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Cortical networks that have been found to operate close to a
critical point exhibit joint activations of large numbers of neu-
rons. However, in motor cortex of the awake macaque monkey,
we observe very different dynamics: massively parallel recordings
of 155 single-neuron spiking activities show weak fluctuations
on the population level. This a priori suggests that motor cor-
tex operates in a noncritical regime, which in models, has been
found to be suboptimal for computational performance. However,
here, we show the opposite: The large dispersion of correlations
across neurons is the signature of a second critical regime. This
regime exhibits a rich dynamical repertoire hidden from macro-
scopic brain signals but essential for high performance in such
concepts as reservoir computing. An analytical link between the
eigenvalue spectrum of the dynamics, the heterogeneity of con-
nectivity, and the dispersion of correlations allows us to assess the
closeness to the critical point.

cortical dynamics | balanced state | criticality | correlated neural activity

The brain is a dynamical system with potentially different
regimes of operation. Network models and experiments sug-

gest optimal computational performance at critical points in
parameter space, which mark the transition between two dynam-
ical regimes (1). At such points, different systems exhibit the
same universal behavior. For example, the transition from a
liquid to a gas and the transition from a ferromagnet to a
paramagnet follow the same quantitative description on large
scales, despite their different structure at microscopic scales.
The reason is that strong concerted fluctuations between all con-
stituents lead to effective long-range interactions despite short-
range couplings. The same phenomenon happens in neuronal
networks.

A well-studied type of criticality occurs in neuronal networks
with equal excitatory and inhibitory feedback, leading to neu-
ronal avalanches (2), which are visible as large transients of
population activity with a slowly decaying autocorrelation (3).
Next to the original work in brain slices, signatures of avalanches
have also been observed in motor cortex of awake macaques in
mesoscopic measures of neuronal activity, such as the local field
potential (4).

Here, we consider parallel recordings of neuronal spiking
activity in this cortical region. The data of the considered period
neither show large transients of the summed spiking activity of all
neurons termed population activity (Fig. 1 B and E), nor exhibit
long correlation times (Fig. 1F). The data rather reveal weak
and fast fluctuations of the population activity. This observation
is in line with the network operating in the so-called balanced
state (7): in this model architecture, the connectivity is endowed
with an excess of inhibitory feedback so that a low level of activ-
ity arises that is dynamically stabilized. A consequence is that
excitatory and inhibitory synaptic currents are anticorrelated (8),
confirmed by network theory (9). Theory, moreover, predicts
that correlations between pairs of neurons are weak on average
(10). This is what we indeed observe in Fig. 1D: the distribution

of correlations across all recorded neurons is tightly centered
around zero.

Therefore, can we conclude that the network is operating far
away from a critical point in a regime suboptimal for informa-
tion processing? This conclusion would be too quick to make,
because there is a second type of criticality devoid of avalanches,
which has been investigated in computational studies (11): edge-
of-chaos criticality. With increasing heterogeneity in network
connections, the dynamics changes from regular to chaotic. At
the transition to chaos, the network possesses a rich repertoire
of coexisting and topologically complex multiple-neuron dynam-
ics (12). These are coordinated changes of the activity of a large
number of neurons, where each neuron increases or decreases
its activity by a percentage that can differ from neuron to neu-
ron. Therefore, the coordinated behavior might not be visible in
the often-considered population activity (Fig. 2 A and B), which
is only one specific projection of the high-dimensional neuronal
activity. Instead, coordination between neurons can be observed
in other directions that are not defined by the population iden-
tity of neurons but by the detailed microscopic structure of the
network (Fig. 2 C and D). Identifying such directions in the data
is obviously a daunting task, and therefore, we are in need of
indirect indicators of such a state.

One candidate is stability of the dynamics. Here and through-
out the remainder of the study, we call a system stable if
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Fig. 1. Spiking activity in macaque motor cortex. (A) A 10× 10-electrode
“Utah” array (Blackrock Microsystems; black dots) with 400-µm interelec-
trode distance covering an area of 4× 4 mm2 (yellow square) of macaque
motor cortex between the arcuate (AS; left green curve) and the central
sulcus (CS; right green curve) of the right hemisphere. (B) Single-trial raster
plot of spiking activity of 155 neurons within T = 400 ms after trial start
of a reach-to-grasp task (5, 6). (C) Spike counts ni of activity within T =

400 ms. (D) Distribution of covariances cij = 1
T (〈ninj〉− 〈ni〉〈nj〉) between

spike counts ni in 141 trials. (E) Time-resolved population activity binned
in tbin = 5 ms. (F) Autocovariance function of binned population activity.

the dynamics returns back to the same state after a perturba-
tion. The simplest example is a fixed point: stable dynamics
relaxes back to the fixed point after a small initial deflec-
tion. The onset of chaotic activity has been shown to coincide
with the breakdown of stability of the fixed point of vanish-
ing activity in deterministic dynamical systems (13). Up to a
shift in the point of transition, the argument also holds in the
presence of noise for the stability of the stochastic dynamics
(14). Noise-driven networks show optimal computational per-
formance in terms of memory capacity in the zone where the
dynamics is unstable on short timescales but not yet chaotic
(14). A direct measurement of stability is, however, hampered
by noise and the sparse sampling of neurons in the local net-
work. What is, therefore, needed is a reliable measure assessing
how far the network operates away from the breakdown of
stability.

What could constitute such a measure that can readily be
observed in neuronal data? Clearly, it must be a quantity that
is sensitive to the mediators of interactions between neurons,
the synaptic connections, because these are the basis for collec-
tive behavior coordinated across many neurons. In this paper,
we show that distributions of correlations in neuronal activity
(Fig. 1D) provide a measure of stability (15–17). Applied to the
massively parallel data from macaque motor cortex, our analysis
shows that this brain region indeed operates close to a critical
point that marks the breakdown of stability.

