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Human cognition is influenced not only by external task demands but also latent mental

processes and brain states that change over time. Here, we use novel Bayesian switching

dynamical systems algorithm to identify hidden brain states and determine that these states

are only weakly aligned with external task conditions. We compute state transition prob-

abilities and demonstrate how dynamic transitions between hidden states allow flexible

reconfiguration of functional brain circuits. Crucially, we identify latent transient brain states

and dynamic functional circuits that are optimal for cognition and show that failure to engage

these states in a timely manner is associated with poorer task performance and weaker

decision-making dynamics. We replicate findings in a large sample (N= 122) and reveal a

robust link between cognition and flexible latent brain state dynamics. Our study demon-

strates the power of switching dynamical systems models for investigating hidden dynamic

brain states and functional interactions underlying human cognition.
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F lexible and adaptive human cognition depends on dynamic
brain circuits that transiently link distributed brain regions
in response to moment-by-moment changes in task

demands1–6. However, a central unaddressed challenge here is
that human cognition is influenced not only by (known) external
task demands but also by (unknown) latent mental processes that
change with time. Uncovering hidden brain states and their
dynamic spatio-temporal evolution in relation to cognitive task
demands remains an important unresolved problem in human
cognitive neuroscience research7. Progress in tackling this chal-
lenge has been limited due to a lack of appropriate computational
tools for quantitative characterization of hidden brain states and
their dynamic functional properties such as state transition
probabilities and time-varying functional connectivity. To address
this challenge here we develop and apply novel unsupervised
learning procedures based on Bayesian switching linear dyna-
mical systems (BSDS) to identify latent brain states and char-
acterize their dynamic spatiotemporal properties. Our approach
overcomes major limitations of existing methods for studying
dynamic interactions in the human brain and provides a novel
integrated framework for identifying latent brain states and
dynamic brain connectivity during cognition. The scientific
aspect of our investigation focuses on dynamic brain states and
circuits associated with frontoparietal cortical regions involved
in working memory (WM), a process fundamental to human
cognition8–10.

The investigation of time-varying, context-dependent, brain
states is a challenging computational problem because of the
inherent complexities of nonlinear and latent dynamical processes
that characterize brain function1,3–6,11. Importantly, changes in
brain states and connectivity can be induced by external stimuli
and by latent factors, such as motivation, alertness, fatigue and
momentary lapse in attention, which can dramatically impact
behavior12–14. To address this challenge, we leverage advances in
machine learning15,16 and switching linear dynamical systems
models15,17,18 to identify hidden brain states and dynamic brain
connectivity using noninvasive fMRI recordings. We demonstrate
that probabilistic models can uncover behaviorally significant
hidden functional circuit dynamics in the human brain.

A notable feature of the current study is that our computational
approach overcomes several major limitations of existing methods
for probing dynamic processes in the human brain19. The appli-
cation of extant approaches to cognitive task-based fMRI is parti-
cularly problematic because they do not capture the effects of latent
brain processes arising from intrinsic functional connectivity and
internal mental processes. Furthermore, previous approaches for
characterizing dynamic interactions in the human brain have pri-
marily been based on sliding window and clustering techniques
applied to observed resting-state fMRI data1,19–26. Consequently,
little is known about hidden brain states, their temporal evolution,
their underlying dynamic functional circuits, and their relation to
behavioral performance during cognitive tasks such as WM. Most
previous studies in the field have relied on ad hoc procedures for
determining critical parameters, such as the window length and
number of brain states, which are known to greatly influence the
estimation of dynamic brain states and connectivity19. Thus, new
models based on unsupervised learning procedures for identifying
latent brain states, their temporal evolution, lifetimes and occur-
rence of states, and their switching probabilities are needed for
analysis of latent brain dynamics in human fMRI data. BSDS
achieves this by using continuous state-space representations in a
nonlinear manifold that are modeled via a system of switching
state-space models.

BSDS implements an unsupervised learning algorithm that
determines hidden (latent) brain states and dynamic switching
processes from observed data. Briefly, each brain state is associated

with a unique dynamical process that captures time-varying func-
tional connectivity in an optimal latent subspace. Importantly,
BSDS does not require arbitrary moving windows nor does it
impose temporal boundaries associated with predefined task con-
ditions. BSDS applies a hidden Markov model (HMM) to latent
space variables of the observed data, resulting in a parsimonious
model of generators underlying the observed data—this is contrast
to previous approaches that have applied HMMs directly to
observed MEG27 and resting-state fMRI28,29 data. These and other
features (Methods) allow BSDS to uncover latent brain states, their
temporal evolution, volatility, and persistence over time, probability
of transition to other brain states, and non-optimal brain state
transitions that impair performance. Finally, the temporal evolution
of brain states and the covariance structures of each state can be
used to extract moment-by-moment connectivity patterns and
dynamic functional networks associated with each brain state.

We applied BSDS and other novel computational analyses to
fMRI data obtained during a WM task that required participants
to switch between different levels of cognitive load. WM, the
ability to maintain and manipulate information in the absence of
sensory input, is a fundamental component of a wide range of
cognitive tasks8,9. In virtually all analyses of such cognitive tasks
with time-varying cognitive load it is assumed that brain states
are perfectly aligned with experimentally determined task para-
meters. The lack of appropriate computational tools has pre-
cluded examination of hidden brain states underlying WM, the
transition between task conditions, and individual differences in
engagement of latent brain states.

