity is only a function of the distance between pairs of

network neurons in the sequence, i – j, with distance correspond-

ing to how close neurons appear in the ordered sequence (for our

analysis of the connectivity in PINned networks, we also ordered

the neurons in a similar manner). Furthermore, the structure that

sustains, constrains, and moves the bump is all contained in the

connectivity matrix, localized in ji – jj, and asymmetric. We

looked for similar structure in the trained networks.

We considered three synapticmatrices interconnecting a pop-

ulation of model neurons, N = 500, before PINning (randomly

initialized matrix with p = 0, denoted by JRand), after sparse

PINning (JPINned, 8%), and after full PINning (JPINned, 100%, built

as a useful comparison). To analyze how the synaptic strengths

in these three matrices varied with i – j, we first computed the

means and the standard deviations of the diagonals and the

means and the standard deviations of successive off-diagonal

bands moving away from the diagonals, i.e., i – j = constant

(Experimental Procedures). These band averages and the fluctu-

ations were then plotted as a function of the interneuronal dis-

tance, i – j (Figures 3B and 3E). Next we generated ‘‘synthetic’’

interaction matrices, in which all the elements along each diago-

nal were replaced by their band averages and fluctuations,

respectively. Finally, these synthetic matrices were used in net-

works of rate-based neurons and driven by the same inputs as

the original PINned networks (Experimental Procedures).

In the p = 100% model, the band averages of JPINned, 100%

formed a localized and asymmetric profile (orange circles in Fig-

ure 3E) that is qualitatively consistent with moving bump/ring

attractor dynamics (Ben-Yishai et al., 1995; Zhang, 1996). In

contrast, the band averages for JPINned, 8% (orange circles in Fig-

ure 3B) exhibited a localized zone of excitation for small values of

i – j that was symmetric, a significant inhibitory self-interactive

feature at i – j = 0, and diffuse flanking inhibition for larger values

of i – j. This is reminiscent of the features expected in the station-

ary bump models (Ben-Yishai et al., 1995). Furthermore, neither
thebandaveragesof JPINned, 8% (shown in Figure 3C) nor the fluc-

tuations (not shown) were, by themselves, sufficient to produce

moving sequences similar to the full matrix JPINned, 8%. Instead,

the outputs of the synthetic networks built from the components

of the band-averaged JPINned, 8% were stationary bumps (right

panel of Figure 3C). In this case, what causes the bump tomove?

We considered the fluctuations around the band averages of

the sparsely PINned connectivity matrix, JPINned, 8%. As expected

(see color bars in Figure 3A and lines in Figures 3B and 3E), the

fluctuations around the band averages of JPINned, 8% (red lines in

Figure 3B) were much larger and more structured than those of

JRand (small blue lines in Figure 3B). To uncover the mechanistic

role of these fluctuations, we examined the input to each neuron

produced by the sum of the fluctuations of JPINned, 8% and the

external input (Figure 4).We realigned the sumsof the fluctuations

and the external inputs for all the neurons in the network by their

tCOMand then averaged over neurons (e.g., see Experimental Pro-

cedures). This yielded analignedpopulation average (bottom right

panel in Figure 4) that clearly revealed the asymmetry responsible

for the movement of the bump across the network. Therefore, in

the presence of external inputs that are constantly changing in

time, the mean synaptic interactions do not have to be asym-

metric, as observed for JPINned, 8% (Figure 3B). Instead, the varia-

tions in the fluctuations of JPINned, 8% (i.e., after themeanhas been

subtracted) and the external inputs create the asymmetry that

moves the bump along. It is difficult to visualize this asymmetry

at an individual neuron level because of fluctuation, necessitating

this type of population-level measure.While themean synaptic in-

teractions in sparsely PINned networks cause the formation of the

localized bump of excitation, it is the non-trivial interaction of the

fluctuations in these synaptic interactions with the external inputs

that causes the bump tomove across the network. Therefore, this

is a novel circuitmechanism for non-autonomous sequenceprop-

agation in a network.

Additionally, we looked at other PINning-induced trends in the

elements of JPINned, 8%more directly. For all the three connectiv-

ity matrices of sequential networks constructed by PINning,

there was a substantial increase in the magnitudes spanned by

the synaptic weights as p decreased (compare the color bars

in Figures 3A and 3D). These magnitude increases were mani-

fested in PINned networks with different p values in different

ways (Figure 3F). The initial weight matrix JRand had 0 mean

(by design), 0.005 variance (of order 1/N, Experimental Proce-

dures), 0 skewness, and 0 kurtosis. The partially structured ma-

trix JPINned, 8% had a mean of –0.1, variance of 2.2, skewness at

–2, and kurtosis of 30, all of which were indicative of a probability

distribution that was asymmetric about 0 with heavy tails from a

small number of strong weights. This corresponds to a network

in which the large sequence-facilitating synaptic changes

come from a small fraction of the weights, as suggested exper-

imentally (Song et al., 2005). In JPINned, 8%, the ratio of the size of

the largest synaptic weight to the size of the typical is �20. If we

assume the typical synapse corresponded to a postsynaptic po-

tential (PSP) of 0.05 mV, then the large synapses had a 1 mV

PSP, which is within the range of experimental data (Song

et al., 2005). For comparison purposes, the connectivity for a

fully structured network, JPINned, 100%, had a mean of 0, variance

of 0.7, skewness of –0.02, and kurtosis of 0.2, corresponding to a
Neuron 90, 128–142, April 6, 2016 ª2016 Elsevier Inc. 133