Results
Correlations as a Measure for Linear Stability. It is well known that
pairwise covariances in the activity of neurons, to a good approx-
imation, follow a simple law c(W ), which relates covariances cij
between all pairs of neurons to the effective connectivity matrix
W of the network (15–17) (Materials and Methods). The latter
is the product of the anatomical connectivity and the sensitivity
of individual neurons. In consequence, Wij measures the change
in firing probability of a postsynaptic neuron i due to a single
spike of a presynaptic neuron j . For the covariance c that is inte-
grated over the time lag, the relation c(W ) is independent of the
neuron model; it holds for networks of spiking model neurons as
well as for binary model neurons and even for continuous rate

dynamics (18). In addition, c(W ) does not depend on synaptic
delays and time constants.

The effective connectivity matrix W determines not only the
covariances in the network but also, the stability of the net-
work dynamics. The latter becomes unstable if one eigenvalue
of W has a real part Re(λ)≥ 1. Eigenvalues are, in principle,
determined by all connections in the network. However, their
determination from experimentally observed covariances is also
hindered by severe subsampling; even with massively parallel
recording techniques, at most hundreds of neurons can be mea-
sured simultaneously from the same local network. An inversion
of the relation c(W ) is, therefore, not feasible. Thus, we need to
find a signature in the correlations that is informative about the
eigenvalues, that is insensitive to the details of the network, and
that can be estimated from a few hundred neurons at most.

A striking feature of the correlations is their low mean across
the population (Fig. 1D), which has already been investigated
using population-averaging techniques (9). This low mean has
been shown to relate to a single highly stable eigenvalue λ with
Re(λ)< 0 (10); the network is said to be inhibition dominated.
A priori, the mean provides no information on the other N − 1
eigenvalues in a network of N neurons. Thus, it is necessary
to study the distribution of covariances beyond its mean. Such
analysis is, however, not possible with either existing population
averaging or mean field techniques.

To proceed, we turn to ideas from disordered systems. These
are systems with parameters that are drawn randomly: in our
case, the connectivity of the network. If sufficiently large,
these systems often show the remarkable feature of being self-
averaging: that is, their macroscopic state does not depend on
the precise value of each of their random parameters but rather,
only on their statistics. Spin glasses are the most prominent
example (19). Transferring this idea to the problem at hand, we
need to give up on the pursuit of any neuron in its individuality,
but we rather need to ask how the correlations are distributed
across the measured set of neurons. Technically, we implement
this idea by extending dynamical mean field techniques (20)
combined with methods from disordered systems (19). Going
beyond the commonly applied mean field theory for auxiliary
fields (14, 21), in SI Appendix, we show that the leading order
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Fig. 2. Example of multineuron coordinated activity. Networks of randomly
interconnected linear units that show coordinated behavior either in the
population activity as one particular state space projection (A and B) or
in another projection (C and D). (A and C) Activity traces (black curves)
of six example units of the N = 1000-dimensional networks. (B and D)
Projection of network activity of N units on different directions in the N-
dimensional space illustrated by colored arrows in the coordinate systems
(black) spanned by units 1–3. Orange, direction of population activity; cyan,
direction of eigenvector with largest bulk eigenvalue of the connectivity
matrix (Fig. 6).
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Fig. 3. Dispersion of correlations measures stability of network dynamics.
Connection strength w in a sparse random network increases from top to
bottom (vertical axis). (A) Connections (arrows) between a pair of observed
neurons (black dots); indirect connections contribute to correlations via
intermediate neurons (gray dots). (B) Bulk eigenvalues λ (colored dots) of
the connectivity matrix W in the complex plane [critical line at Re(λ) = 1].
(C) Distributions of covariances. Enlargements are shown in Insets. (D) SD
δcij of distribution of covariances (black curve; colored symbols correspond
to distributions shown in C).

fluctuation corrections can be related to the distribution of
covariances within a single-network realization. The resulting
closed form expressions provide a direct relation between the
width of the distribution of cross-covariances and the stability
of the dynamics as measured by the largest eigenvalue (spectral
radius) of the effective connectivity matrix (Materials and Meth-
ods). The theory reproduces that mean covariances are low if
the network is inhibition dominated (9, 10). Furthermore, it pre-
dicts that, for large spectral radii, the width of the distribution
of covariances is much larger than the mean as experimentally
observed in our data (Fig. 1D).

The theoretical predictions are intuitive as highlighted by the
dependence of the distribution of covariances on the strength of
connections in a sparse inhibition-dominated network (Fig. 3).
With increasing connection strength, activity successively prop-
agates over multiple synapses, leading to indirectly mediated
interactions via a growing number of parallel paths (Fig. 3A)
(16, 17). For weak synapses, only direct connections matter, and
covariances are mainly determined by the presence or absence
of a connection between two neurons. However, as the synap-
tic amplitude grows, the effect of one neuron on another is also
exerted indirectly via one or multiple intermediate neurons.

Varying the strength of the nonzero connections is tantamount
to changing the variance of the entries in the connectivity matrix.
The radius of the cloud of its eigenvalues depends directly on this
variance, which quantifies the heterogeneity across connections
(22). The larger the eigenvalues of the connectivity matrix, the
more important are contributions with a high number n of inter-
mediate neurons; such a contribution is proportional to W n . As
the radius in Fig. 3B approaches unity, implying an eigenvalue
with Re(λ) = 1 that causes unstable dynamics, indirect paths of
any length n become as important as direct ones. As a con-
sequence, distributions of covariances become monomodal and
broader but stay centered approximately at zero (Fig. 3 C and
D). At the same time, this point is precisely where the dynamics
loses stability. These results hence expose a hallmark of dynam-
ically balanced networks that operate close to instability: widely
distributed covariances with a small mean as we observe in the
motor cortex (Fig. 1D).

