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In Brief

How does the brain learn that both

cheetahs and space rockets move ‘‘fast,’’

even though animals and vehicles belong

in different semantic categories and do

not look alike? We found that when

comparing the magnitude of stimuli in

different contexts, both humans and

recurrent networks learned to represent

stimuli along parallel number lines, one

for each context. These number lines

were normalized to denote a general

sense of ‘‘more’’ or ‘‘less,’’ irrespective of

context, suggesting a new role for

normalization in generalization.
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SUMMARY
A prerequisite for intelligent behavior is to understand how stimuli are related and to generalize this knowl-
edge across contexts. Generalization can be challengingwhen relational patterns are shared across contexts
but exist on different physical scales. Here, we studied neural representations in humans and recurrent neural
networks performing amagnitude comparison task, for which it was advantageous to generalize concepts of
‘‘more’’ or ‘‘less’’ between contexts. Usingmultivariate analysis of human brain signals and of neural network
hidden unit activity, we observed that both systems developed parallel neural ‘‘number lines’’ for each
context. In both model systems, these number state spaces were aligned in a way that explicitly facilitated
generalization of relational concepts (more and less). These findings suggest a previously overlooked role
for neural normalization in supporting transfer of a simple form of abstract relational knowledge (magnitude)
in humans and machine learning systems.
INTRODUCTION

Humans can think and reason in ways that abstract over the

physical properties of the world (Lake et al., 2017; Tenenbaum

et al., 2011). For example, we understand that cheetahs and

space rockets can both move ‘‘fast’’ even though animals and

vehicles belong in different semantic categories and do not

look alike. Cognitive scientists have long built theories about

how humans learn concepts and reason abstractly but much

less is known about their neural representation (Gentner, 2010;

Murphy, 2002). One view is that conceptual knowledge relies

on neural ensembles that code for relations among stimuli but

are invariant to their physical properties (Baram et al., 2019; Beh-

rens et al., 2018; Bellmund et al., 2018; Collins and Frank, 2013;

Doumas et al., 2008; Lake et al., 2015; Summerfield et al., 2020;

Tervo et al., 2016). Recent evidence hints that when sets of stim-

uli share relational structure across contexts, they are

embedded on parallel low-dimensional neural manifolds, so

that a linear decoder learned in one context can be readily repur-

posed for another (Bernardi et al., 2020; Fitzgerald et al., 2013;

Ganguli et al., 2008; Luyckx et al., 2019; Remington et al.,

2018). By aligning neural state spaces between contexts in this

way, one can generalize relational knowledge, for example

applying a criterion that distinguishes fast and slow animals to

discriminate fast and slow vehicles, such as space rockets and

bicycles (Figure 1A). The neural geometry implied by this coding

scheme thus offers a theory for how humans engage in abstract

forms of reasoning that involve the use of analogy and metaphor

(Gentner, 2010).
However, there is a significant challenge for relational general-

ization that we call the ‘‘mapping problem.’’ The mapping prob-

lem occurs when stimuli are analogously related across con-

texts, but in one context the structure is rotated, rescaled, or

otherwise misaligned with respect to the other. To illustrate, a

spectator of Olympic events might consider both a record-

breaking sprinter and amarathon champion to be ‘‘fast’’ runners,

but in one case, this might entail running one hundred meters in

less than ten seconds, and in the other case, running a marathon

in under two hours (Figure 1B). For generalization to be effective,

we need to form a concept of ‘‘fast’’ that is not tied to a specific

physical value (e.g., a number denoting m/s), but that encodes

relative speed in each respective context. Understanding how

these abstract sorts of invariances are acquired in either biolog-

ical or artificial neural networks, however, remains a challenge to

researchers in neuroscience and machine learning alike.

Here, we use simulations with recurrent neural networks and

electroencephalographic (EEG) recordings from humans to ask

how stimuli with a common relational structure across contexts

were represented in neural state spaces, with a focus on the

mapping problem. We constructed a task that involved

comparing the magnitude of arbitrary, physically dissimilar stim-

uli that were sampled from one of three overlapping ranges (con-

texts). For humans, we used symbolic numbers (Arabic digits) as

stimuli because adults have already learned that they denote po-

sitions on a one-dimensional manifold (number line) with visual

symbols that are physically dissimilar in arbitrary ways. For neu-

ral networks, we use arbitrary non-overlapping (one-hot) inputs

whose assigned magnitude could be inferred via supervision
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Figure 1. The mapping problem, the task, and human behavioral results

(A) A sketch of aligned neural representations of stimuli in different contexts (e.g., animals, vehicles), in a three-dimensional neural space spanned by the firing

rates of 3 hypothetical neurons [n1, n2, n3]. One of these neurons encodesmagnitude (n3), whereas another encodes context (n1). In this example, a decoder (gray

vertical plane) trained to discriminate the relative speed of bicycles and space rockets could be repurposed to distinguish snails from cheetahs. Such decoder

generalization permits context-general inferences, such as saying that the space rocket and the cheetah are both ‘‘fast’’ even though space rockets and cheetahs

belong in different categories and do not look alike.

(B) In contrast, a coding scheme based on an absolute metric, such as speed in m/s, positions stimuli that are in different contexts, but with the same within-

context relations, very differently.

(C) Schematic of the task performed by humans. The primary task was to compare the relative magnitude of primary target numbers (colored) and indicate a

binary ‘‘more’’ or ’’less’’ response using the up/down keys. Numbers were drawn from three temporally blocked ranges (contexts): a low range (blue), a high range

(red), and a full range (golden). Blocks of trials were presented eight times per context, and the order of blocks was pseudorandom.

(D) Parameter estimates from logistic regression of human accuracy against the target distance (D Target), local context distance (D Local), and global context

distance (D Global). Dots show individual subject fits.

(E) Human accuracy increases as a function of context distance for each context. Error bars show SEM in (D) and (E).
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signals during training. In the context of the Olympics example

above, the number corresponds to a speed (e.g., in m/s) and

the different contexts correspond to temporally segregated

competitions (sprint versus marathon), and our question is how

the brain learns the concept of ‘‘fast’’ versus ‘‘slow.’’

When we conducted multivariate analyses on neural signals or

hidden unit activations observed during the task, using dimen-

sionality reduction to visualize the structure of the neural state

spaces, we observed neural state space alignment across con-

texts in both humans and neural networks. In both model sys-

tems, numbers are organized according to their magnitude

onto three parallel, equidistant neural manifolds (number lines),

one for each context. Moreover, in both systems thesemanifolds

were compressed (divisively normalized) and centered (subtrac-

tively normalized) so that numbers that denoted ‘‘more’’ or ‘‘less’’

could be linearly discriminated along a single dimension irre-
2 Neuron 109, 1–13, April 7, 2021
spective of their context. In other words, without being explicitly

regularized to do so, neural networks autonomously learned to

align representations in a way that supports generalization be-

tween contexts. In doing so, they learned to represent numbers

with a neural geometry that matched that in the brains of human

participants. This suggests a hitherto overlooked role for neural

normalization (Carandini and Heeger, 2011) in supporting

learning and transfer of relational knowledge.

RESULTS

The task was a serial visual presentation paradigm which

required agents (humans or neural networks) to classify the tran-

sitive ordering of two sequential target stimuli, indicatingwhether

the current target was ‘‘higher’’ or ‘‘lower’’ than the previous

target. For humans, stimuli were Arabic two-digit numbers and
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the correct transitive ordering was given by their numerical

magnitude (so 21 was ‘‘lower’’ than 22). For neural networks,

each stimulus corresponded to an arbitrary (or one-hot) input

(equivalent to a number) provided to the network, and the transi-

tive ordering was learned tabula rasa via supervision signals

administered in a training phase (see below). So the network

learned, after training, to respond ‘‘lower’’ when the current

target input was that denoting 21 and the previous had been

that denoting 22.

For both humans and neural networks, target magnitudes

were drawn from different ranges in three temporally blocked

contexts, which were repeated in pseudorandom order (24

blocks, 8 blocks in each context), and in each block, participants

viewed a sequence of 120 stimuli, of which 30 were primary tar-

gets. Target stimuli occurred in each of three contexts, which

uniformly spanned digit ranges 25–35 (low), 30–40 (high), and

25–40 (full context) in distinct blocks. For humans, targets

were signaled by a distinctive cue that was also indicative of

the context (font color of the number), and responses were

made with two fingers of the right hand. Interspersed between

successive targets were 2–4 ‘‘filler’’ numbers (white for humans)

that were drawn from across the full range. A secondary task that

did not require higher versus lower magnitude comparison was

performed on these stimuli by the humans, namely pressing

the space bar (with the left hand) when a filler exactly matched

the previous target (�12% of fillers). A visualization of the task

that humans performed is shown in Figure 1C.

Human behavior
We first focus on the primary (magnitude comparison) task that

healthy human adults (n = 38) performed with a mean accuracy

of �94% ± 4% and response times that averaged 675 ms. We

begin by offering a normative account of this task. An observer

with perfect memory can ignore the context provided by recent

numbers and simply maintain the previous item for comparison

with the current item (e.g., compare 31 with 33 in Figure 1C).

However, for an agent with imperfect memory, the context in

which numbers occur becomes relevant. For example, a partic-

ipant who forgets the 33 but responds ‘‘less’’ to 31will most likely

be correct in the high context (Hollingworth, 1910; Jazayeri and

Shadlen, 2010). Critically, however, this latter strategy will be

more effective when participants have some notion of whether

each target is ‘‘more’’ or ‘‘less’’ relative to the local context within

the current block, because a number may be low in one context

but high in another (e.g., 31 is ‘‘more’’ than the local average in

the low context and so would prompt the incorrect answer).

This effect is well known to lead to estimation biases that depend

on the local history and have been associated with neural signals

in the parietal cortex (Akrami et al., 2018).