Figure 4. Mechanisms for Formation and

Propagation of Sequence

The currents from the matrix JPINned, 8% (red trace

in the top left panel) and from its components are

examined here. Band averages of JPINned, 8%

caused the bump to form, as shown in the plot of

the current from mean JPINned, 8% to one neuron in

the network (red trace in the top panel on the right;

see also Figure 3C). The cooperation of the fluc-

tuations (whose currents are plotted in red in the

middle panel on the left) with the external inputs (in

yellow in thebottom left) caused thebump tomove.

We demonstrated this by considering the currents

from the fluctuations around mean JPINned, 8% for

all the neurons in the network combined with the

currents from the external inputs. The summed

currents were realigned to the tCOM of the bump

and then averaged over neurons. The resulting

curve, an aligned population average of the sum of

the fluctuations and external inputs to the network,

is plotted in orange in the bottom panel on the right

and revealed the asymmetry responsible for the

movement of the bump across the network.
matrix in which the synaptic changes responsible for sequences

were numerous and distributed throughout the network.

Finally, we determined that synaptic connectivity matrices

obtained by PINning were fairly sensitive to small amounts of

structural noise, i.e., perturbations in the matrix JPINned, 8%.

However, when stochastic noise (Experimental Procedures)

was used during training, slightly more robust networks were ob-

tained (Figure S6E).

Delayed Paired Association and Working Memory Can
Be Implemented through Sequences in PINned
Networks
Delayed paired association (DPA) tasks, such as the 2AFC task

from Harvey et al. (2012), engage working memory because

the mouse must remember the identity of the cue, or cue-asso-

ciated motor response, as it runs through the T-maze. Therefore,

in addition to being behavioral paradigms that exhibit sequential

activity (Harvey et al., 2012), DPA tasks are useful for exploring

the different neural correlates of short-term memory (Gold and

Shadlen, 2007; Brunton et al., 2013; Hanks et al., 2015; Amit,

1995; Amit and Brunel, 1995; Hansel and Mato, 2001; Hopfield

and Tank, 1985; Shadlen and Newsome, 2001; Harvey et al.,

2012). By showing that the partially structured networks we con-

structed by PINning could accomplish a 2AFC task, here we

argued that sequences could mediate an alternative form of

short-term memory.

During the first third of the 2AFC experiment (Harvey et al.,

2012), the mouse received either a left or a right visual cue,

and during the last third, it had two different experiences de-

pending on whether it made a left turn or a right turn. Therefore,
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we modeled the cue period and the turn

period of the maze by two different inputs

(blue and red traces in Figure 5C). In the

middle third, the delay period, when the

left- or right-specific visual cues were
off, themouse ran through a section of themaze that was visually

identical for both types of trials. In our simulation of this task, the

inputs to individual network neurons coalesced into the same

time-varying waveform during the delay periods of both the left

and the right trials (purple traces in Figure 5C). The correct

execution of the task therefore depended on the network gener-

ating more than one sequence to maintain the memory of the

cues separately, even when the sensory inputs were identical.

A network with only p = 16% plastic synapses generated out-

puts that were consistent with the data (Figures 5D and 5E,

pVar = 85%, bVar = 40%, compare with Figure 2c in Harvey

et al., 2012; here N = 569, with 211 network neurons selected

at random to activate in the left trial condition, depicted in blue

in Figure 5A; 226 to fire in the right sequence, red in Figure 5A;

and the remaining 132 to fire in the same order in both left and

right sequences, non-choice-specific neurons, depicted in green

in Figure 5A). This network retained the memory of cue identity

by silencing the left-preferring neurons during the delay period

of a right trial and the right-preferring neurons during a left

trial, and generating sequences with the active neurons.

Non-choice-specific neurons were sequentially active in the

same order in both trials, like real no-preference PPC neurons

observed experimentally (Figures 5D and 5E; also Figure 7b in

Harvey et al., 2012).

Comparison with Fixed-Point Memory Networks
Are sequences a comparable alternative to fixed-point models

for storing memories? We compared two types of sequential

memory networkswith a fixed-pointmemory network (Figure 5F).