Inference of Operational Regime. How can we use these results to
infer how close to instability the cortical network operates? Our
theory, in principle, determines the largest eigenvalue from mea-

sured covariances. However, the theoretical derivations assume
a homogeneous random network and linear model neurons. It is
thus unclear how robust the result is with regard to more real-
istic characterizations of cortical connectivity and dynamics. We,
therefore, investigate numerically more complex network topolo-
gies, such as excitatory–inhibitory networks fulfilling Dale’s law
(Fig. 4E) and networks with distance-dependent connection
probabilities (Fig. 4F). In SI Appendix, we further compare the
theoretical predictions with networks with other sources of het-
erogeneity, such as a log-normal distribution of synaptic weights,
a log-normal firing rate distribution, correlated external inputs,
and correlated connections. We find that the higher-order cumu-
lants of the distribution of covariances can be sensitive to these
more complex network features—for example, networks with
spatially dependent connectivity most closely match the shape of
the experimentally observed covariance distribution with a pro-
nounced peak close to zero (Fig. 4F). However, the normalized
width of the distribution of covariances ∆ = δcij/cii turns out to
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Fig. 4. Large width of covariances reveals dynamics of motor cortex close to
instability. (A and B) Theoretical prediction for the mean (Eq. 4; blue curve)
and SD (Eq. 5; orange curve) of variances (A) and covariances (B) for dif-
ferent maximum eigenvalues λmax compared with numerical results (Eq. 3;
markers) for homogeneous inhibitory networks. Ensemble averages for 100
network realizations (circles) and average upward/downward deviation of
the non-Gaussian statistics (bars). Bars are below marker size, except for
rightmost data points. (C) Theoretical prediction for the normalized width
∆ (black curve) of covariances compared with numerical results (Eq. 3; mark-
ers) for excitatory–inhibitory networks (orange), inhibitory networks with
distance-dependent connectivity (cyan), and direct simulations of inhibitory
networks of spiking leaky integrate-and-fire neurons (red). Distributions
corresponding to data points within the black rectangle are shown in D–G.
The gray horizontal line indicates value ∆ = 0.15 corresponding to moments
of the covariance distribution measured in macaque motor cortex (Fig. 1).
(D–G) Distribution of covariances (histogram) and bulk eigenvalues (dots)
for a homogeneous inhibitory network model (D), for a network of exci-
tatory and inhibitory neurons (E), for a network with distance-dependent
connection probability (F), and for a homogeneous inhibitory network of
spiking leaky integrate-and-fire neurons (G). Dashed lines indicate the criti-
cal value Re(λmax) = 1. (H) Predicted maximum eigenvalue λmax (Eq. 1) of the
effective connectivity of macaque motor cortex as a function of the number
of neurons N for given ∆ = 0.15. The shaded area marks the range of bio-
logically plausible effective network sizes corresponding to the spatial scale
of the recordings.
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Fig. 5. Classification of networks based on feedback of population activity.
A perturbation of excitatory (blue) and inhibitory (red) populations of neu-
rons by an external input δIext (black time course) causes changes in firing
rates δf = S · δIext and recurrent inputs δIloc = Jeδfe + Jiδfi = (We + Wi) δIext

via excitatory (Je; blue arrow) and inhibitory (Ji; red arrow) local connec-
tions. The recurrent input counteracts the change in the external input (Case
1; inhibition-dominated feedback; upper gray box), remains unaffected
(Case 2; vanishing feedback; lower gray box), or amplifies the external
perturbation (locally unstable).

be robust against these complex features (Fig. 4C). As predicted
by the theory, the most unstable bulk eigenvalues determine the
width of the distribution. They result from the heterogeneity
of network connectivity that mainly arises from the sparsity of
connections, common to all considered network models (Fig. 4
D–G) and a well-known feature of local cortical connectivity.
By comparing the theoretical results with direct simulations of
spiking networks (23), we further confirm the applicability of
the theory beyond the linear response approximation (Fig. 4G).
The use of spiking networks further illustrates that a range of
∆ covering two orders of magnitude can be achieved through
variation of synaptic strength by roughly a factor 10 within the
biologically plausible (24) and commonly chosen (25) regime
[0.1, 1.1] mV (Fig. 4C). These networks have eigenvalues λmax

between 0.1 and ≈ 1; the range, therefore, encompasses net-
works that are far away from criticality and networks that are
close to criticality. As a consequence of this general applica-
bility of the theory, the prediction for the normalized width
∆ can be used to infer the operational regime of the cortical
network (Fig. 1).

The distance to instability is determined by λmax, which to
leading order in the network size N , is given as (Materials and
Methods)

λmax =

√
1−

√
1

1 +N∆2
. [1]

With the biologically plausible estimate of at least N = 104 neu-
rons below the recording Utah array and together with the
measured normalized width ∆ = 0.15 (from Fig. 1, with bias
correction due to the finite amount of measured data, and SI
Appendix), this leads to a substantial quantity N∆2 such that
Eq. 1 predicts the largest eigenvalue λmax . 1 close to the crit-
ical value of one (Fig. 4H, gray area). From this eigenvalue and
from the low mean covariance in the data (Fig. 1D), we conclude
that the biological network operates in a dynamically balanced
critical regime with nearly unstable dynamics.