Here, behavioral analyses revealed that participants used

memory and contextual information whenmaking decisions (Fig-

ure 1D). Logistic regression indicated that accuracy was pre-

dicted by both the disparity between current and past target

number (target distance; t37 = 5.9, p < 0.001) and the distance

between the target number and the median number in the cur-

rent block (local context distance t37 = 3.0, p < 0.004). After ac-

counting for these sources of variance, however, distance to the

overall median number (across all blocks; global context dis-
tance) had no impact on performance (p > 0.1). We plot accuracy

as a function of local context distance for the low, high, and full

contexts in Figure 1E. Under this normative account, context

should have more influence when more time has gone by, under

the assumption that target information becomes more fragile

with longer delays. This follows naturally from the idea that

when current information is weak or ambiguous, normative

agents rely on the central tendency of experience (Akrami

et al., 2018; Hollingworth, 1910; Jazayeri and Shadlen, 2010).

We thus also compared the influence of context on accuracy

and reaction time (RT) when there were either 2, 3, or 4 inter-

vening fillers by including an additional term in the previous

regression to encode the interaction between number of fillers

and the local context. Despite a tendency for this predictor to

trend in the expected direction of context being more influential

after delays that included more fillers, it was not significant for

either accuracy (t38 = 1.16, p = 0.13, one-tailed) or RT (t38 =

�1.56, p = 0.06, one-tailed).

Neural network behavior
For comparison, we trained recurrent neural network models

(RNNs; n = 10) to perform an equivalent task on symbolic (one-

hot) inputs (see Figure 2A). As for human experiments, inputs

were sampled from different ranges in blocks of 120 trials.

Each network had a single recurrent layer and a single feedfor-

ward hidden layer and was trained to minimize errors on the

task. Importantly, the RNN is not reset after every trial, but initial-

ized at the start of the first block of training. The hidden state at

the end of each block served as the initial hidden state for the

subsequent block. We encouraged the network to find context

relevant in the same way as humans using a virtual inactivation

(VI) approach. This involved setting the input to zero for a fraction

ε of targets, as if stimuli were missed or forgotten, as they might

be by a human with imperfect memory. Applying VI during

training obliged the network to learn to use the context (i.e., local

average of numbers) as a cue for magnitude comparison,

because when numbers were lost to memory, knowledge of

the context improved accuracy. Similarly, many studies have

shown that the influence of different sources of information to hu-

man decisions (such as the context or the number) depends on

the reliability of that source (Ernst and Banks, 2002; Körding,

2007; Körding and Wolpert, 2004). Applying VI during test al-

lowed us to measure this impact of context on responding inde-

pendent of the target distance. After �106 training steps, net-

works converged to near perfect accuracy on held out

stimulus sequences irrespective of whether virtual inactivation

was applied during training at εtrain = 0.1 (99.80% ± 0.05%) or

not (99.96% ± 0.03%).

Assessing RNN performance on a subset of test trials for

which the previous target input was virtually inactivated (εtest >

0) offered information about how they were performing the

task, both with andwithout VI during training. On these test trials,

memory for the previous target is erased so that a network that

ignores context will perform at chance. As a point of comparison,

we computed the performance ceiling displayed by an agent

who optimally uses either the local context (i.e., numbers within

the current block) or global context (i.e., all numbers) as a lone

cue to magnitude comparison. Networks that had undergone
Neuron 109, 1–13, April 7, 2021 3
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Figure 2. Recurrent neural network architecture, virtual inactivation, and network behavior

(A) Architecture of a recurrent neural network model trained to perform the same magnitude comparison task as humans. At each step the network received

symbolic (one-hot) concatenated inputs indicating the number, trial type (filler or primary target), and context (zero for filler trials) of the current trial and indicated a

binary ‘‘more’’ or ‘‘less’’ response with a single output node. The activation functions for each layer are shown in pink. Virtual inactivation (shown with scissors)

involved setting the number input on a given trial to zero, as if the number had been missed by the network. On each training trial, the network inputs corre-

sponding to the primary target were virtual inactivated with probability εtrain. At test, each primary target was virtually inactivated in turn and performance as-

sessed on the primary target that followed.

(B) Performance in each context predicted by an agent who optimally uses either the global (left, horizontal bars) or local (right, horizontal bars) context as a cue to

magnitude comparison following a hidden (VI) target. RNNs (filled circles) without VI during training (left) and with VI during training (right) perform at exactly the

levels predicted by the global and local agents respectively.

(C) RNN accuracy (filled circles) following a VI shown as a function of local context distance for each context. RNN accuracy matches the predictions (colored

lines) of an agent using the global context (left) when the RNN was without VI in training (left). In contrast, the performance of RNNs with VI during training match

predictions of an agent using the local context (right). Context coloring: low (blue), high (red), full (golden). Error bars in (B) and (C) show SD across different

random model initializations and datasets.

See also Figures S1 and S4.
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VI during training achieved near equivalent accuracy in low, high,

and full conditions, performing at precisely the level of an optimal

agent using the local context (Figure 2B). By contrast, networks

that enjoyed perfect memory during training performed better on

the full than high or low conditions, matching predicted perfor-

mance levels for an ideal agent that used only the global context.

In other words, whereas all networks learned to use context as a

cue to respond, only when capacity was limited during training

did the networks learn to exploit the range of numbers in the cur-

rent context to maximize their accuracy; we confirmed this

observation statistically by comparing the residuals of the fit to

either model (both t-values >16; p < 0.001 in both cases). In

this and all subsequent statistical analyses, we treat the individ-

ual network (n = 10; each with their unique initialization and stim-

ulation sequence) as the unit of replication. In Figure 2C, we plot

the network performance as a function of local context distance

in each condition (low, high, and full) for both networks trained
4 Neuron 109, 1–13, April 7, 2021
with εtrain ˛ [0,0.1] (see Figure S1 for εtrain ˛ [0.2,0.3,0.4]).

When VI is applied, performance is a linear function of context

distance in each condition, whereas without VI, performance re-

mains at chance for context distances of%2 in the low and high

conditions, because for these instances, a comparison to the

global average fails to offer the correct answer.

Neural network state space
With these results in hand, we used representational similarity

analysis (RSA) combined with multidimensional scaling (MDS)

to visualize the embedding of numbers and contexts in the

network neural state space. Focusing on fully trained networks,

we computed correlation distance among hidden unit activa-

tions evoked by each number in each context and plotted the re-

sulting neural states in three dimensions. In Figures 3A and 3B,

we show the projection of each stimulus in each context (colored

dots) into a space spanned by the first three dimensions of the
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Figure 3. Neural network activations and normalization metrics

Neural network models were trained either with or without virtual inactivation (VI), trained and tested with either temporally blocked (BLK) or interleaved (INT)

contexts, and with contexts either cued explicitly in the input (cued) or not (not cued).

(A and B) MDS visualization of hidden unit activations in networks that were blocked during training and test and for which context was explicitly cued.

(C and D) MDS activations from networks for which context was explicitly cued but for which contexts were temporally interleaved in training and test. Filled

circles show the state space representation of stimuli in the low (blue), high (red), and full (golden) contexts. Inset: white numbers indicate the corresponding

symbolic number input to the network. Colored lines show the best fit lines model for quantifying the representational geometry.

(E and F) Divisive and subtractive normalization indices from fits to the representations that resulted from each network condition (gray) and from human neural

recordings (green). Grey dots are fits to individual randommodel initializations and datasets. Green dots are fits to individual human subjects (see below). Dashed

horizontal lines indicate the divisive and subtractive normalization indices expected under fully normalized (orange) and fully absolute (black) coding schemes.
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activations from the RNN hidden layer. As can be seen, the

network learned to organize numbers according to their magni-

tude onto three parallel lines, one for each context. This occurs

both with and without VI during training. However, consistent

with the finding that local context is a more salient cue for re-

sponding when εtrain = 0.1, these context-specific number lines

were more widely separated when VI was applied at training,

as revealed by a statistical comparison of the Euclidean distance

among their centroids (t9 > 25, p < 0.001).

Critically, however, it can also be seen that the neural repre-

sentation of number in each context was compressed and

centered so that the three lines span a common distance in

one of the three dimensions of neural state space. This means

that for the network, common positions on each line do not

denote specific numbers, but rather encode abstract quantities

corresponding to ‘‘more’’ or ‘‘less’’ within each context. Forming

an abstract concept of ‘‘more’’ or ‘‘less’’ presumably facilitated

the readout of signed context distance, permitting the network

to solve the mapping problem, which may be particularly useful

under the VI manipulation where capacity was limited. We note

however, that this normalization only occurred when the network

received different ranges of numbers in three temporally distinct

contexts (blocks), matching the task performed by humans.

When inputs from different contexts were interleaved (but still

signaled with a unique cue) the network failed to normalize, rep-

resenting the signals in their native (absolute) frame of reference

(Figures 3C and 3D).

To quantify these observations, we fit a state space model to

the RNN data representational dissimilarity matrices (RDMs, n =

10). The model was fit by varying the angle and length of three

parallel number lines within a three-dimensional state space.

Gradient descent was used to minimize their discrepancy with

the neural state space data. This model, whose identifiability

we verified using a parameter recovery approach (Figure S3), al-

lowed us to compute and compare the best-fitting line lengths in

each context. Under a full (divisive) normalization scheme, all

three lines should have the same length (divisive normalization

[DN] index = 1), whereas without normalization, the ratio of

numbers in the low/high to full conditions should be �0.69, re-

flecting their relative range (ranges of 16 versus 11).