As before, different fractions of plastic synapses, controlled by p,
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were embedded by PINning against different target functions

(Experimental Procedures). These targets represented the

values of a variable being stored andwere chosen for the dynam-

ical mechanism by which memory is implemented: idealized for

the sequential memory network (orange in Figure 5F, based on

Figure S2A), firing rates extracted from PPC data (Harvey

et al., 2012) for the PPC-like DPA network (green in Figure 5F,

outputs from the PPC-like DPA network with p = 16% plasticity

are shown in Figure 5E), and constant valued targets for the

fixed-point-based memory network (blue in Figure 5F).

To compare the task performance of these three types of

memory networks, we computed a selectivity index (Experi-

mental Procedures, similar to Figure 4 in Harvey et al., 2012).

We found that the network exhibiting long-duration population

dynamics and memory activity through idealized sequences (or-

ange triangles in Figure 5F) had a selectivity of 0.91, when only

10% of its synapses were modified by PINning (p = 10%). In

comparison, the PPC-like DPA network (Figure 5E) needed p =

16% of its synapses to be structured to match data (Harvey

et al., 2012) and to achieve a selectivity of 0.85 (green triangles

in Figure 5F). Both sequential memory networks performed

comparably with the fixed-point network in terms of their selec-

tivity-p relationship. The fixed-point memory network achieved

an asymptotic selectivity of 0.81 for p = 23%. The magnitude

of synaptic change required (Experimental Procedures) was

also comparable between sequential and fixed-point memory

networks, suggesting that sequences may be a viable alternative

to fixed points as a mechanism for storing memories.

During experiments, the fraction of trials on which the mouse

made a mistake was about 15%–20% (accuracy of the perfor-

mance of mice was found to be 83% ± 9% correct, Harvey

et al., 2012). We interpret errors as arising from trials in which

delay period activity failed to retain the identity of the cue, lead-
Figure 5. DPA in PINned Networks of Working Memory

(A) Schematic of a sparsely PINned network implementing DPA through a 2AFC ta

Ca2+ imaging data from left-preferring PPC cells (schematized in blue), right-pref

called non-choice-specific neurons). As in Figure 2B, the learning rule was applie

(B) Example single-neuron firing rates, normalized to themaximum, before (gray) a

green trace for non-choice-specific neurons) are shown here.

(C) A few example task-specific inputs (hi for i = 1, 2, 3,.,N) are shown here. Each

but received the same one on every trial. Left trial inputs are in blue and the righ

(D) Normalized firing rates extracted from trial-averaged Ca2+ imaging data collec

by deconvolution (see Experimental Procedures) from mean calcium fluoresce

modulated cells (one cell per row) imaged on preferred and opposite trials (Harv

PINning (schematized in A). Traces were normalized to the peak of themean firing

indicate the time points corresponding to the different epochs of the task: the

concluding at the end of the trial, at 10.5 s.

(E) The outputs of the 569-neuron network with p = 16% plastic synapses, sorted

match with the data (D). For this network, pVar = 85%.

(F) Selectivity index, shown here, was computed as the ratio of the difference and

preferred trials and the mean activities of preferred neurons during opposite tria

networks of working memory as a function of the fraction of plastic synapses, p—

exhibits PPC-like dynamics (green triangles, N = 569, using rates from D), and a

network that exhibited long-duration population dynamics and memory activity

p = 10% of its synapses were plastic; the PPC-like network needed p = 16% plast

of its synapses to be plastic for selectivity = 0.81.

(G) Magnitude of synaptic change (computed as for Figure 2E) for the three netwo

the fixed-point memory network (blue squares) required comparable amounts o

p = 10%–100%. Across the matrix, the total amount of synaptic change required

PINned case. The PPC-like memory network is omitted here for clarity.
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ing to chance performancewhen the animal made a turn. Given a

50%probability of turning in the correct direction by chance, this

implies that the cue identity was forgotten on 30%–40% of trials.

Adding noise to ourmodel, we could reproduce this level of delay

period forgetting at a noise amplitude of hc = 0:4--0:5 (Fig-

ure S6B). It should be noted that this value is in a region where

the model shows a fairly abrupt decrease in performance.

Capacity of Sequential Memory Networks
We have discussed one specific instantiation of DPA through a

sequence-based memory mechanism, the 2AFC task. We next

extended the same basic PINning framework to ask whether

PINned networks could accomplish memory-based tasks that

require the activation of more than two non-interfering se-

quences. We also computed the capacity of such multi-sequen-

tial networks (denoted by Ns) as a function of the network

size (N), PINning fraction (p), fraction of non-choice-specific

neurons (NNon-choice-specific/N), and temporal sparseness (fraction

of neurons active at any instant, NActive/N, Experimental

Procedures).