Dynamically Balanced Critical Regime Vs. Critical Population Dynam-
ics. What does the dynamically balanced (Fig. 5, case 1) critical
regime imply for the activity of the network? In general, a value
λmax . 1 implies that a large number of eigenvalues of the effec-
tive connectivity matrix must be close to the critical line where
stability breaks down (Fig. 6A). Each eigenvalue is associated
with a unique direction in the N -dimensional space of neurons
(compare with Fig. 2), the eigenvector of the effective connec-
tivity matrix. The dynamics along this direction (mode; i.e., the
projection of the activity onto this eigenvector) involves all N
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Fig. 6. Two types of criticality. Activity statistics on the level of individ-
ual neurons in networks with inhibition-dominated or vanishing feedback
(Cases 1 and 2 of Fig. 5, respectively) in the critical regime. (A–E) Case
1: dynamically balanced network with stable population activity but vir-
tually unstable linearized dynamics hidden in specific linear combinations
of neuron activities. (A) Spectrum of eigenvalues with negative outlier
(orange dot) and nearly critical bulk eigenvalue (cyan dot) and correspond-
ing eigenvector (cyan bars) generated by heterogeneity in connections
across neuron pairs. (B) Distribution of covariances with almost vanish-
ing mean and large SD. (C) Autocovariance functions of the population
activity (orange curve; compare with the orange dot in A) and the activ-
ity projected onto the eigenvector corresponding to the largest real bulk
eigenvalue (cyan curve). (Inset) Time course of network modes correspond-
ing to colored eigenvalues in A. (D) Normalized eigenvalues of PCA (black
dots) and loadings of eigenvectors for components 1, 2, 13 (bar plots). (E)
Autocovariance functions of activity projected onto PCs 1, 2, 13 (same color
code as in D). (F–J) Case 2: network with almost vanishing excitatory and
inhibitory feedback and virtually unstable linearized population dynamics.
(F) Spectrum of eigenvalues with positive outlier (orange dot) and cor-
responding eigenvector (orange bars; population activity) generated by
average connectivity structure. (G) Distribution of covariances with posi-
tive mean and small SD. (H) Autocovariance functions of the population
activity (orange curve) and the activity projected onto the eigenvector cor-
responding to the largest bulk eigenvalue (cyan curve; compare with the
cyan dot in F). (Inset) Time course of network modes corresponding to col-
ored eigenvalues in F. (I) Normalized eigenvalues of PCA (black dots) and
loadings of eigenvectors for components 1, 2, 13 (bar plots). (J) Autoco-
variance functions of activity projected onto PCs 1, 2, 13 (same color code
as in I).
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neurons, each in proportion to their loading in the eigenvector.
Fig. 6A shows an example. Some neurons participate in this col-
lective dynamics with positive sign (positive loading), and some
participate with negative sign (negative loading). The signature
of such a mode is hence that all neurons change their activ-
ity in a concerted manner: some by increasing and others by
decreasing their activity (compare with Fig. 2C). Those modes
that have eigenvalues on the right edge of the circle, close to
the critical line, in addition have slow dynamics. Changes of
activity of such modes evolve on considerably longer timescales
τmode = τnrn/(1−λ) compared with the timescale τnrn on which
a single neuron typically changes its activity. This is visible in
a slowly decaying autocorrelation function (Fig. 6C). The typi-
cally considered population activity is only one particular mode
that weights all neurons equally. The almost vanishing mean of
the covariances (Figs. 1D and 6B) and the weakly fluctuating
and quickly decaying population activity (Figs. 1F and 6C) show
that the corresponding population eigenvalue (Fig. 6A, orange
dot) is negative (i.e., the feedback is inhibition dominated) (9,
10, 26) (Fig. 5, Case 1). Having a multitude of eigenvalues with
arbitrarily small distance to the critical line implies rich multiple-
neuron dynamics with largely different time courses (Fig. 6C).
These time courses define the response repertoire of the net-
work that would be visible when stimulating in the direction of
the eigenvectors of the effective connectivity.

How is the richness of the response repertoire related to
the ongoing dynamics? For the experimental data, the effec-
tive connectivity and its eigenvectors are not known. Fig. 6 A
and F shows that all eigenvectors apart from the population
mode have complex structure, which derives from the het-
erogeneous effective connectivity matrix. Therefore, the above
response repertoire cannot be easily measured. Still, one can
indirectly infer properties of the response repertoire based on
the ongoing dynamics and vice versa. For example, if there
were no slow response modes, there could not be slow dynam-
ics in any direction of the N-dimensional space of neurons.
In contrast, if there is a multitude of nearly unstable modes,
dimensionality reduction techniques should be able to find direc-
tions in state space with slow dynamics. Indeed, from linear
systems analysis follows directly that not only the timescale of
fluctuations increases close to the critical line but also the mag-
nitude. Therefore, a principal component analysis (PCA) that
searches for directions in state space with maximal variance
would predominantly detect the directions with slow dynamics.
The eigenvalues of the matrix of time-lag integrated covariances
in the dynamically balanced critical regime have a continuum
of distances to the critical line and therefore, imply a contin-
uous spectrum of principal components (PCs) (Fig. 6D) and
a gradual decrease of timescales with increasing PC (Fig. 6E).
As a result, the ongoing dynamics of the network is multidi-
mensional. However, since the variance of the mode dynamics
scales as 1/(1−λ)2, the rightmost eigenvalues dominate such
that the dimensionality, measured by the participation ratio
(27, 28), is low compared with the number of neurons in the
network.

The predictions of our theory for timescales and dimension-
ality based on the distribution of covariances can be readily
tested in the experimental data at hand. Applying a PCA on
the macaque motor cortex spike counts indeed reveals a low
dimensionality of the dynamics and a continuous spectrum of
PCs (Fig. 7A). Projecting the spiking activity onto the PCs shown
in Fig. 7A yields a temporal sequence, of which we analyze the
autocovariance function in Fig. 7B. All autocovariances exhibit a
central peak arising from the spiking nature of the signals. The
timescale of the smooth part of the autocorrelation function is
large for the first PC and gradually decreases with increasing PC
(Fig. 7B) as predicted by the theory of the linear rate model.
This shows that temporal features of the dynamics on behav-

A B

Fig. 7. PCA of motor cortex data. (A) Fraction of variance explained as a
function of the PC index. Dimensionality dim =21.2 measured by the par-
ticipation ratio (27). Bar plots show loadings of selected PCs (indicated by
black lines). (B) Autocovariance function of activity projected onto selected
PCs (same color code as in A).

ioral timescales are imprinted in the effective connectivity of the
network.