The relative line lengths are plotted on the leftmost bars in Fig-

ures 3E (without VI during training) and 3F (with VI). As can be

seen, when magnitude ranges were separated into temporally

distinct contexts (denoted BLK), the DN index approaches 1, ir-

respective of whether contextual cues are offered, and indepen-

dent of whether VI was applied at training or not. When ranges

were interleaved (INT), however, the DN index is �0.69 or lower,

indicative of an absolute code. In other words, without the

benefit of blocked temporal context, the network does not use

the context cue to distinguish among the different ranges. We

also computed a subtractive normalization (SN) index by

comparing the offset in centroids among the high, low, and full

conditions along the principal magnitude coding axis. Again,

blocking (but not interleaving) of contexts led to a full subtractive

normalization (SN �1), whereby the centers of each line were

brought into the same register, indicative of neural state space

alignment. For completeness, we also fit models with the restric-

tion that line lengths in each context are equal (relative model) or
6 Neuron 109, 1–13, April 7, 2021
that they reflect the range of numbers in each context (absolute

model). For (cued) BLK conditions, 10/10 RNNswere better fit by

the relative model, whereas for (cued) INT conditions, 10/10

RNNs were better fit by the absolute model.

Normalization of the number lines here should permit general-

ization of magnitude information across contexts. To test for this

in the RNNs, we trained a binary logistic regression model to

classify stimuli as either ‘‘more’’ or ‘‘less’’ relative to the context

mean. To assess generalization, we used one context for training

and a different context for evaluation (averaging over all pairs of

contexts). We observed better generalization for context-

blocked networks than for context-interleaved network activa-

tions (context-blocked, 86% correct; context-interleaved, 69%

correct; unpaired t test, t18 = 13.11, p < 0.001; both with VI during

training). These results were obtained using the naive (high-

dimensional) space given by the 200 network hidden units; the

finding was replicated when we instead trained and tested clas-

sifiers using the three-dimensional MDS data (context-blocked,

84% correct; context-interleaved, 70% correct; unpaired t test,

t18 = 12.58, p < 0.001).

A parallel question is to what extent normalization impacts the

ability of networks to use the local context information. Specif-

ically, why is it that networks trained with blocked context and

no VI (Figure 3A), and that formed normalized representations,

did not use local context when we assessed their behavior

following VI at test (Figure 2). We hypothesized that, although

these networks form a neural geometry that would potentially

allow them to use the local context, without VI during training,

they do not learn an appropriate decoder that would permit

this to be used for context-sensitive behavior. We tested this

by retraining the decoder alone (freezing all weights and biases

except the final layer), and applying VI during retraining. We

found that after decoder retraining, networks exhibiting neural

state space alignment (i.e., with blocked training and no VI)

learned to use the local context information (comparing residuals

of the fit to local versus global models; paired t test t19 = �3.14,

p = 0.012) (Figure S4).

These investigations of the RNN neural state space offered

several insights about how transitive orderings (e.g., numerical

magnitudes) may be represented in different contexts. First, net-

works embedded arbitrary inputs onto parallel number lines in a

way that reflected their transitive ordering.When different ranges

of numbers occurred in different temporal contexts, these num-

ber lines were normalized so that each embedding space

stretched from ‘‘less’’ to ‘‘more’’ within that context. When VI

was applied at training, the number lines spread out in dimen-

sions orthogonal to the magnitude axis and it was presumably

this that facilitated the use of context-specific rather than

context-general information to help solve the task. When we

trained magnitude decoders, networks that formed normalized

neural codes permitted cross-context generalizations of relative

magnitude more readily than those that coded for the absolute

numerical value of each stimulus.

Human neural data
Finally, we turn to analysis of neural data recorded with scalp

EEG while humans performed the numerical comparison task.

Our main focus is the results of a multivariate analysis approach
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designed to interrogate the nature of the neural state space and

its alignment across contexts. However, we also observed uni-

variate signals with a right occipito-parietal focus that covaried

positively with magnitude and with target distance in an early

window (from 200–500ms post-stimulus) and signals that covar-

ied with local context distance over left posterior electrodes in a

later window (500–800 ms post-stimulus). These effects, which

survived correction for multiple comparisons using a familywise

error test, are shown in Figure 4C.

We constructed model RDMs on the basis of three variables:

numerical magnitude, context, and the pixelwise similarity

among inputs (Arabic digits). We then regressed these three

model RDMs (standardized by Z scoring) against a data RDM

obtained from scalp EEG patterns at each time point post-target;

for a point of comparison, we also conducted the same analysis

on the filler stimuli (Figure 4A). As expected, early time points are

dominated by visual similarity (left panel), for both targets (red

lines) and fillers (gray lines). The visual signal is stronger for the

filler numbers, which is likely to be due to the matching task par-

ticipants performed on the fillers which required them to pay

attention to the physical identify of adjacent filler stimuli. Howev-

er, from �600 ms, the EEG signals evoked by targets carried

information about both context and magnitude; the context in-

formation was weaker, and the magnitude information was ab-

sent for the fillers. We also tried to decode responses to target

stimuli (that were made with two fingers of the right hand) but

were unable to do so at any time point across the epoch (all p

values >0.2), making it unlikely that any partial correlation with

response drives these or any subsequent results.

Next, we usedMDS to visualize relations among the neural co-

des associated with each number in each context (Figures 5D

and 5E). Within each time bin, we fit a model that described

the number relations with three parallel lines in neural state

space. In Figure 5A, we show how the slopes of those number

lines vary over time using a sliding window approach, and in Fig-

ure 5D, we plot the first three dimensions of the neural state

space in the early window (200–500 ms) and late window (500–

800 ms). In the early period, it can be seen that there is a reliable

segregation of multivariate neural signals associated with each

of the three contexts, with the neural distance between numbers

within a context reliably smaller than those between contexts,

compared to an appropriate shuffled null distribution (p <

0.001). Moreover, although there appears to be an emergence

of three number lines (rightmost panel), the slopes of these lines

did not fall within the top 5% of a null distribution constructed by

shuffling the neural RDMs, and it can be seen that there is no

alignment among the centroids of these lines.

However, as we move into the later time bin (lower panels), we

can see that just as for the RNN, the numbers spread out along

parallel lines in the third dimension, whereas the three contexts

themselves were separated in the first two dimensions, lying

approximately at the apices of an equilateral triangle (left panel).

We also see a highly reliable effect of context as quantified by a

permutation test (p < 0.001). The third dimension seemed to

code for magnitude, with the lower numbers in each context ex-

hibiting negative scores along this dimension and the higher

numbers positive scores. To test this latter contention more

formally, we assessed the rank correlations between the cardi-
nalities and dimension value and found that they were much

more positive than would be expected by chance, when

compared to a shuffled control that randomly swapped the car-

dinality and number-dimension value assignments (Spearman’s

rank correlation, p < 0.001 for all three contexts). We assessed

the robustness of the association between cardinality and

dimension-value by asking whether the relationship would hold

if, in each context, the highest and lowest numbers were

removed. When we excluded the most extreme (highest and

lowest) numbers and repeated the Spearman’s tests, we found

that the association continued to hold for all three contexts (all

p values < 0.03). We also plotted the magnitude of each number

in each context against its value on the third dimension (Fig-

ure 5E). Positive slopes were recovered in each case, and the

slopes of the relationship between dimension scores and numer-

ical magnitudes weremore positive than expected by chance for

all three contexts, as evaluated relative to a control that

computed slopes from shuffled number-dimension value assign-

ments (all p values < 0.001).

Next, to quantify the geometry of these representations, we

created parametric families of RDMs and regressed them

against the neural data for each participant individually, mapping

how well systematic variation in the representations of numbers

and contexts explained the data. We began by fitting a simplified

model that assumed that number relations were described by

lines of equal length (full normalization), and used this model to

assess whether number lines were more parallel than expected

by chance in neural state space. As the lines are elongated along

the third MDS dimension only, we collapse the data across the

first two dimensions to consider the simplified case of 2D rota-

tion of the low and high context lines (with angles denoted qlow
and qhigh) with respect to the full. We then predicted the neural

data as a weighted sum of the ‘‘visual’’ and ‘‘context’’ model

RDMs shown in Figure 4A, as well as a ‘‘magnitude’’ RDM con-

structed from these two angles. We parametrically varied the an-

gles that were used to construct magnitude model RDM and ob-

tained the best-fitting solution for each participant. We observed

that the best-fitting line rotations were more concentrated

around 0� than would be expected by chance (Rayleigh test,

p < 0.006; qlow: R = 9.66, p < 0.015; qhigh: R = 11.37, p <

0.006), and in Figure 5C, we show the fit deviance across all par-

ticipants has a clear minimum at the origin, i.e., (qlow, qhigh) z
(0,0). In other words, the best fit overall is a model in which the

three lines (low, high, and full) are on average almost exactly

parallel.

The abscissa in Figure 5E is scaled such that relatively ‘‘small’’

and ‘‘large’’ numbers are spaced equally in the three contexts,

and under this scaling, it can be seen that the slope of the

best-fitting line is approximately equal in each context. This im-

plies that the number lines are normalized within a context to

span the same distance in neural state space, in a way that (in

theory) would allow for generalization of abstract information—

‘‘more’’ versus ‘‘less’’—between contexts. We tested this effect

statistically in a number of different ways. First, we fit number

lines to the MDS plots for individual participants (as we did for

the RNNs above), using the resulting estimates to compute the

indices for divisive normalization (DN; line length relativization)

and subtractive normalization (SN; relative centering of the lines).
Neuron 109, 1–13, April 7, 2021 7
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Figure 4. Human EEG encoding of context, magnitude, and visual similarity

(A) Model representational dissimilarity matrices (see inset) labeling the symbolic number within each context were regressed against the time course of neural

activity within each trial (x axis). The time course of regression coefficients is shown for both the filler trials (gray) and primary targets (red). The cluster-corrected

significance at each time point is indicated along the bottom of each figure. Coefficient time courses are shown resulting from regression against: an RDM

indicating the pixel-wise visual similarity between inputs (left panel), an RDM indicating the numerical magnitude of each input (middle panel), and an RDM

indicating the context (right panel). Error bars show SEM across participants.