We adjusted the PINning parameters for a type of memory

task that is mediated by multiple non-interfering sequences (Fig-

ure 6). Different fractions of synaptic weights in an initially

random network were trained by PINning to match different tar-

gets (Figure 6A), non-overlapping sets of Gaussian curves

(similar to Figure S2A), each evenly spaced and collectively

spanning 8 s. The width of these waveforms, NActive/N, was var-

ied as a parameter that controlled the sparseness of the

sequence (Experimental Procedures). Because the turn period

was omitted here for clarity, the modeled multi-sequential tasks

were 8 s long. Similar to DPA (Figure 5), each neuron received a

different filtered white noise input for each cue during the cue

period (0–4 s); but, during the delay period (4–8 s), they
sk (Harvey et al., 2012). The targets for PINning were firing rates extracted from

erring cells (schematized in red), and cells with no choice preference (in green,

d only to p% of the synapses.

nd after PINning (blue trace for left-preferring, red trace for right-preferring, and

neuron got a different irregular, spatially delocalized, filtered white noise input,

t trial ones, in red.

ted in the PPC during a 2AFC task are shown here. Spike trains were extracted

nce traces for the 437 choice-specific and 132 non-choice-specific, task-

ey et al. 2012). These firing rates were used to extract the target functions for

rate of each neuron on preferred trials and sorted by the tCOM. Vertical gray lines

cue period ending at 4 s, the delay period ending at 7 s, and the turn period

by tCOM and normalized by the peak of the output of each neuron, showed a

the sum of the mean activities of preferred neurons at the 10-s time point during

ls (see Experimental Procedures). Task performance of three different PINned

an idealized sequential memory model (orange triangles,N = 500), a model that

fixed-point memory network (blue triangles, N = 500)—are shown here. The

through idealized sequences (orange triangles) had selectivity = 0.91, when

ic synapses for selectivity = 0.85, and the fixed-point network needed p = 23%

rks shown in (F) is plotted here. The idealized sequential (orange squares) and

f mean synaptic change to execute the DPA task, growing from �3 to �9 for

was smaller, even though individual synapses changed more in the sparsely
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Figure 6. Capacity of Multi-sequential Memory Networks

(A) Schematic of a multi-sequential memory network (N = 500) is shown here. N/Ns neurons were assigned to each sequence that we wanted the network to

simultaneously produce. Here Ns is the capacity. Only p%of the synapses were plastic. The target functions were identical to Figure S2A, however, their widths,

denoted by NActive/N, were varied as a task parameter controlling how many network neurons were active at any instant.

(B) The normalized firing rates of the 500-neuron network with p = 25% and NActive/N = 3% are shown here. The memory task (the cue periods and the delay

periods only) was correctly executed through five choice-specific sequences; during the delay period (4–8 s), neurons fired in a sequence only on trials of the

same type as their cue preference.

(C) The left panel shows the same network as (B) failing to perform the task correctly when the widths of the targets were halved (NActive/N = 1.6%), sparsifying the

sequences in time. Memory of the cue identity was not maintained during the delay period. The right panel shows the result of including a small number of

(legend continued on next page)
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coalesced to a common cue-invariant waveform, different for

each neuron. In the most general case, we assigned N/Ns neu-

rons to each sequence. Here Ns was the number of memories

(capacity), which was also the number of trial types. Once again,

only p% of the synapses in the network were plastic.

A correctly executedmulti-sequential task is one inwhich, dur-

ing the delay period, network neurons fire in a sequence only on

trials of the same type as their cue preference and are silent dur-

ing other trials. A network of 500 neurons with p = 25% plastic

synapses performed such a task easily, generating Ns = 5 se-

quences with delay period memory of the appropriate cue iden-

tity with temporal sparseness of NActive/N = 3% (Figure 6B).

The temporal sparseness was found to be a crucial factor

that determined how well a network performed a multi-se-

quential memory task (Experimental Procedures). When se-

quences were forced to be sparser than a minimum (e.g., by

using narrower target waveforms, for this 8 s-long task, when

NActive/N < 1.6%), the network failed. Although there was

sequential activation, the memory of the five separately memo-

rable cues was not maintained across the delay period. Surpris-

ingly, this failure could be rescued by adding a small number of

non-choice-specific neurons (NNon-choice-specific/N = 4%) that

fired in the same order in all five trial types (Figure 6C). In other

words, the N – NNon-choice-specific network neurons (<N) success-

fully executed the task using five sparse choice-specific se-

quences and one non-choice-specific sequence. The capacity

of the network for producing multiple sparse sequences

increased when non-choice-specific neurons were added to

stabilize them, without needing a concomitant increase in the

synaptic modification. Therefore, we predict that non-choice-

specific neurons, also seen in the PPC (Harvey et al., 2012),

may function as a kind of ‘‘conveyor belt’’ of working memory,

providing recurrent synaptic current to sequences that may be

too sparse to sustain themselves otherwise in a non-overlapping

manner.