Having discussed the features of this dynamically balanced
critical state, one may wonder how it is related to the known state
of avalanche criticality. Avalanche criticality (29–31) appears in
networks with nearly equal excitatory and inhibitory feedback
(µ≈ 1/N ) (Fig. 5, Case 2). The strongly fluctuating population
activity observed in such networks causes positive covariances
(Fig. 6G) and a slowly decaying autocorrelation function of the
population activity (Fig. 6H). These dynamics are determined by
the single nearly unstable eigenvalue of the population activity
that results from the average connectivity structure of the net-
work (32) (Fig. 6F, orange dot). Each of the remaining N − 1
modes has a low amplitude and exponentially decaying, fast
dynamics (Fig. 6 H and J). Thus, the network in such a critical
state is effectively one-dimensional (33) as reflected by a sin-
gle outlier PC (Fig. 6I). Due to the distinguished role of the
population eigenvalue, the mode with slowest dynamics coin-
cides with the first PC, as all other modes are almost negligible.
This makes it possible to detect such criticality in population-
averaged or coarse-grained measures of neural activity. A sum-
mary of qualitative features of the two critical states is given
in Table 1.

Discussion
In this study, we reconcile the contradiction between experimen-
tally observed weak pairwise correlations and the presence of
a critical state, which is assumed to be necessary for efficient
information processing. We show that a linear model explains
the on average weak pairwise correlations and the wide dis-
persion across cells that we observe in massively parallel spike
recordings of macaque motor cortex. Comparing experimen-
tal data with theoretical predictions from network models, in
general, faces a subsampling problem. Only a tiny fraction neu-
rons in a local circuit is recorded at a time. We here overcome
this problem by deriving a theory that relates the statistics of
correlations of the spiking activities to the statistics of connec-
tions. This relation exposes a simple and robust correspondence
between the width of the covariance distribution and the stability
of the network dynamics. The distribution of correlations in the
macaque data can only be explained by a network dynamics with
a multitude of nearly unstable modes and a single-population
mode that is stabilized by inhibition. Such a dynamically bal-
anced critical state entails that motor cortex has a rich dynamical
repertoire at its command, which is, however, invisible in the
commonly considered population-averaged activity. This hidden
response repertoire explains the shape of PC spectra, the low
dimensionality in the data, and the timescale of dynamics in
PC space.
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Table 1. Qualitative features of the two critical states

Feature Case 1 Case 2

Population activity
Fluctuations Fast and weak Slow and strong

Spike count covariance
Mean Low High
Width Large Small

Stimulation
Whole population Fast and small response Slow and strong response
Specific direction (mode) Various timescales and amplitudes Stereotypic timescale and amplitude

PCs
Eigenvalues Gradual decline Single dominant eigenvalue
Dominant eigenvectors Heterogenous loadings Homogeneous loadings
Dimensionality 1<dim�N 1.dim

Case 1 (dynamically balanced criticality) and Case 2 (avalanche criticality) correspond to the definitions
in Fig. 6.

Unified View of Criticality in High-Dimensional State Space. The
found dynamically balanced criticality is contrasted with the
established notion of avalanche criticality in neuronal networks
by Table 1. However, the two types of critical states are not mutu-
ally exclusive, as they are governed by different mechanisms. The
overall level of excitation and inhibition in the network controls
the population activity and can be adjusted to obtain avalanche
criticality (2). Heterogeneity in the network shapes the spectral
radius of the effective connectivity, which close to unity, causes
criticality of the here found second kind that is visible in spe-
cific directions in the high-dimensional state space. Therefore,
critical dynamics of both kinds can coexist in different brain
regions or even in the same local network. Changing the over-
all level of activity in networks changes the sensitivity of neurons
to inputs and therefore, the effective connectivity (34, 35). By
this mechanism, networks may be dynamically moved into dif-
ferent dynamical regimes to adapt brain function to momentary
demands.

Many studies have presented experimental evidence for
avalanche criticality in the brain (1, 36). Likewise, there is a
vast amount of literature on the dynamically balanced state of
cortical networks (8, 9, 26, 37). Proponents of either dynamical
regime are split into two disjoint camps, as the notion of critical-
ity seemed to contradict the asynchronous irregular activity in the
balanced state. This study, however, unifies the two concepts and
shows evidence of criticality in the latter state. We show that the
nature of both types of criticality can be explained with eigen-
values at the edge of stability, which cause strong transients of
activity. Although the mechanism is the same, the different direc-
tions of the critical modes in state space and the different number
of modes that have critical dynamics lead to qualitatively distinct
dynamical states.

The typically considered population activity represents one
particular projection of the high-dimensional neuronal state.
Avalanche criticality would be detected in long time constants
of the autocorrelation function of this projection (3). On the
level of individual neurons, it would lead to pronounced pos-
itive average covariances across pairs of neurons (Fig. 6G)
(33). Neither feature is observed in the motor cortex data of
the awake macaque monkey considered here. Instead, we find
signatures of the dynamically balanced state: short time con-
stants of the population autocorrelation function and average
pairwise covariances close to zero. Avalanche criticality cannot
occur in this state, as fluctuations of the population activity are
small, likely suppressed by negative feedback (10). As a result,
networks show fast tracking between excitatory and inhibitory
synaptic currents (8, 9) and between the activities of different
populations (38).

Finally, the overall level of excitation and inhibition and the
heterogeneity in the network are not the only mechanisms that
can lead to eigenvalues close to the critical line. Fine tuning
of connectivity as well as sophisticated plasticity mechanisms
can also move single eigenvalues or even large numbers of
eigenvalues close to instability, leading to critical dynamics in
certain directions in state space as shown by the seminal work
of Hennequin et al. (39).

Relation to Previous Theoretical Studies. The recent discussions on
criticality in neuronal networks have in common that specific
models are studied with two main recurring themes. First, the
idea of a branching parameter, specifically the average number of
downstream descendants produced by the current state of activ-
ity, relates the emergence of a second-order phase transition to a
one-dimensional model (40). Second, experimentally measured
activity is compared with statistical models in thermodynamic
equilibrium, such as pairwise maximum-entropy models. A com-
mon criticism of the first perspective is its coverage of only a
small subset of all possible critical states; a wealth of physi-
cal systems shows various phase transitions that differ from a
branching process (41). This view is in particular incompati-
ble with the strong evidence for neuronal networks operating
in the balanced state, in which inhibitory feedback dominates;
the branching parameter would be effectively negative in these
systems and thus, criticality impossible. A common critique of
the second approach is that it compares the dynamical activ-
ity of a neuronal network that certainly operates out of ther-
modynamic equilibrium with an equilibrium ensemble. Phase
transitions in nonequilibrium dynamical stochastic systems are
generally quite different from those observed in thermodynamic
equilibrium. Understanding such dynamical phase transitions, as
pioneered by ref. 42, is still a field of active research in sta-
tistical physics (41). The discrepancy between the dynamics of
a network and the currently used static mathematical descrip-
tion has been discussed in the literature. Mora and Bialek (43)
state that the currently used mathematical language of equilib-
rium statistical mechanics is insufficient to describe criticality in
dynamical systems and that efforts need to be undertaken to
address the relations between statistical and dynamical criticality
more clearly.