(B) A visualization of the mean neural RDM across all participants.

(C) Univariate effects of magnitude, target distance, and local context distance rendered onto the scalp. Warm colors indicate positive relationship; cold colors a

negative relationship. Only effects that survived correction for multiple comparisons are shown.

See also Figure S2.
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The average DN index for humans was 0.95 ± 0.41, which was

statistically indistinguishable from 1 (the value expected for a

normalized code; p = 0.76) but greater than the relative length ra-

tio 11/16 (expected under an absolute code; t37 = 3.96, p <

0.001). Similarly, the value for SN was 0.93 ± 0.38, which was

indistinguishable from 1 (expected for a normalized code; p =

0.88) but greater than 0.5 (expected under an absolute code;

t37 = 6.84, p < 0.001). These results are depicted via the green

bars in Figures 3E and 3F.

Second, building on the approach described above, we fit

model RDMs that parametrically varied both the relative length

and offset between each line and attempted to predict the neural

data for each individual participant. To verify that any apparent

relativization in the number lines was not spuriously related to

normalization implicit in MDS, we conducted a parameter recov-

ery exercise, which showed that our model could recover the
8 Neuron 109, 1–13, April 7, 2021
precise form of the mental number lines under the assumptions

of both a relative and an absolute code (Figure S3). In Figure 5B,

we plot the average sum of squared residuals as a function of

these parameters to show that the global minimum does indeed

fall almost exactly on the point predicted by the relative (normal-

ization) model. When we used Bayesian model comparison for

group studies (Stephan et al., 2009) to compare the relative, ab-

solute, and reverse models, we found strong evidence for the

relative model, with exceedance probabilities indistinguishable

from 1 and the majority of participants (80.92% expected fre-

quency) explained by the relative model over the other two

models. Moreover, when we compared models across the full

space of line length ratios, we found strong evidence in favor

of a model with log(klow,high) �0.4, which corresponds more or

less exactly to that expected under a fully relative coding scheme

(Figure S5). This suggests that as for RNNs, the neural number
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Figure 5. Human neural activity normalizes the representation of magnitude

(A) Slopes of the relationship between number and dimension value calculated within a sliding temporal window for each context (blue, low; red, high; gold, full).

Slopes were normalized by a shuffled control. Asterisks show reliable deviation from zero.

(B) A contour map of the sum of squared residuals (averaged across the population) resulting from regressions of magnitude model RDMs that were constructed

by parametrically varying the line center offset (shown on x axis) and relative length (y axis) of each number line along the magnitude dimension. White dots

indicate parameter combinations defining three specific models: relative coding (normalization), absolute coding, and reverse coding (symmetric ‘‘anti-

normalization’’). See also Figure S5.

(C) A contour map of the sum of squared residuals resulting from regressions of magnitude model RDMs constructed by varying the angle between the lines of 3

number lines of the same length. In both (B) and (C), blue pixels indicate better fits.

(D) MDS visualization of human neural activity corresponding to the primary targets shown in each context, mapped into a three-dimensional space. Top panels,

early window; bottom panel, late window. The neural codes associated with each number form equidistant clusters according to the context in which the number

was presented (left panel). See also Figure S3.

(E) The position of each target along the third MDS dimension plotted against its numerical value. Each x axis is scaled to indicate ‘‘small’’ and ‘‘large’’ numbers in

each context. Plotted lines were fit to capture the slope of this relationship for each context and time-window. The slope of the best-fitting line is approximately

equal in each context for the late time window only. Filled circles show the state space representation of stimuli in each context; inset white numbers indicate the

corresponding Arabic number shown on the trial. Colored lines show the best fit lines model for quantifying the representational geometry.
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lines are normalized in a way that facilitates neural state space

alignment. For completeness, we also regressed the neural

network models against the human EEG data, finding that a

model with VI during training, cueing, and blocking fit best

(Figure S3).

We note in passing that this neural state space alignment im-

plies that humans represent numbers in each context with a rela-
tive code rather than an absolute code. This allows us to make a

further prediction about behavior: that the relative (but not abso-

lute) difference between successive numbers should be the best

predictor of decision accuracy and response times. We thus

computed the rectified difference in magnitude between two

successive primary targets (coded as absolute or relative values)

and regressed these models competitively to find that the
Neuron 109, 1–13, April 7, 2021 9
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relative distancemodel positively predicted participant accuracy

(t test on group-level brel, t37 = 2.99, p < 0.004), and negatively

predicted reaction times (t37 = �3.26, p < 0.002). However, the

absolute distance model did not predict either (babs, t values <1).

Finally, returning to the neural data, we tested directly whether

the neural codes in humans supported the generalization of

magnitude across contexts, conducting our analysis on the

average RDM across participants (Figure 4C) and projecting

the data into either the three-dimensional MDS space (Figure 5D)

or the highest dimensional space extractable from the RDM (38-

dimensional). We then trained binary logistic regression models

in the sameway as for the neural networks and compared gener-

alization performance to classifiers trained and tested on label-

shuffled data. We found that these neural signals indeed sup-

ported significant generalization of abstract magnitude when

trained and tested on the dimensionality-reduced data (three-

dimensional data, p < 0.001), and with a more marginal signifi-

cance, the full-dimensionality data (38-dimensions, p < 0.03

one-tailed). However, generalization was not significant when

trained and tested on the raw electrode data at the individual

participant-level (60-dimensional raw electrode data, one-sided

p = 0.323), presumably because the unprocessed signals re-

coded at the scalp are more noisy.

DISCUSSION

We studied the neural representation of number and context in

humans and neural networks performing a sequential magnitude

comparison task. Consistent with previous reports, we found

that human decisions were guided by local contextual signals

as well as memory for the previous item. This implies that hu-

mans maintain an estimate of the local average number within

a block to help guide responding when memory is weak. The

context-related decision information (‘‘context distance’’) is en-

coded in univariate neural signals over occipito-parietal elec-

trodes, albeit in a rather late window beginning at �500 ms

post-stimulus. These findings are broadly consistent with previ-

ous reports that where imperative information is weak or absent,

judgments are biased toward the central tendency of the stimu-

lation history (de Gardelle and Summerfield, 2011; Hollingworth,

1910; Jazayeri and Shadlen, 2010) and that (in the rodent) this

contextual information is coded in parietal circuits (Akrami

et al., 2018). Recurrent neural networks trained to perform the

task do not naturally use local contextual information when their

memory is fully intact. However, when their memory is artificially

rendered fallible during training, the networks also learn to capi-

talize on local contextual information to make judgments of rela-

tive magnitude in a way that closely resembles the human

participants.

Ourmajor question was the nature of the neural representation

of magnitude and context in humans and neural networks. We

studied this by reducing the dimensionality of neural signals re-

corded at multiple scalp electrodes in humans, and hidden unit

activations read-outs from neural networks trained to perform

the task, visualizing and quantifying the neural state spaces in

which each number and context was embedded. Themost strik-

ing finding is the highly conserved way that humans and neural

networks represent magnitude and context in this task. In both
10 Neuron 109, 1–13, April 7, 2021
model systems, magnitudes are projected onto parallel neural

‘‘number lines’’ whereby stimuli with greater magnitude differ-

ence elicited more dissimilar neural signals in each context.

Moreover, in both systems, these number lines are normalized

so that they span a common distance within neural state space,

meaning that the ends of each line correspond to ‘‘more’’ and

‘‘less’’—a relational quantity, rather than a specific numeri-

cal value.

A low-dimensional code for symbolic number has been re-

ported before in M/EEG signals (Luyckx et al., 2019; Spitzer

et al., 2017; Teichmann et al., 2018). This neural code must be

abstracted away from the physical properties of the inputs,

because physical similarity among Arabic digits is not deter-

mined by their relative cardinality. Here, we used two-digit

numbers, and so there was some unavoidable correlation be-

tween magnitude and physical similarity due to decade bound-

aries (e.g., 29 and 30), but we still observed a multivariate code

for number even after regressing out pixelwise similarity among

digits (Figure 4B), and no such code was observed for compara-

ble filler objects, so we think it is unlikely that putative magnitude

effects are driven by visual appearance. Similarly, because we

were unable to decode the response made by participants to

target stimuli (with two fingers of the right hand), we think it is un-

likely that putative magnitude effects are related to motor

signals.

However, rather than a generic code for number, we observed

that both humans and neural networks learned to additionally

segregate information by context, so that rather than a single

number line, we observed three parallel neural number lines. In

humans, this pattern did not occur instantly but emerged gradu-

ally over the course of the epoch. Early in the epoch (e.g., from

200 ms) neural signals distinguished context itself, an effect

that may have been driven in part by the different font color in

which targets occurred across blocks. During this early window,

we observed nascent number lines in distinct parts of state

space, but without parallel arrangement. From 500ms, however,

numbers were arranged into context-specific parallel num-

ber lines.

We argue that this neural geometry has at least two desirable

properties. First, it allows number information in each context to

potentially be kept separate. This is useful, because (as dis-

cussed above) when memory is imperfect, the local context pro-

vides helpful information about how to respond; if all numbers

were projected onto a single line, this contextual information

would be unavailable. Indeed, when we examined the state

spaces of neural networks that had not experienced virtual inac-

tivation during training, and that did not use local context dis-

tance as a cue, the three parallel number lines were much closer

together. In fact, when trainingwas interleaved so that time could

not be used as an additional cue for context, they lay virtually on

top of one another (Figure 3).