Finally, we focused on the memory capacity and noise toler-

ance properties. The presence of non-choice-specific neurons

increased the capacity of networks to store memories if imple-

mented through sequences (Figure 6C). Up to a constant factor,

the capacity, themaximumof the fractionNs/N, scaled in propor-

tion to the fraction of plastic synapses, p, and the network size,

N, and inversely with sparseness, NActive/N (Figure 6D). The

slope of this capacity-to-network size relationship increased

when non-choice-specific neurons were included, because

they enabled the network to carry sparser sequences. We also

found that networks with a bigger fraction of plastic synaptic

connections and networks containing non-choice-specific neu-
non-choice-specific neurons (NNon-choice-specific/N = 4%) that fired in the same ord

memory of cue identity during the delay period, without increasing p.

(D) Capacity of multi-sequential memory networks, Ns, as a function of network

orange circles for p = 25% PINned networks, red circles for p = 25% + NNon-cho

p = 100% + NNon-choice-specific/N = 4% neurons. PINned networks containing addit

NActive/N = 1.6%, the rest had NActive/N = 3%. Error bars were calculated over

conditions: as network size was increased, as fraction of plastic synapses p was

The green square highlights the 500-neuron network whose normalized outputs

(E) Resilience of different multi-sequential networks, computed as the critical amo

fails, is shown here. Tolerance, plotted here as a function of the ratio of multi-seq

capacity increased, although it fell slower with the inclusion of non-choice-speci
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rons were more stable against stochastic perturbations (Fig-

ure 6E). Once the amplitude of added stochastic noise exceeded

the maximum tolerance (denoted by hc, Experimental Proce-

dures), however, non-choice-specific neurons were not effective

at repairing the memory capacity (not shown). Non-choice-spe-

cific neurons could not rescue inadequately PINned schemes

either (small p, not shown).

DISCUSSION

In this paper, we used and extended earlier work based on liquid-

state (Maass et al., 2002) and echo-state machines (Jaeger,

2003), which has shown that a basic balanced-state network

with random recurrent connections can act as a general purpose

dynamical reservoir, the modes of which can be harnessed for

performing different tasks by means of feedback loops. These

models typically compute the output of a network through

weighted readout vectors (Buonomano and Merzenich, 1995;

Maass et al., 2002; Jaeger, 2003; Jaeger and Haas, 2004)

and feed the output back into the network as an additional

current, leaving the synaptic weights within the dynamics-

producing network unchanged in their randomly initialized

configuration. The result was that networks generating chaotic

spontaneous activity prior to learning (Sompolinsky et al., 1988)

produced a variety of regular non-chaotic outputs that matched

the imposed target functions after learning (Sussillo and Abbott,

2009). The key to making these ideas work is that the feedback

carrying the error during the learning process forces the network

into a state in which it produces less variable responses (Molge-

dey et al., 1992; Bertschinger andNatschläger, 2004; Rajan et al.,

2010, 2011). A compelling example, FORCE learning (Sussillo

and Abbott, 2009) has been implemented as part of several

modeling studies (Laje and Buonomano, 2013; Sussillo, 2014

and references therein), but it had a few limitations. Specifically,

the algorithm in Sussillo and Abbott (2009) included a feedback

network separate from the one generating the trajectories, with

aplastic connections, and learning was restricted to the readout

weights. The approach we developed here, called PINning,

avoids these issues while producing sequences resembling

experimental data (Results). During PINning, only a fraction of

the recurrent synapses in an initially random network are modi-

fied in a task-specific manner and by a biologically reasonable

amount, leaving the majority of the network heterogeneously

wired. Furthermore, the fraction of plastic connections is a

tunable parameter that controls the contribution of the structured

portion of the network relative to the random part, allowing these

models to interpolate between highly structured and completely
er in trials of all five types. Including non-choice-specific neurons restored the

size, N, for different values of p is shown here. Mean values are indicated by

ice-specific/N = 4%, light blue squares for p = 100%, and dark blue squares for

ional non-choice-specific neurons had temporally sparse target functions with

five different random instantiations each and decreased under the following

increased, and moderately, with the inclusion of non-choice-specific neurons.

are plotted in (B).

unt of stochastic noise (denoted here by hc) tolerated before the memory task

uential capacity and network size, Ns/N, decreased as p was lowered and as

fic neurons. Only mean values are shown here for clarity.



randomarchitectures until we find thepoint that bestmatches the

relevant experimental data (a similar point is made in Barak et al.,

2013). PINning is not themost general way to restrict learning to a

limited number of synapses, but it allows us to do so without

losing the efficiency of the learning algorithm.

To illustrate the applicability of such partially structured net-

works, we used data recorded from the PPC of mice performing

aworkingmemory-based decision-making task in a virtual reality

environment (Harvey et al., 2012). It might be unlikely that an as-

sociation cortex such as the PPC evolved specialized circuitry

solely for sequence generation, because the PPCmediates other

complex temporal tasks, e.g., from working memory and deci-

sion making to evidence accumulation and navigation (Shadlen

and Newsome, 2001; Gold and Shadlen, 2007; Freedman and

Assad, 2011; Snyder et al., 1997; Andersen and Cui, 2009; Bisley

and Goldberg, 2003; McNaughton et al., 1994; Nitz, 2006; Whit-

lock et al., 2008; Calton and Taube, 2009; Hanks et al., 2015). We

also computed a measure of stereotypy from PPC data (bVar,

Figures 1C–1G) and found it to be much lower than if the PPC

were to generate sequences based on highly specialized chain-

like or ring-like connections or if it read out sequential activity

from a structured upstream region. We therefore started with

random recurrent networks, imposed a small amount of struc-

ture in their connectivity through PINning, and duplicated many

features of the experimental data (Harvey et al., 2012), e.g.,

choice-specific neural sequences and delay period memory of

cue identity (Results).