This work is a humble step in this direction. Making use
of linear response theory that precisely captures correlations
in asynchronous irregular neural network states, we consider
the high-dimensional nonequilibrium dynamics of neural net-
works for which a well-studied relation between covariances
and effective connections holds. This relation allows us to infer
critical dynamics also in state space projections different from
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the population activity considered in avalanche criticality anal-
yses and to make predictions for the dynamical repertoire of
networks in high-dimensional state space. The correspondence
between covariances and effective connections has been investi-
gated before to relate network structure and dynamics (16, 17).
However, a direct comparison with experimental data has so far
been impossible due to the subsampling problem. Algorithms for
network inference with hidden units have been developed (44,
45) but still cannot be applied reliably with the capabilities of
current recording technology.

Generality of the Findings. Although the theoretical derivation,
for simplicity, is based on homogeneous random networks, the
relation between the stability and the normalized width of the
covariance distribution holds more generally for asynchronous
states that arise from the dominance of inhibition. This is con-
firmed numerically for excitatory–inhibitory networks fulfilling
Dale’s law and for networks with distance-dependent connection
probability. In addition, we validate our results in the presence of
other sources of variability, such as correlated external input and
distributions in firing rates, as well as log-normal or correlated
synaptic weights. Furthermore, the validity of the linear response
approximation for the calculation of the normalized width ∆ in
the full range of spectral radii is ensured by comparison with
direct simulations of spiking leaky integrate-and-fire networks.
The linearization works well as long as individual synapses have
only a small impact on the firing of a cell. This assumption is, for
example, violated in the state discussed in ref. 46. Its signatures,
however, are not found in the motor cortex data.

The observation of high-dimensional criticality is not necessar-
ily specific to macaque motor cortex. Experimental evidence for
the operation of cortical networks in the dynamically balanced
state is overwhelming (8, 38, 47). In addition to the low average
covariances in this state, other cortical areas, such as visual cor-
tex (37), also show a covariance dispersion comparable with our
data (SI Appendix). The same analysis can be applied to differ-
ent cortical areas and experimental conditions to determine their
operational point λmax.

Computational Implications of the Dynamically Balanced Critical
Regime. The operation in the dynamically balanced critical
regime (λmax . 1) has several implications for learning and
information processing. Neurons belonging to a critical mode
show pairwise covariances that strongly exceed the average
(Fig. 6B). Such covariances, in turn, are known to influence
the synaptic connectivity by spike timing-dependent synaptic
plasticity (48, 49). The wide distribution implies that some neu-
rons exhibit strongly correlated activity—positive or negative;
thus, synapses connecting these neurons will experience strong
changes of synaptic amplitudes: the neuronal dynamics and the
synaptic dynamics are hence tightly coupled in such states.

Another advantage of the dynamically balanced critical regime
is adaptivity. Weak external inputs to the network are suffi-
cient to shift a large number of eigenvalues across the edge
of stability (12) and thereby, drastically change the recurrent
network dynamics. Critical modes have a multitude of character-
istic shapes and lifetimes (Fig. 6C, Inset) (39); they arise despite
the stereotypical and fast dynamics of individual neurons as a
result of the heterogeneity of the network. The rich repertoire
enables the parallel integration and maintenance of signals over
prolonged timescales. Such networks provide a wealth of trans-
formations on the input and, therefore, support the concept of
reservoir computing (50, 51).

A wide dispersion of the spectrum of the connectivity matrix
may also have important consequences for the controllability of
the network dynamics by external signals. The Gramian of a lin-
ear system, equivalent to the equal time covariance matrix of
an Ornstein–Uhlenbeck process (52), determines the strength of

a signal required to move the network dynamics into a desired
target state (53). This is a potentially important property for com-
putation: for example, for classification of temporal sequences.
The spectral properties of the Gramian are tightly related to
the eigenvalues of the effective connectivity (52). Future work
should, therefore, investigate the implications for controllabil-
ity of cortical dynamics with close to unstable eigenvalues as we
have found.

Identification of Relevant State Space Projections. In the dynam-
ically balanced state, the population activity is thus not infor-
mative about the coordination between neuron activities beyond
the overall negative feedback. An obvious aim is, therefore, to
identify the relevant projections in state space (i.e., those pro-
jections with large temporal variability on various timescales).
Finding the modes directly from the data seems impossible; it
requires inference of the full effective connectivity matrix from
the subsampled data. Although challenging, an intriguing route
to follow instead is to apply perturbations to the network state
in different state space directions to actively probe the response
repertoire of the network (54) (Fig. 6). The realization in an
experimental setup is challenged by the selective stimulation
of individual modes. Compound stimulations typically result in
superimposed responses of many modes and would thus lead
to an overall similar time course for different stimulation direc-
tions. Selective stimulation involves different levels of excitation
and inhibition applied to each neuron, which in parts, becomes
more and more feasible using optophysiology (55). To disentan-
gle superimposed responses of several modes, one would need
to devise blind source separation techniques (56) that specifi-
cally take into account the stereotyped damped oscillatory time
courses of the response modes.