Second, the fact that number lines are parallel in neural state

space facilitates generalization between physically similar stimuli

that share a commonmagnitude. Irrespective of whether individ-

ual neurons exhibit specialized coding or exhibit mixed selec-

tivity, this neural geometry ensures that a linear decoder trained

to classify stimuli according to their magnitude in one context

could be successfully applied to read-out magnitudes in
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another, thus permitting cross-context abstraction (Bernardi

et al., 2020). Indeed, a long tradition emphasizes that humans

generalize naturally between space, time, and number, by using

a magnitude representation that is shared across different input

modalities (Hubbard et al., 2005; Walsh, 2003). This theory also

successfully predicts the existence of neurons that code for

magnitude with a shared code across input domains; such cells

have been identified in the parietal cortex of macaque monkeys

experiencing trains of auditory or visual pulses (Nieder, 2012). In

humans, the parietal cortex is a hub for numerical cognition

(Piazza and Izard, 2009) and a site where overlapping represen-

tations of ‘‘distance’’ signaled by spatial, temporal, or social

comparisons are observed in fMRI signals (Parkinson et al.,

2014). Similarly, when humans learned to rank images of animals

according to their probability of paying out a reward, shared

multivariate patterns in EEG signals come to code for the number

and value, as if there were a corresponding neural signal for

higher numbers and higher event probabilities (Luyckx et al.,

2019). Together, these findings imply a general principle

whereby neural state space alignment permits generalization

across contexts (Bernardi et al., 2020).

However, generalization of relational information between

contexts can be hampered by what we call the ‘‘mapping prob-

lem’’: the need to represent stimulus geometry on a common

scale. For example, our task requires participants to estimate

whether a number is reflective of ‘‘more’’ or ‘‘less’’ in each

context in case memory is imperfect. In recurrent neural net-

works, we can see that this is achieved as the neural number

lines are both subtractively and divisively normalized so that

they span a common distance along one axis of neural state

space, meaning that this axis runs from ‘‘more’’ to ‘‘less’’ rather

than simply indexing numerical value. This normalization should

improve generalization: indeed, when we tested this, we found

that in both humans and neural networks that state space align-

ment (e.g., those that enjoyed blocked training), it was possible

to generalize the notion of ‘‘more’’ versus ‘‘less’’ by training a

decoder in one context and testing it in another. However, gener-

alization was poorer in those neural networks whose geometry

was not indicative of neural state space alignment. Of note, no

normalization is explicitly engineered into our networks; rather,

they autonomously learn to encode numbers in this context-

normalized fashion because doing so enhances performance.

In humans, we observed evidence that supported the same

normalization process: the neural number line in the ‘‘full’’ condi-

tion appeared to be compressed to a similar length in neural state

space as that for the ‘‘low’’ and ‘‘high’’ conditions (divisive normal-

ization), and the centroids of the numbers were aligned along one

dimension (subtractive normalization). It has long been known that

biological brains are prone to normalize incoming sensory signals,

with neural activity typically expressed relative to the local average

response (Carandini and Heeger, 2011). Explanations for this

ubiquitous motif often focus on the need to make efficient use

of computational resources (Louie et al., 2013). For example, divi-

sive normalization helps make efficient use of the dynamic range

of a neuron or population, and subtractive normalization can

‘‘explain away’’ redundant information in an input signal (Rao

and Ballard, 1999). This theory predicts that numbers should be

coded within a common range in neural state space, but does
not dictate that they should be parallel, as observed here, or allow

generalization between contexts as our decoding analysis (dis-

cussed above) implies. Here, we suggest a role for normalization

(complementary to any role in efficient coding) in aligning neural

codes to facilitate generalization across contexts. Other studies

offer hints of a comparable process. For example, whenmonkeys

reproduced either long or short temporal intervals (contexts), the

underlying neural dynamics in the medial prefrontal cortex were

found to ‘‘stretch’’ or scale in time according to context (Wang

et al., 2018).

These suggestive findings notwithstanding, we acknowledge

that our datado not allowus to impute a direct causal link between

neural state space alignment and the deployment of the generaliz-

able concept of ‘‘more’’ or ‘‘less’’ for generalization—or, in the cur-

rent study, to facilitate performance on the target matching task.

We observed that neural networks trained and tested under

blocked conditions with VI (who exhibited neural state space

alignment) use the local context when information about the

past target is unavailable. However, the picture is nuanced by

the data from the networks trained without VI—who formed

closely overlapping but normalized neural number lines, but still

failed to use these to display local context-sensitive behavior.

This shows that although neural state space alignment may be

necessary for cross-context generalization, it is not sufficient for

the networks to use the local context. This is presumably because

although this neural geometry in theory permits the read out of an

abstracted code for ‘‘more’’ and ‘‘less,’’ it can only do so in the

presenceof an appropriate decoder.Consistentwith this explana-

tion, when we retrained the decoder of context-blocked networks

with no VI and applied VI during this retraining, the networks

learned to display context-sensitive behavior (Figure S4).

Our study leaves a number of other questions unanswered.

First, we focus here on a very simple form of relational abstrac-

tion—the transitive ordering implied by numerical magnitudes.

It remains to be seen whether the results described here gener-

alize to more complex relational structures. Second, because of

the limited spatial resolution of EEG, and the use of multivariate

methods that relied on electrodes from across the scalp, we are

unable to say much about the neural locus of our effects. On the

basis of the univariate findings (that highlight occipito-parietal

electrodes) and past work (Akrami et al., 2018), we think that

the parietal cortex is a likely candidate for representing magni-

tude in parallel, context-specific lines. However, we cannot say

this with confidence on the basis of the current data. Finally,

we note that normalization was not ubiquitous across the human

cohort. Within the late timewindow, a relativemodel fit better in a

majority of participants but was not ubiquitous. It would be inter-

esting to conduct more targeted tests to ask whether partici-

pants that normalize more effectively also generalize more

readily. These caveats aside, however, we believe that these

findings offer insights into the neural coding and generalization

of the concept of magnitude, a basic form of abstraction for hu-

mans (Walsh, 2003).

STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Human behavioral data This paper https://doi.org/10.17605/OSF.IO/G5XZK

EEG data This paper https://doi.org/10.17605/OSF.IO/G5XZK

RNN data This paper https://doi.org/10.17605/OSF.IO/G5XZK

Software and algorithms

MATLAB 2019b MathWorks RRID: SCR:001622

Python 3.8.5 Python https://www.python.org

PyTorch 1.6.0 PyTorch https://pytorch.org; RRID: SCR_018536

Psychophysics Toolbox-3 Brainard, 1997; Kleiner et al., 2007 N/A

Custom code for human data analysis This paper https://github.com/summerfieldlab/

Number_lines

Custom code for RNN training and analysis This paper https://github.com/summerfieldlab/

context_magnitude
RESOURCE AVAILABILITY

Lead contact
Further information and requests should be directed to and will be fulfilled by the Lead Contact, Hannah Sheahan (sheahan.hannah@

gmail.com)

Materials availability
This study did not generate new unique materials.

Data and code availability
Data have been deposited to the Open Sciences Framework (OSF) database, and can be accessed by the https://doi.org/10.17605/

OSF.IO/G5XZK. Code for the RNN simulations and analyses is available on github at https://github.com/summerfieldlab/

context_magnitude, and the code for the human data analyses is available on github at https://github.com/summerfieldlab/

Number_lines.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Thirty-nine human participants were recruited for the experiment through the recruitment system at the Department of Experimental

Psychology at the University of Oxford. One participant was omitted from the analyses due to technical difficulties with the EEG

equipment. All analyses were performed on the remaining 38 participants (15 female, 23 male, age = 27.11 ± SD 6.13). Participants

were required to have normal or corrected-to-normal vision, with no history of neurological or psychiatric illness. Participants were

compensated for their time at a rate of £10 per hour, with an additional maximum bonus of £5 determined by their performance in the

task in which they achieved lower accuracy (see below). The reward contingency was added to ensure participants would pay equal

attention to both tasks. Informed consent was given before the start of the experiment. The study was approved by the Medical Sci-

ence Inter-Divisional Research Ethics Committee (R49432/RE001).

METHOD DETAILS

Experimental procedure
Stimuli were created and presented using the Psychophysics Toolbox-3 (Brainard, 1997; Kleiner et al., 2007) for MATLAB (Math-

Works) and additional custom scripts. The tasks were presented on a 20-inch screen with a resolution of 1600 3 900, at a refresh

rate of 60 Hz and on a gray background. Viewing distance was fixed at approximately 62 cm. The ‘up’ and ‘down’ arrow keys on

a standard QWERTY keyboard were used as response keys for the numerical comparison task and the space bar for the number

matching task.
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The experiment was a dual-task rapid serial visual presentation paradigm, involving a numerical comparison task and a number

matching task (see Figure 1). In each block (n = 24), participants viewed a sequence of 120 two-digit numbers. Numbers relevant

for the numerical comparison task (‘‘targets’’) were presented in colored font, while those relevant for the number matching task

were presented in white (‘‘fillers’’). On presentation of a target number, participants were asked to compare its magnitude to that

of the previous target number in the stream, responding ‘up’ when it was greater and ‘down’ when it was smaller using their right

hand. Every target was followed by 2 - 4 fillers. Participants were asked to press space bar with their left hand when a filler number

was identical in magnitude to the previous target. This secondary task was imposed to keep participants focused on all numbers.

The event sequence was as follows. Each block started with the presentation of a central fixation cross (1000 ms) followed by two

placeholder hashtag signs (500ms). Each stimulus (number) was presented for 500ms with a fixed ISI of 1000ms after a target and a

variable ISI (750-1250ms) after a filler. Participants were free to respond from stimulus onset until 200ms before the onset of the next

stimulus (this avoided feedback signals overlapping with the presentation of the subsequent stimulus). If a response key was

pressed, participants received auditory feedback for 150 ms. Correct responses were followed by a high-pitch tone and all errors

resulted in a low-pitch tone. If participants failed to respond within the appropriate time window, a buzz sound was presented for

150 ms. At the end of each block, participants were informed about their percentage accuracy on both tasks.