We analyzed the structural features in the synaptic connectiv-

ity matrices of sparsely PINned networks, concluding that the

probability distribution of the synaptic strengths is heavy tailed

due to the presence of a small percentage of strong interaction

terms (Figure 3F). There is experimental evidence that there

might be a small fraction of very strong synapses embedded

within a milieu of relatively weak synapses in the cortex (Song

et al., 2005), most recently from the primary visual cortex (Cossell

et al., 2015). Synaptic distributions measured in slices have been

shown to have long tails (Song et al., 2005), and the experimental

result in Cossell et al. (2015) has demonstrated that rather

than occurring at random, these strong synapses significantly

contribute to network tuning by preferentially interconnecting

neurons with similar orientation preferences. These strong syn-

apses may be the plastic synapses that are induced by PINning

in our scheme. The model also exhibited some structural noise

sensitivity (Figure S6E), and this was not completely removed

by training in the presence of noise. It is possible that dynamic

mechanisms of ongoing plasticity in neural circuits could

enhance stability to structural fluctuations.

In this paper, the circuit mechanisms underlying both the

formation of a localized bump of excitation in the connectivity

and the manner in which the bump of excitation propagates

across the network were elucidated separately (Figures 3 and

4). The circuit mechanism for the propagation of the sequence

was found to be non-autonomous, relying on a complex interplay

between the recurrent connections and the external inputs.

The mechanism for propagation was therefore distinct from the

standard moving bump/ring attractor model (Ben-Yishai et al.,

1995; Zhang, 1996), but it had similarities to the models devel-

oped in Fiete et al. (2010) and Hopfield (2015) (explored further
in Figure S5). In particular, the model in Fiete et al. (2010) gener-

ates highly stereotyped sequences similar to area HVC by initial-

izing as a recurrently connected network and subsequently using

spike timing-dependent plasticity, heterosynaptic competition,

and correlated external inputs to learn sequential activity. A crit-

ical difference between the model in Fiete et al. (2010) and our

approach lies in the circuitry underlying sequences: their learning

rule results in synaptic chain-like connectivity.

In this paper, we suggest an alternative hypothesis that

sequences might be a more general and effective dynamical

form of working memory (Results), making the prediction that

sequences may be increasingly observed in many working

memory-based tasks (also suggested in Harvey et al., 2012).

This contrasts with previous models that relied on fixed-point at-

tractors to retain information and exhibited sustained activity

(Amit, 1992, 1995; Amit and Brunel, 1995; Hansel and Mato,

2001; Hopfield and Tank, 1985). We computed the capacity

of sequential memory networks for storing more than two

memories (Results) by extending the sparse PINning approach

developed above, and we interpreted this capacity as the

‘‘computational bandwidth’’ of a general purpose circuit to

perform different timing-based computations.

The term pre-wired is used in this paper to mean a scheme in

which a principled mechanism for executing a certain task is first

assumed and then incorporated into the network circuitry, e.g., a

moving bump architecture (Ben-Yishai et al., 1995; Zhang, 1996)

or a synfire chain (Hertz and Prügel-Bennett, 1996; Levy et al.,

2001; Hermann et al., 1995; Fiete et al., 2010). In contrast, the

models built and described in this paper are constructed without

bias or assumptions. If a moving bump architecture (Ben-Yishai

et al., 1995; Zhang, 1996) had been assumed at the beginning

and the network pre-wired accordingly, we would of course

have uncovered it through the analysis of the synaptic connectiv-

itymatrix (similar to Results; Figures 3, 4, and S5; see also Exper-

imental Procedures). However, by starting with an initially

random configuration and learning a small amount of structure,

we found an alternative mechanism for input-dependent

sequence propagation (Figure 4). We would not have encoun-

tered this mechanism for the non-autonomous movement of

the bump by pre-wiring a different mechanism into the connec-

tivity of the model network. While the models constructed here

are indeed trained to perform the task, the fact that they are un-

biased means that the opportunity was present to uncover

mechanisms that were not thought of a priori.

EXPERIMENTAL PROCEDURES

Network Elements

We considered a network of N fully interconnected neurons described by a

standard firing-ratemodel, whereN = 437 for the PPC-like sequence in Figures

1D and 2A,N = 500 for the single idealized sequence in Figure S2 and themulti-

sequential memory task in Figure 6, and N = 569 for the 2AFC task in Figure 5

(we generally built networks of the same size as the experimental dataset we

were trying tomodel, however, the results obtained remain applicable to larger

networks, Figure S3). For mathematical details of the network, see the Supple-

mental Experimental Procedures.