A simpler and more standard technique of dimensionality
reduction is the PCA. It finds relevant projections in state space
that contribute largest to the temporal variability. Although it
has been used frequently to infer low-dimensional trajectories
in state space that correlate with behavior (57) and to assess
the dimensionality of the dynamics (27, 28), it is not directly
showing the independent dynamical responses that a network
can perform: the typically asymmetric effective connectivity and
the symmetric covariance matrix have different eigenvectors,
and therefore, the independent network responses evolve along
directions that differ from the PCs. However, PCs are linear
combinations of modes after all. Therefore, they can only show
dynamics that is contained in the response repertoire. In particu-
lar, if the latter does not contain slowly decaying responses, then
slow ongoing fluctuations cannot be present in the PCs.

PCA applied to spike counts from macaque motor cortex
recorded during the pretrial period of the reach-to-grasp task
indeed shows that a multitude of PCs contributes with compara-
ble weight. The shape of the PCA spectrum resembles the one of
a dynamically balanced critical model network. As predicted by
the theory, the timescale of each PCA component covaries with
its importance: a component that provides a stronger contribu-
tion to the variance also has a slower timescale. The loadings
of each mode, the coefficients with which each neuron con-
tributes, are indeed highly complex, again consistent with the
state of criticality arising from the heterogeneous connectivity
rather than from a single outlier of the spectrum as in the case of
avalanche criticality. The here used PCA is based on the same
data as the distribution of covariances, namely the matrix of
spike count covariances. The relation between a wide dispersion
of the latter and a low dimensionality of the dynamics as well
as predictions for the timescales and for the directions of lead-
ing PCs follow from our theoretical arguments. Finding these
theoretically predicted features of the PCA in the data, there-
fore, substantiates our inference of the dynamically balanced
critical regime.
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A possible alternative approach to the here chosen time lag
integrated covariances is measuring the matrix of equal time
covariances. For an Ornstein–Uhlenbeck process, this matrix is
identical to the Gramian matrix. Relations between the spectrum
of the connectivity and the spectrum of the Gramian are known
(52) so that one could directly relate the PCA spectrum of the
equal time covariance matrix to the spectrum of the connectiv-
ity. There are, however, two major challenges to this approach.
First, while the time lag integrated covariance is independent of
many details of the network model (18) and thus, allows us to
quantitatively compare theoretical results with experimental data
and realistic spiking network models, the equal time covariance
matrix depends on many such model details. A direct compar-
ison is, therefore, more difficult. Second, the known relations
between the spectra of connectivity and the Gramian hold for
the entire matrices. In an experiment, however, we only observe
a severely subsampled fraction of the entire covariance matrix. A
comparison, therefore, requires the additional step of extrapolat-
ing the spectral properties of the entire covariance matrix from
its subsampled estimate (28).

The dynamically balanced critical state leads to an entire
region of eigenvalues of the effective connectivity that are close
to unstable; a circular segment of eigenvalues has a real part
close to unity. Every pair of modes with nonzero imaginary
parts corresponds to a damped oscillatory temporal dynamics.
Small changes of the effective connectivity, by synaptic plas-
ticity or by external input, are then sufficient to move such a
pair even closer to instability, making it the dominant mode.
The resulting dynamics would show an exponentially damped
oscillation. Such dynamics is indeed observed in PCs of motor
cortex activity of behaving monkeys (57). It leads to a rota-
tional behavior in PC space that is, furthermore, observed
across various different tasks. This is a first indication for the
functional relevance of the here-described state. The dynamics
derived from the ongoing critical activity also shows up in task-
related states. This suggests that motor cortex has a dynamic
repertoire at its command that can be functionally used and
differently composed in various tasks. Therefore, future stud-
ies should not only consider low-dimensional projections of
task-related firing rate changes but also, scrutinize the fluctu-
ations around stationary ongoing states. Similarities between
these two conditions would strengthen the here-stated hypoth-
esis that the low-dimensional dynamics on behaviorally relevant
timescales is composed from the intrinsic vocabulary of nearly
critical modes.

Materials and Methods
Experimental Data. The experimental data used in this study are published
fully annotated and with loading and analysis software in a scientific data
publication (6). In brief, a macaque monkey is performing a reach-to-grasp
task. Activity in the arm-related region of area M1 is recorded using a
10× 10-electrode Utah array. T = 400 ms after start of the recording, the
monkey receives a visual fixation cue to announce the beginning of a trial.
Multiple subsequent visual cues indicate grip and force types for the grasp,
and after a delay period, the monkey performs the actual movement. In
this study, we are solely considering the first T = 400 ms of the recording in
each trial before the first cue and devoid of task-related behavior. Although
the monkey is expecting a trial to begin, this period most closely represents
resting state-type activity with stationary spiking statistics (SI Appendix).

Linking Data and Theory of Correlations in Spiking Networks. Spike count
covariances cij are a common measure of neuronal coordination (26).
For large observation times T , they are related to the integral of the
time-lagged covariance function cij(τ ) (34):

cij =
1

T

(
〈ninj〉− 〈ni〉〈nj〉

)
=

∫ T

−T

T − |τ |
T

cij(τ ) dτ [2]

→
T→∞

∫ ∞
−∞

cij(τ ) dτ ,

A C E

FDB

Fig. 8. Covariance functions of motor cortex data. (A) Mean (blue
trace)± 1 SD (gray traces) of single-neuron autocovariance functions (tbin =

5 ms; peak at zero time lag not displayed). (B) Mean (blue trace) ± 1 SD
(gray traces) of pairwise cross-covariance functions (tbin = 5 ms). (C) Same
spike count covariance histogram as in Fig. 1D divided into three ranges
(bounds ±2). (D) Pairwise cross-covariance functions averaged according to
division in C shown in corresponding colors. (E) Mean (black trace) and SD
(solid gray line) of distribution of spike count covariances as a function of bin
width. Dashed gray line indicates unbiased estimator of SD (SI Appendix). (F)
Normalized width ∆ of covariances (biased estimator: solid curve; unbiased
estimator: dashed curve) as a function of bin width. Bin width of 400 ms is
used throughout the following analyses.