One each block, targets (for the numerical comparison task) were drawn from a specific range. In the Low range context, numbers

were uniformly drawn between 25 and 35, in the High range context between 30 and 40 and in the Full range context between 25 and

40. The white filler numbers always spanned the entire range between 25 and 40 irrespective of block. The experiment consisted of 8

blocks of each context. Each context was associated with a unique color for the targets (blue: RGB = [86, 180, 233]; orange: RGB =

[230, 159, 0]; purple: RGB = [230, 120, 220]) and the color-to-context mapping was randomized between participants. The block or-

der was randomized in order to reduce temporal similarity between numbers from the same context. Each block contained 29 targets

(excluding the first colored number of the sequence), with a probability of 12% that at least one of the subsequent white numbers

matched the previous target. To prevent potential task switching costs, the white filler number immediately after a primary target

never required a response, but participants were not made aware of this feature. At the start of the experiments, participants first

completed 3 practice blocks of 144 trials each, one for each of the three contexts. These blocks did not count toward their final per-

formance bonus.

EEG acquisition
The EEG signal was recorded using 61 Ag/AgCl sintered surface electrodes (EasyCap, Herrsching, German), a NeuroScan SynAmps

RT amplifier, and Curry 7 software (Compumedics NeuroScan, Charlotte, NC). Electrodes were placed according to the extended

international 10-20 system, with the right mastoid as recording reference and channel AFz as ground. Additional bipolar electrooc-

ulography (EOG) was recorded, with two electrodes placed on either temple for recording horizontal EOG and two electrodes above

and below the right eye for vertical EOG. All data was recorded at 1 kHz and low pass filtered online at 200 Hz. All impedances were

kept below 10-15 kU during the experiment.

EEG pre-processing
The data were pre-processed using functions from the EEGLAB toolbox (Delorme and Makeig, 2004) for MATLAB and custom

scripts. First the data were down-sampled to 250 Hz, low-pass filtered at 40 Hz and then high- pass filtered at 0.5 Hz. The continuous

recordingwas visually screened for excessively noisy channels and thesewere interpolated by theweighted average of the surround-

ing electrodes. The data was then offline re-referenced to average reference. Epochs were extracted from 250ms before to 1000ms

after stimulus onset. Epochs were baselined relative to the full pre-fixation time window. Epochs containing atypical noise (such as

muscle activity) were rejected after visual inspection. We then performed Independent Component Analysis (ICA) and removed com-

ponents related to eye blink activity and other artifacts (manually selected for each participant).

RNN architecture
A simple recurrent neural network model was built to perform the same primary task as human participants. The network was trained

to transform symbolic inputs x on each trial t using a recurrent layer h(1), followed by a fully connected feed-forward layer h(2), which

projected to a single output node y. Rectified linear (ReLU) activation functions f(u)were applied to each of the two hidden layers and

a sigmoid activation function s(u)was applied to the output layer to constrain the response 0% y% 1. Thus the network took the form:

hð1ÞðtÞ = f
�
bð1Þ + Wð1Þ�Uhð1Þðt� 1Þ + VxðtÞ��
hð2ÞðtÞ = f
�
bð2Þ + Wð2Þhð1ÞðtÞ�
y = s
�
bð3Þ + W ð3Þhð2ÞðtÞ�
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whereU and V are binarymatrices used for concatenating the current input x(t) and the recurrent hidden activations from the previous

trial h(1)(t-1). Vectors b(i) are the biases on layer I, and the two hidden layers h(1) and h(2) were 220 and 200 units wide respectively.

Weights and biases on all layers were initialised with random samples from a uniform distribution spanning ± 1/sqrt(n), where n is the

number of nodes in the upstream layer. The hidden state on the first trial in the first block of each training and test set was initialized to

zero, and subsequent blocks were initialised with the final hidden state of the previous block. Neural networks were built and trained

in PyTorch (https://www.pytorch.org)

Training the network
Data was generated to simulate the trial sequence presented to the human participants, and so followed the same generation pro-

cedure. As in the human study, each block was 120 trials in length, containing 30 primary targets drawn from numbers corresponding

to a single context, while filler trials always spanned the full range. The order of blocks was pseudorandom and the number of blocks

in each context was balanced. However, unlike the human participants, the network had no a priori knowledge of numerical magni-

tude, and so many more blocks of trials (2880 blocks) were generated for training each network than the 24 blocks used per human

participant. The RNN was trained only to perform the primary task, and responses on the filler trials were ignored.

On each trial, the input vector x consisted of a one-hot representation of the current number, as well as a node indicating whether

the current trial was a primary target or a filler trial, and an (optional, see Context Manipulations) one-hot coded vector reflecting the

current context. The context cue was included to simulate the coloring of the primary targets by context range in the human exper-

iment. As filler trials were always white in the human experiment, the context cue inputs to the network were always zeroed on filler

trials. The primary target numbers input to the RNN for each context were sampled from the same distributions as in the human

experiment but were represented by one-hot codes spanning the ranges 1-16 (full range), 1-11 (low range), and 6-16 (high range)

to save on input nodes.

The network was trained to perform the primary task (numerical comparison) and during training received feedback on primary

target trials according to a binary cross-entropy cost function (but no feedback was given on the first primary target in each block).

Errors were backpropagated through time at the end of each block of trials and the weights updated with stochastic gradient

descent. Network outputs > 0.5 were interpreted as analogous to pressing the ‘up’ arrow key in the human experiment, meaning

that the current number was thought to be greater than the previous primary target while responses % 0.5 were interpreted as

presses of the ‘down’ arrow key. Training hyperparameters were fixed for all networks at 10 epochs, a learning rate 0.0001, and mo-

mentum of 0.9. Network parameters were frozen at the end of training, prior to test.

Each network was trained 10 times, with different random initialisations and random datasets. Each dataset consisted of a training

set (2880 blocks), and a test set for assessing the network activations (480 blocks).

Context manipulations
To isolate factors that could lead to context-separation and normalization in the RNN activations, we factorially controlled the pro-

vision of explicit context cues to the network (analogous to color in the human experiment), and the blocking of trials in time by nu-

merical context. We trained four groups of networks to fully cross these two factors. In each group of networks, context cue inputs on

primary trials either reflected the numerical range of the block, or these inputs were kept constant across all blocks. Additionally,

primary targets were either drawn from a single numerical range within a block, as in the human experiment, or primary targets within

each block were drawn from the global distribution of primary target numbers, which spanned all three numerical ranges. Therefore,

while the blocking of numerical range changed between groups of networks, the total number of times each number occurred as a

primary target across the dataset remained the same for all groups. For each network, the same manipulations were made across

training and test sets.

Virtual inactivation
Primary target trials were virtually inactivated (VI; zeroing the inputs that communicated number) randomly with probability ε during

training, and errors backpropagated. Groups of networkswere trainedwith one of four different VI probabilities, ε = f0:0; 0:1; 0:2; 0:3;
0:4g. Context was explicitly cued in the input for all networkswith VI during training. To evaluate whether the trained networks learned

to use numerical context when solving the primary task, we used VI on a single primary target in a test set with temporally blocked

contexts and assessed performance on the subsequent primary target. In effect, this forced the network to ‘guess’ whether the nu-

merosity of the current input was likely to be greater or less than a ‘forgotten’ previous primary target. Network weights were frozen

prior to any VI assessments on the test set. This process was repeated for all primary targets in the test set and post-VI performance

was taken as the mean percentage of trials that the network answered correctly, evaluated on the primary target trial after the VI.

RNN activations
Network activations were evaluated on the test set, and for each condition the test set had the same structure as its associated

training set (with the exception of VI which was not applied while network activations were measured). Inputs were passed to the

network as in training, and the activation of units in the final hidden layer h(2) was recorded and these activations averaged across

all presentations of the same number, context and trial type (primary, or filler) in the test set. The geometry of these activations
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was assessed separately for each trained model (Figures 3E and 3F) and the activations shown in Figures 3A–3D were computed by

taking the mean activations across all 10 models trained under each condition before MDS was performed.

RNN decoder retraining
Weassessedwhether, given the pressure of imperfectmemory, the normalized representations formed by networkswhichwere orig-

inally trained without VI, but with temporal blocking (Figure 3A), could be repurposed for context-dependent magnitude judgements.

We froze the weights and biases of all trained layers except the final layer, reinitialised the weights of this layer only and retrained the

network for 30 epochs, applying VI to alternate primary targets. In other words, we retrained the decoder for the representations

shown in Figure 3A with temporally blocked contexts and VI so that the network could benefit from local context use. After retraining,

we repeated the analysis performed on our original networks in which we used a paired t test to compare the residuals between the

network’s behavior under VI at test and theoretical performance limits under local and global context use. We repeated this retraining

procedure for networks originally trained under interleaved contexts and no VI, retraining under temporally blocked contexts with VI.

We then compared the residuals between the behavior of both sets of networks and a theoretical local context policy with an unpaired

t test. The results of these analyses are shown in Figure S4.

QUANTIFICATION AND STATISTICAL ANALYSIS

Behavioral analysis
Wemodeled participant accuracy on primary targets using a logistic regression model with predictors for the disparity between cur-

rent and past target number (target distance), the distance between the target number and the median number in the current block

(local context distance) and the distance to the overall median number (across all blocks; global context distance). To test whether

imperfectmemory waswhat drives the use of context, we also compared the influence of context on accuracy when therewere either

2, 3 or 4 intervening filler stimuli. We included an additional term in the previous regression to encode the interaction between number

of fillers and the local context.