Design of External Inputs

To represent sensory (visual and proprioceptive) stimuli innervating the

PPC, the external inputs to the neurons in the network were made from
Neuron 90, 128–142, April 6, 2016 ª2016 Elsevier Inc. 139



filtered and spatially delocalized white noise that was frozen (repeated from

trial to trial, Figure 1A). For motivation of this choice and for mathematical

details of the frozen noise input, see the Supplemental Experimental Proce-

dures. In addition, we also tested the resilience of the memory networks we

built (Figure 6E) to injected stochastic noise (see the Supplemental Exper-

imental Procedures). We defined resilience or noise tolerance as the critical

amplitude of this stochastic noise, denoted by hc, at which the delay period

memory failed and the selectivity dropped to 0 (Figure 6E; see also

Figure S6).

Extracting Target Functions from Calcium Imaging Data

To derive the target functions for our activity-dependent synaptic modification

scheme termed PINning, we converted the calcium fluorescence traces from

the PPC data (Harvey et al., 2012) into firing rates using two complementary

methods. See the Supplemental Experimental Procedures for details of both

deconvolution methods (see also Figure S1).

Synaptic Modification Rule for PINning

During PINning, the inputs of individual network neurons were compared

directly with the target functions extracted from data to compute a set of error

functions. During learning, the subset of plastic internal weights in the connec-

tivity matrix of the random network, denoted by p, underwent modification at a

rate proportional to the error, the presynaptic firing rate of each neuron, and a

pN 3 pN matrix, P, that tracked the rate fluctuations across the network. For

further details of the learning rule, see the Supplemental Experimental

Procedures.

Dimensionality of Network Activity, Qeff

We defined the effective dimensionality of the activity, Qeff, as the number of

principal components that captured 95% of the variance in the activity (Fig-

ure 2F), computed as in the Supplemental Experimental Procedures.

Stereotypy of Sequence, bVar

bVar quantified the variance of the data or the network output explained by the

translation of an activity profile with an invariant shape. See the Supplemental

Experimental Procedures for details.

Percentage Variance of Data Explained by Model, pVar

We quantified the match between the experimental data or the set of target

functions and the outputs of the model by pVar, the amount of variance in

the data captured by the model. Details of how this was computed are in the

Supplemental Experimental Procedures.

Magnitude of Synaptic Change

In Figures 2E and 5G, we computed the magnitude of the synaptic change

required to implement a single PPC-like sequence, an idealized sequence,

and three types of memory tasks. In combination with the fraction of plastic

synapses in the PINned network, p, this metric characterizes the amount

of structure imposed in an initially random network to produce the desired

temporally structured dynamics. See also the Supplemental Experimental

Procedures.

Selectivity Index for Memory Task

In Figure 5F, a selectivity index was computed (similar to Figure 4 in

Harvey et al., 2012) to assess the performance of different PINned net-

works at maintaining memories during the delay period of DPA tasks.

This metric is based on the ratio of the difference and the sum of the

mean activities of preferred neurons at the end of the delay period (�10 s

for Figure 5, after Harvey et al., 2012 and �7 s for Figure 6) during preferred

trials and the mean activities of preferred neurons during opposite

trials. This was computed as described in the Supplemental Experimental

Procedures.

Temporal Sparseness of Sequences, NActive/N

The temporal sparseness of a sequence is defined as the fraction of neurons

active at any instant during the sequence, denoted here by NActive/N. This

was computed as in the Supplemental Experimental Procedures.
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Analyzing the Structure of PINned Synaptic Connectivity Matrices

This is pertinent to the Results (Figures 3 and 4), in whichwe quantified how the

synaptic strength varies with distance between pairs of network neurons in

connectivity space, i – j. These were computed as described in the Supple-

mental Experimental Procedures. See Figure 3B for the sparsely PINned

matrix, JPINned, 8%, relative to the randomly initialized matrix, JRand, and Fig-

ure 3E for the fully PINned matrix, JPINned, 100%. The same analysis also was

used for Figure S5.

Cross-Validation Analysis

This pertains to quantifying how well PINning-based models did and is

described in the Supplemental Experimental Procedures.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures

and six figures and can be found with this article online at http://dx.doi.org/

10.1016/j.neuron.2016.02.009.
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Bertschinger, N., and Natschläger, T. (2004). Real-time computation at the

edge of chaos in recurrent neural networks. Neural Comput. 16, 1413–1436.

Bisley, J.W., and Goldberg, M.E. (2003). Neuronal activity in the lateral intra-

parietal area and spatial attention. Science 299, 81–86.

Brunton, B.W., Botvinick, M.M., and Brody, C.D. (2013). Rats and humans can

optimally accumulate evidence for decision-making. Science 340, 95–98.