where ni =
∫ T

0 si(t)dt denotes the spike count of neuron i in the time win-
dow [0, T]. Integrated time-lagged covariance functions have been derived
for spiking neural networks using linear response theory that reliably cap-
tures stationary-state fluctuations (15–17). The applicability of this theory
to experimental data, therefore, relies on stationarity of the spiking statis-
tics. The weak fluctuations in population activity in Fig. 1E are a first hint
that our chosen data segment of the reach-to-grasp experiment fulfills this
requirement. More detailed analyses (SI Appendix) show nonstationarities
in firing rates and correlations but only in later trial segments where the
monkey receives visual stimuli or performs movements. The requirement
of stationarity, therefore, restricts the observation window to T = 400 ms
shown in Fig. 1. For such small T , the equivalence between spike count
covariances and integrated time-lagged covariance functions does not hold
exactly, as the covariance functions do not decay to zero within T (Fig. 8
A and B). The wide distribution of cross-covariances at large time lags can
be investigated by splitting the neuron pairs among three groups based
on their spike count covariance (Fig. 8C): neuron pairs with a big absolute
value for the spike count covariance also have slower decaying time-lagged
covariance functions (Fig. 8D). The absolute value of the integral of the
latter is, therefore, systematically underestimated. As a consequence, the
distribution of spike counts depends on the observation time T . In particu-
lar, we notice that the width of the distribution increases with increasing
window size, while the mean roughly stays around zero on this scale
(Fig. 8E). We here choose the maximum (defined by stationarity) window
T = 400 ms and obtain the respective width as a lower bound for the
width of the distribution of integrated time-lagged covariance functions
that would be measured for T→∞. This choice amounts to a conserva-
tive estimation on which we base the results in this study. Given their
precise relation exposed above, in the remainder of this manuscript, we
refer to both the experimentally measured spike count covariances and
the theoretically derived integrated time-lagged covariance functions as
covariances.

Uncertainty in the estimation of covariances arises from the limited
number of trials. The bias imposed on the width of the distribution of covari-
ances can, however, be computed and corrected for (SI Appendix). The finite
amount of data prohibits, however, a direct comparison of the shape of the
full distributions of covariances between theory and experiment (e.g., via a
Kullback–Leibler divergence); an estimation of the bias, as we obtained for
the width of the distribution, seems unfeasible for the entire shape of the
distribution.

Mean Field Theory for the Metastatistics of Activity. Pairwise covariances
in the activity of neurons, to a good approximation, follow the simple
law (15–17)
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c(W) = [I −W]
−1D

[
I −WT

]−1
, [3]

which relates the integral of the time-lagged covariances cij defined by
Eq. 2 for T→∞ between all pairs of neurons to the effective connec-
tivity matrix W of the network. I denotes the identity matrix, and the
matrix D can be determined from firing rates and shared and correlated
external inputs, but the final results of this study turn out to be inde-
pendent of D. The equation is independent of the neuron model (18),
neuronal time constants, and synaptic delays. Therefore, basing our analy-
sis on this fundamental relation guarantees model-independent and robust
results.

Starting from Eq. 3, our aim is to obtain a relation between the statis-
tics of covariances of the activity data and the statistics of connections.
The former can be assumed not to depend crucially on the subsampling
so that its measurement can be used to obtain a robust prediction for the
latter. Although local cortical networks show nonrandom, cell-type specific,
and distance-dependent connectivity, the simple model of a homogeneous
random network studied in Fig. 3 is sufficient to explain gross features
of the experimental data. To calculate the dispersion of covariances, we
apply a well-established analytical technique for disordered physical sys-
tems: instead of considering all pairwise covariances in a single network,
we observe how the covariance of an arbitrary pair of neurons changes for
different realizations of the network connectivity. The connectivity appears
as an inverse matrix in Eq. 3, which technically complicates the analysis:
no results from random matrix theory apply to this particular problem.
Instead, we construct a moment-generating function (58) for the linearized
network dynamics (SI Appendix), which allows for the use of spin glass
techniques (20, 59) combined with approximations for large-N field theo-
ries (60). This study is a combination of these individually well-established
methods to solve the problem formulated here. As a result, the random-
ness contained in the ∼N2 entries of the connectivity formally reduces
to only two fluctuating auxiliary variables that provide input to a fully
symmetric all-to-all connected effective network. Its high degree of sym-
metry leads to a drastic reduction of the dimensionality of the equations,
which enables us to obtain a mean field theory that describes the neuron-
to-neuron variability (SI Appendix). This theory yields the mean and SD
of variances (i = j) and covariances (i 6=j) to leading order in the network
size N:

cij =
[
[I −µJ ]

−1Dλ[I −µJ ]
−1
]
ij
, [4]

δcij =

√√√√ 1 + δij

N

((
1

1−λ2
max

)2

− 1

)
Dλ. [5]

Here, J denotes the matrix of ones, µ∼O(1/
√

N) is the mean, and
σ2 =λ2

max/N∼O(1/N) is the variance of connection weights in W . The
latter determines the radius λmax of the bulk of eigenvalues (Fig. 3B)
and the renormalized matrix Dλ = D/(1−λ2

max), which accounts for the
structural variability of connections. Eq. 4 predicts that the mean covari-
ances are low [cij ∼O(1/N)] if the network is inhibition dominated (µ< 0)
(Fig. 5, Case 1) (9, 10). For large spectral radii λmax . 1, Eq. 5, moreover,
predicts a large SD [δcij ∼O(1/

√
N)] as experimentally observed in our

data (Fig. 1D).
When applying the above results to experimental data, the problem

arises that Dλ is not known and cannot be measured. Also, in a spiking
network, the autocovariance cii , which is predominantly given by Dλ, is not
captured reliably in linear response theory due to spike reset and refractory
effects. Both problems can be avoided by considering the ratio ∆ = δcij/cii ,
which is independent of Dλ and well predicted by the theory, also for spik-
ing networks (Fig. 4C). It is predominantly constrained by the network size
and the most unstable eigenvalue, λmax, which for inhibition-dominated
networks, is determined by the randomness of connectivity arising from its
sparsity.
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