In order to directly compare behavioral models that are based on the ‘‘absolute’’ and ‘‘relative’’ coding schemes, we performed a

complementary analysis in which we standardized numbers in two ways: either across the entire experiment (preserving the differ-

ences in mean and standard deviation between contexts) or within each context (so that numbers within a context had the same

mean and deviation). We then used these variables to compute the absolute difference inmagnitude between two successive targets

and asked whether it was possible to exploit the residual variance to pose the question of whether numerical distance in absolute or

relative space best explained RT or accuracy.

We entered these predictors into a regression for each participant individually, using logistic regression for accuracy, and log-

transforming RT to correct for the rightward skew:

pðcorÞ = F½b0 + b1 $ reldist + b2 $ absdist�
logðRTÞ = b0 + b1$reldist + b2$absdist

We then conducted group-level statistics using one-sample t tests on b1 and b2 in each case.

EEG: Univariate analyses
A regression-based approach allowed us to disentangle the influence of various variables on the univariate signal during the numer-

ical comparison task. Before running the regression, we used Principal Component Analysis (PCA) on the pre-processed data of each

participant to reduce noise in the signal. All epochs with primary targets were stacked over all electrodes and trials, creating a feature

matrix of (trials*electrodes) by time points. The first 43 principal components (PC) were retained, which on average explained 90% of

the data. The EEG data was then reconstructed by multiplying the PC’s with the estimated loadings and the reconstructed data was

subsequently used as the dependent variable in our linear regression model.

The regression model contained 4 regressors of interest: (1) numerical magnitude of the current primary target, (2) the

absolute difference of the current primary target to the previous target, (3) absolute difference between the current target

and the mean of the current context, and (4) absolute difference between the previous target and the mean of the current

context. We included two nuisance regressors to exclude alternative explanations of the univariate results: (5) visual simi-

larity of the current primary target with the previous target and (6) reaction time (RT) on the current trial. Visual similarity was

estimated as the correlation distance between black-and-white pixel images of two numbers as they were presented on

screen. Trials with no response or RTs beyond 2.5 SD of the inverse RT were excluded from analysis. All regressors

were z-scored before estimating the beta coefficients for each time point and electrode. For a control analysis, the same

regression model was repeated replacing the regressors coding for distance to the context mean with the distance to

the global mean for current and previous target.
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EEG: Representational Similarity Analysis (RSA)
We constructed neural Representational Dissimilarity Matrices (RDMs) from the EEGdata at each time point. First, data was z-scored

over all trials per electrode and time point. Condition-specific neural signals were estimated at each time point and electrode using a

regressionmodel with dummy codes for every number in each context (in total 38 predictors: 25-35 for Low, 30-40 for High and 25-40

for Full), where the beta coefficients reflected the average deflection in EEG signal per condition at each electrode. The residuals of

the regression were used to estimate the covariancematrix, which was subsequently used to increase the signal-to-noise ratio (SNR)

by noise normalizing (whitening) the averaged EEG data throughmultiplication with the negative half inverse covariancematrix (S�0.5)

at each time point (Walther et al., 2016). Finally, we calculated the Pearson correlation distance between each condition, resulting in a

38 3 38 RDM at each time point. To exclude the possibility that more observations in certain contexts were biasing the dissimilarity

measures, we constructed RDMs iteratively with subsampled data that equated the frequency of observations in each cell of the

RDM. We repeated the RDM construction 100 times, randomly selecting N observations per cell at each iteration, with N determined

by the minimum number of observations in any condition for a particular participant. The final neural RDM ðnRDMÞ then consisted of

the averaged RDM over all 100 iterations.

We constructed 3 candidate model RDMs that represented different potential structures in the neural signal: context, magnitude

and visual similarity. The contextmodel RDMassumed complete similarity (0) between numbers coming from the same range context

and complete dissimilarity (1) for numbers coming fromdifferent ranges. Themagnitudemodel RDMencoded the absolute difference

between each number in each context. The visual similarity RDM was calculated using correlation distance between the vectorized

black-and-white pixels of the numbers as they appeared on screen. The regression had the following form:

nRDM = b0 + b1$RDMmagnitude + b2$RDMvisual + b3$RDMcontext

All model RDMs were z-scored before entering in the regression to assess their relative contribution. Beta coefficients were esti-

mated at each time point and for each participant separately and the resulting beta series were smoothed over time for visualization.

Statistics are reported at the group level. Significant clusters were identified using cluster-corrected non-parametric permutation

tests (Maris and Oostenveld, 2007).

For a supplementary control analysis, two additional subject-specific models were added to the regression: a color model RDM

and a reaction time (RT) model RDM. For the model RDM representing the color space, RGB values were first transformed into CIE

1976 L*a*b* space to more accurately reflect human perception of color differences. The dissimilarity between colors was then in-

dexed through DE*, a measure of the color difference between two colors in CIELAB space. The RT RDMwas constructed by calcu-

lating the average RT to a number independent of the preceding number. RTs were cut-off based on the 2.5 standard deviation from

the inverse RT to control for outliers before averaging.

Representational geometry with RSA
We performed regressions that attempted to predict the neural data RDM ðnRDMiÞ for each human participant i. The predictors were

a set of z-scored RDMs (similar in form to those inset in Figure 4A and described above) that collectively encode the similarity be-

tween the neural signal evoked by each number in each context. The regression has the following form:

nRDM = b0 + b1$RDMmagnitude + b2$RDMvisual + b3$RDMcontext

To quantify the representational geometry of the neural number lines, we vary RDMmagnitude parametrically in a way that allows us to

estimate the best-fitting number line length for each participant. Specifically, we model the numbers in each context c as lying in an

ordered and evenly spaced fashion on a line ranging from�kc +mc to kc +mc on the third dimension of our simulated neural space. In

other words, kc determines the line length and mc determines the offset of the line center from the origin in each context.

For the full context, we assume kfull = 16=11; for the high and low context, we assume klow = khigh but otherwise allow the parameter

to vary freely. Because k determines the ratio of line length of the low/high to full conditions, it is natural to vary it logarithmically. Thus,

models where klow = khigh = 1 [or logðkcÞ = 0] assume that numbers are represented on an absolute scale (with no normalization). By

contrast, values of klow=khigh that are greater than 1 are indicative of normalization (with klow = khigh =
16
11 indicating full normalization);

those that are less than one indicate the converse, a sort of (perhaps counterintuitive) reverse normalization. Under this scheme, thus,

if best-fitting values of klow=khigh are reliably greater than 1 at the group level then this indicates evidence for normalization.

Simultaneously, we allowmc to vary in the range [-0.5, 0.5], assuming thatmhigh = �mlow andmfull = 0: This means that the lines in

the low and high context are offset in opposite directions from the origin with the line for the full context centered intermediate be-

tween the two. Thus, if mhigh = �mlow = 0 then the lines are all centered at the same point. This is what is predicted by the normal-

ization model. Note that if kfull = 16/11 and mhigh = �mlow = 0:5

�
16�11
16

�
= 0:1562 then each point on each line is equated for magni-

tude. This is predicted by a model proposing that neural codes for number are not normalized within context.

Systematically varying the values of mc and kc, for each model variant we construct RDMmagnitude as the Euclidean distance be-

tween each number and every other number in each context. Substituting this RDM in the equation above, for each participant,

we estimated coefficients exhaustively (using grid search) for values ofmc and kc. The sum of squared residuals (i.e., the model devi-

ance) of the resulting regressions are shown below as a contour map, averaged over the population, with blue pixels indicating lower
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values (better fit) in Figure 5B. We then used Bayesian model comparison for group studies (Stephan et al., 2009) to compare the

evidence for relative, absolute and reverse models. We also compared the full space of models defined by logðkcÞ by exhaustively

testing points along the line of offset = 0 (Figure S5).

Assessment of parallelism with RSA
We develop further the regression methods described above to assess the angles between the neural number lines. To deal with the

potentially high-dimensional search space involved in fitting freely oriented lines, we make some simplifying assumptions. First,

building on the results above, we assume that the numbers are spaced regularly and in order on lines of equal length (full normali-

zation). Second, because the lines are elongated along the third principal component only, we collapse over the first two dimensions,

reducing our problem to one of 2D rotation (rather than 3D). We can also fix the orientation of the number line for the full condition

(aligned to the 3rd dimension) and rotate the lines from the low and high conditions freely, because there exist identities in the solution

that allows all 3 lines to rotate. These simplifications allow us to define two parameters qlow and qhigh, which pertain to the angle of the

low and high number lines with respect to the full. We then use these rotations to define RDMmagnitude and use an identical regression-

based approach to identify the best fit to the neural RDMs at the per-individual participant level:

nRDM = b0 + b1$RDMmagnitude + b2$RDMvisual + b3$RDMcontext

Because we have only 2 parameters, we can visualize the deviance (sum of squared residuals) on a surface (Figure 4). We subse-

quently use a Rayleigh test to show that based on individual participant fits, the best-fitting rotations are more concentrated around

0� than would be expected by chance.

Model fitting to low-dimensional data
Neural state spaces were visualized by reducing the similarity data (RDMs) to three dimensions using multidimensional scaling with

metric stress (equivalent to plotting the first three principal components of the data). Next, we used a model fitting exercise, com-

plementary to the method described above, to characterize how the neural representation of number and context is organized in

this low-dimensional space.