Buonomano, D.V. (2003). Timing of neural responses in cortical organotypic

slices. Proc. Natl. Acad. Sci. USA 100, 4897–4902.

Buonomano, D.V. (2005). A learning rule for the emergence of stable dynamics

and timing in recurrent networks. J. Neurophysiol. 94, 2275–2283.

Buonomano, D.V., and Merzenich, M.M. (1995). Temporal information trans-

formed into a spatial code by a neural network with realistic properties.

Science 267, 1028–1030.

Calton, J.L., and Taube, J.S. (2009). Where am I and how will I get there from

here? A role for posterior parietal cortex in the integration of spatial information

and route planning. Neurobiol. Learn. Mem. 91, 186–196.

Churchland, M.M., Yu, B.M., Cunningham, J.P., Sugrue, L.P., Cohen, M.R.,

Corrado, G.S., Newsome, W.T., Clark, A.M., Hosseini, P., Scott, B.B., et al.

(2010). Stimulus onset quenches neural variability: a widespread cortical phe-

nomenon. Nat. Neurosci. 13, 369–378.

Cossell, L., Iacaruso, M.F., Muir, D.R., Houlton, R., Sader, E.N., Ko, H., Hofer,

S.B., and Mrsic-Flogel, T.D. (2015). Functional organization of excitatory syn-

aptic strength in primary visual cortex. Nature 518, 399–403.

Crowe, D.A., Averbeck, B.B., and Chafee, M.V. (2010). Rapid sequences of

population activity patterns dynamically encode task-critical spatial informa-

tion in parietal cortex. J. Neurosci. 30, 11640–11653.

Davidson, T.J., Kloosterman, F., andWilson, M.A. (2009). Hippocampal replay

of extended experience. Neuron 63, 497–507.

Fiete, I.R., Senn, W., Wang, C.Z., and Hahnloser, R.H.R. (2010). Spike-time-

dependent plasticity and heterosynaptic competition organize networks to

produce long scale-free sequences of neural activity. Neuron 65, 563–576.

Fisher, D., Olasagasti, I., Tank, D.W., Aksay, E.R., and Goldman, M.S. (2013).

A modeling framework for deriving the structural and functional architecture of

a short-term memory microcircuit. Neuron 79, 987–1000.

Freedman, D.J., and Assad, J.A. (2011). A proposed common neural mecha-

nism for categorization and perceptual decisions. Nat. Neurosci. 14, 143–146.

Fujisawa, S., Amarasingham, A., Harrison, M.T., and Buzsáki, G. (2008).
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Hertz, J., and Prügel-Bennett, A. (1996). Learning short synfire chains by self-

organization. Network 7, 357–363.
Hopfield, J.J. (2015). Understanding emergent dynamics: Using a collective

activity coordinate of a neural network to recognize time-varying patterns.

Neural Comput. 27, 2011–2038.

Hopfield, J.J., and Tank, D.W. (1985). ‘‘Neural’’ computation of decisions in

optimization problems. Biol. Cybern. 52, 141–152.

Ikegaya, Y., Aaron, G., Cossart, R., Aronov, D., Lampl, I., Ferster, D., and

Yuste, R. (2004). Synfire chains and cortical songs: temporal modules of

cortical activity. Science 304, 559–564.

Jaeger, H. (2003). Adaptive nonlinear system identificationwith echo state net-

works. In Advances in Neural Information Processing Systems 15 (NIPS 2002),

S. Becker, S. Thrun, and K. Obermayer, eds. (MIT Press), pp. 593–600.

Jaeger, H., and Haas, H. (2004). Harnessing nonlinearity: predicting chaotic

systems and saving energy in wireless communication. Science 304, 78–80.

Jin, D.Z., Fujii, N., and Graybiel, A.M. (2009). Neural representation of time in

cortico-basal ganglia circuits. Proc. Natl. Acad. Sci. USA 106, 19156–19161.

Kleinfeld, D., and Sompolinsky, H. (1989). Associative networkmodels for cen-

tral pattern generators. In Methods in Neuronal Modeling, C. Koch and I.

Segev, eds. (MIT Press), pp. 195–246.

Kozhevnikov, A.A., and Fee, M.S. (2007). Singing-related activity of identified

HVC neurons in the zebra finch. J. Neurophysiol. 97, 4271–4283.

Laje, R., and Buonomano, D.V. (2013). Robust timing and motor patterns by

taming chaos in recurrent neural networks. Nat. Neurosci. 16, 925–933.

Levy, N., Horn, D., Meilijson, I., and Ruppin, E. (2001). Distributed synchrony in

a cell assembly of spiking neurons. Neural Netw. 14, 815–824.

Louie, K., and Wilson, M.A. (2001). Temporally structured replay of awake hip-

pocampal ensemble activity during rapid eye movement sleep. Neuron 29,

145–156.
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