To start with, we assumed that each context was characterized by a neural representation of numbers lying equally spaced on a

line, that the centroid of the [x,y,z] coordinates for the numbers in each context was the midpoint of this line, and that the three lines

(one for each context) were parallel. We fit a model with 6 degrees of freedom: parameters 1-3 were the lengths of the each of the

three lines, and parameters 4-6were the angles of the (parallel) lines in dimensions [x,y,z]. Themodel was fit using gradient descent to

minimize the discrepancy between simulated number positions and observed number positions in the low-dimensional neural state

space. We used parameter recovery to verify that this model could recover ground truth line lengths and orientations in a simulated

space (Figure S3). We used this approach both for human data (see Figure 4) and RDMs constructed from RNN hidden unit activa-

tions (see below and Figure 3). We used the same approach on the group mean similarity data (average RDM) and individual human/

network RDMs. For each subject (n = 38 humans; n = 10 RNNs), we fit three variants of the model: one in which the line lengths were

constrained to be the same (relative model); one where the line length in the full condition was constrained to be 16=11 times longer

for the full condition than low or high (reflecting the larger range; absolute model); and one where no constraints were imposed (free

model). The residuals (loss) of the absolute and relative models were compared using frequentist statistics.

The line length parameters estimated from the free model were used to compute indices of divisive normalization as follows:

dn =
llow + lhigh

2lfull

where li is the estimated length parameter for condition i. The index dn will thus be 1 for perfect normalization, i.e., when the line

lengths in full and low/high conditions are equal andwill approach 11/16 if the line length is reflective of the absolute range of numbers

in each context. The subtractive normalization index was calculated as follows:

sn = 1�
�½mfull � mlow� �

�
mfull � mhigh

�
2lfull

�

where mi is the center of dimension d for condition i. This index captures the relative offset of the centroid of the low/high conditions

from the full condition, normalized by the line length in the full condition. This index will approach 1 if there is full normalization (i.e., if

there is no offset) and 0.5 for full offset. We ensured that any meaningful offset occurred in dimension d = 3 by rotating the lines (using

the best fitting parameters 4-6) so that any elongation on a magnitude axis, if present, would occur in the dimension 3 (we also visu-

alized neural state spaces after this rotation had been applied).

Assessment of number ordering
The model fitting described above in which we regressed the magnitude RDM against the neural data captures the ordering of the

stimuli across all three number lines collectively. We also performed additional analyses to test whether the cardinality of each num-

ber was encoded along the third neural dimension in each individual line. We computed the slope of the relationship between the

number cardinalities and the dimension value in the group mean neural data, and for each context compared this to an empirical
Neuron 109, 1–13.e1–e8, April 7, 2021 e6



ll
Article

Please cite this article in press as: Sheahan et al., Neural state space alignment for magnitude generalization in humans and recurrent networks,
Neuron (2021), https://doi.org/10.1016/j.neuron.2021.02.004
null distribution consisting of 10,000 random permutations that swapped the number-dimension value assignments. We also

computed Spearman’s rank correlation as a measure of the association between variables because of its robustness and reduced

sensitivity to outliers and compared these to 10,000 random permutations that swapped number-dimension assignments.

As a complementary analysis, we assessedwhether the association between cardinality and dimension valuewould hold if, in each

context, the highest and lowest numbers were removed.We tested this in the same fashion as described above, although it should be

noted that the number of possible permutations for comparing the relationship in the data to is reduced.

Relating behavior to neural geometry
Wemodeled both reaction time and accuracy behavior with relative and absolute models, and obtained estimates of goodness of fit

as the squared error of the regression models including only a single term (either relative or absolute):

pðcorÞ = F½b0 + b $ reldist�
pðcorÞ = F½b0 + b $ absdist�
logðRTÞ = b0 + b$reldist
logðRTÞ = b0 + b$absdist

This yielded 4 estimates of goodness of fit, which we correlated with the model evidence from the absolute and relative models of

neural geometry at the individual participant level (modeling of neural geometry is explained in the Methods sectionMultidimensional

Scaling and Model Fitting). We used Spearman’s rank correlation to minimize the influence of outliers. The results showed that there

was variance in RT which related to the neural geometry. Specifically, the fit of the relative behavioral model predicted the fit of the

relative neural model, and the fit of the absolute behavioral model predicted the fit of the absolute neural model (all Spearman’s r >

0.5, all p < 0.001). No such relationship was observed for accuracy. This strong association validates our overall neural modeling

approach.

However, the difference in fit of the relative and absolute behavioral models did not predict the difference in fit of the neural models.

In other words, this was a general, but not a specific association – it is not the case, as far as we can tell, that those participants whose

neural data were relatively better fit by a relative model were also those whose reaction times were best fit by a relative model. This is

likely to be because the different predictions of the relative and absolute model are quite subtle, and it is hard to distinguish them at

the single-subject level.

Calculations of normative performance
To evaluate the usage of local context information by the RNN, we compared the post-VI RNN performance to two benchmark levels.

These benchmarks were calculated as the best overall performance achievable for an agent following each of two different policies

when presented with a primary target (and not the previous primary target). These were plocal: a policy that used the local context

information when responding. Under policy plocal the agent guesses the current primary target xA to be greater than the previous (in-

activated, forgotten) primary target xB if the current target is greater than themedian of the current range of primary targets, assuming

the range of primary targets was learned during training. We also evaluated performance under pglobal: a policy that used the global

context when responding. Under policy pglobal the agent guesses that the current primary target xA was greater than (inactivated,

forgotten) xB if xA is greater than the median of all primary targets across all contexts (which was similarly learned during training).

That is

plocal : xA > xB if xA > ~xlocal
pglobal : xA > xB if xA > ~xglobal

The probability that an agent following policy p responds correctly on a random trial is given by

Pp

�
c
		p; ~x
=

X
a

Pp

�
cjxA = a; p; ~x



PðxA = aÞ

For either the local or global case, applying one of the above policies gives

Pp

�
c
			p; ~x
 =

X
a= xmin

~xPðxA = aÞð1�PðxA > xBjxA = aÞÞ+
Xxmax

a= ~x + ε

PðxA = aÞPðxA > xBjxA = aÞ
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Under a context-blocked training and test regime, the distribution of xA is uniform across the local context range of primary targets

(full, low or high), and the distribution of xB is uniform across the same range with the exception that xA s xB. If NA is the number of

possible outcomes of xA, and NB the number of possible outcomes of xB, then

PðxA = aÞ = 1

NA
PðxA > xBjxA = aÞ = a� xmin

NB

The performance values presented in Figures 2 and S1 were then found by substituting values for xA for each context and policy.

Generalisation tests
To assess whether the representations formed by the neural networks and observed in the EEG data permitted magnitude to gener-

alize across contexts, for each context we trained a binary logistic regression model to classify stimuli as larger or smaller than the

context mean. In the networks the input to thesemodels were the activations produced by the final hidden layer in response to stimuli

in each context (the dimensionality-reduced data is displayed in Figure 3). Models were trained on activations corresponding to a

single context, and we tested generalization performance on the other two contexts. We repeated this exercise for all context folds

in each RNN, training and testing the big/small classifier on either the dimensionality-reducedMDS activations (3-dimensional), or the

full set of activations across all 200 hidden units (200-dimensional). For each trained network (10 per condition), we calculated the

mean generalization performance across all context combinations and used an unpaired t test to compare the scores between net-

works that had temporally blocked contexts to those for which contexts were temporally interleaved.

We repeated this analysis on the human EEG data. We first tested this on a subject-by-subject level, attempting to cross classify

stimuli in one context after training on the data from other contexts. We repeated the analysis on the group average data (obtained

from averaging RDMs across participants), and quantified our results by constructing an empirical null distribution using 10,000 clas-

sifiers trained on the same EEG data, but with stimuli labels shuffled within each context (we cannot compare to interleaved as we did

for neural networks, because we do not have the data for the humans). We repeated this analysis using both the low-dimensional (3-

dimensional) and high-dimensional (38-dimensional) group average data.

Model recovery
To verify that ourMDS pipeline yielded accurate results, we used a parameter recovery approach.We created synthetic data in which

each number was characterized by a simulated neural code that resembled that predicted by the ‘‘absolute’’ model. In other words,

each stimulus (number) was defined by a position in a coordinate space whose value on one dimension (dim 3) was the same for all

numbers of equivalent absolute magnitude (e.g., numbers 30 in low context and 30 in high context share the same coordinate value

on that dimension) and whose coordinate on a different dimension (dim 2) is determined by its context. We added noise to these syn-

thetic inputs and used them to create an RDM, exactly as we did for human neural data. Following exactly the processing pipeline

adopted for neural data, we then asked whether MDS could recreate the pattern of synthetic data we began with.

We specified the center of the lines in the low, high and full contexts at [0, -c, m], [0 0 -m]; [0 c 0] respectively, where c signals the

offset along dim 2 for each context, andm signals any offset from the center of the full line (along dim 3) in the low and high conditions.

We first attempted to recover the absolutemodel by setting c = 0.1 andm= 0.15.We define the spread of the number codes in the 3rd

dimension as [0.2 0.2 0.2*k] in low, high, full (where k = 16/11, i.e., the line in the full is longer by a factor of 16:11). We add a small

amount of noise to each neural pattern, and find that when we visualized the MDS, it indeed recapitulated the pattern in the synthetic

data (Figure S3).

Correspondence between RNN and human neural RDMs
We took RDMs from all 8 neural network conditions, generated by varying the following factors: (i) no VI versus VI during training, (ii)

blocked versus interleaved, and (iii) cued versus not cued. We regressed these against the whole-brain data RDM at each post-stim-

ulus time point in turn. Within the late period (500 – 800 ms post-stimulus) we saw the largest beta coefficients (slopes) for the model

with VI during training, cueing, and blocked training (Figure S3C).

To test for statistical significance, we calculated the residuals of the fit to each condition within the 500-800ms period and entered

them into a 23 2 x 2 ANOVA. This yielded a three-way (VI x cue x blocking) interaction F1,37 = 6.3, p < 0.02, qualifying the idea that VI

during training, cueing and blocking were all required for a good fit between human and model data.
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