We leveraged high-temporal resolution fMRI data (sampling
time= 0.72 s) acquired during an n-back WM task from multiple
sessions across a large cohort of adults (N= 122) who participated
in the Human Connectome Project (HCP, http://www.human
connectome.org/). We focused our analyses on key nodes of the
salience, central executive, and default mode networks (SN, CEN,
and DMN, respectively), three large-scale cingulo-opercular and
frontoparietal neurocognitive networks whose dynamic interactions
play an essential role in cognition and WM in particular9,10,30,31.
Using BSDS we uncovered multiple critical spatiotemporal prop-
erties of latent brain states, including (i) occupancy rates and mean
lifetimes of task dominant and non-dominant brain states, (ii)
transition states and their relation to flexible task switching, (iii)
probability of transitions across states, (iv) dynamic functional
networks associated with distinct brain states, and (v) brain states
that best predict cognitive performance and decision-making
dynamics. We identify optimal brain states associated with WM
and test the hypothesis that failure to engage them, and switch
between different latent states, significantly impairs cognitive per-
formance and context-specific decision-making. Finally, we demon-
strate the replicability and robustness of our findings across sessions.

Results
Validation of BSDS using simulations and opto-fMRI stimu-
lation. Figure 1 describes the key elements of our BSDS model; a
detailed description of the mathematical formulation and its
algorithmic implementation for estimating latent brain states and
dynamic brain connectivity is described in Methods (see also
Supplementary Methods, Supplementary Fig. 1, Supplementary
Tables 1–3).

To validate the BSDS model, the robustness and accuracy of
BSDS in identifying brain states and dynamic functional
connectivity were first tested in simulated data. We used neuronal
mass and spiking network models and examined whether BSDS
can accurately identify ON and OFF states in simulated data.
Simulations using the neuronal mass model were carried out
using The Virtual Brain (TVB)32, a state-of-the-art platform for
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large-scale brain network modeling. Simulations utilized a
dynamic mean field model33 which approximates the temporal
dynamics of a population of spiking neurons. Recent work has
demonstrated the efficacy of such models in emulating important
features of human brain activity34,35. We performed several
simulations of a three-node network using different random
initial conditions and noise streams. Each simulation run
contained five 60 s ON/OFF task cycles. Task was modeled by
stimulating node 1, providing 0.1 nA current with 5 ms pulse
width at a rate of 50 Hz for the duration of each 20 s ON block
(Fig. 2a). We applied BSDS to the resulting time series and found
that it could precisely estimate the onset and offset of each
simulated ON/OFF task block based on their unique connectivity
patterns.

Next, we examined whether BSDS could uncover latent states
in a more realistic neurobiological circuit with a complex mix of
excitatory–inhibitory interactions between neuronal ensembles.
Here we leveraged prior work on a standard cortical-basal
ganglia-thalamus circuit utilizing Nengo36. Seven nodes of this
circuit encompassing the basal ganglia (globus pallidus internal,
globus pallidus external, subthalamic nucleus, striatum D1,
striatum D2), thalamus and motor cortex were constructed using
ensembles of leaky integrate-and-fire neurons37. To mimic
multiple task conditions with individual (subject) variation, three
different 16-dimensional input vectors were selected for each
(subject). As with the TVB model, Nengo-based simulations
accurately uncovered the onset and offset of each simulated block
based on their distinct connectivity patterns (Fig. 2b). These
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Fig. 1 The Bayesian switching dynamical systems (BSDS) model and dynamical measures. a Graphical representation of the BSDS model (see also
Supplementary Fig. 1). yst is the observed vector of ROI time series at time t for subject s, zst denotes the latent states that are interdependent through a
first-order Markov chain constrained by a hidden Markov model (HMM) parameterized by θHMM. In any given state, observations yst are assumed to be
generated from a factor analysis (FA) model where θFA indicates FA model parameters and xst are the latent space variables (factor source variables) of the
model. Latent variables are further assumed to be generated using an autoregressive (AR) model, where θAR indicates the AR model parameters
(Methods). b Group-level application of BSDS in which all model parameters, including number of states, are learned primarily from the data. BSDS takes
sequences of ROI time series from all subjects as input data. The output of the model is the posterior distribution of all group model parameters,
q θHMM� �

; q θFA
� �

; qðθARÞ� �
, and posterior distribution of latent state and latent space variables, q zst

� �
and q xst

� �
;8t; s:, respectively. c Temporal evolution of

states indicates state membership at a given time and for a given subject. Temporal evolution of states are computed using posterior distribution of the
latent state variables, q zst

� �
, and group model parameters (specifically: q θHMM� �

) input to a Viterbi decoder. Optimal number of states, their occupancy
rates, mean lifetimes, and switching probabilities are extracted from temporal evolution of states (Supplementary Methods). d Learning subject-level
posterior distribution of the model parameters: qs θHMM� �

; qs θFA
� �

; qs θAR
� �� � 8s ¼ 1; ¼ ; S. To learn the subject-level model parameters, BSDS was applied

to data from a given subject in an informative fashion. BSDS was initialized using posterior distribution of the latent sate and latent space variables that
were previously learned from b. BSDS then combined priors with the subject data to learn the posterior distribution of its model parameters. Moment-by-
moment covariance structures, 8t; s; were then obtained from temporal evolution of states and subject-level covariance matrices for each state
(Supplementary Methods)
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results demonstrate the robustness and accuracy of BSDS in
identification of brain states and functional connectivity in
neurobiologically realistic simulated data.

To further illustrate the power of BSDS in uncovering latent
brain dynamics we used whole-brain rodent optogenetic fMRI
(opto-fMRI) data acquired during stimulation of primary motor
cortex (M1)38,39 (see Methods for details of data acquisition and
analysis). Opto-fMRI is an optimal tool here as it allows for
probing the direct effects of in vivo brain stimulation to
characterize dynamic brain states and functional connectivity
between stimulated and downstream target brain regions. fMRI
time series were extracted from M1, the thalamus, a downstream
target, and the insula, a non-activated control region39. When
applied to time series extracted from these regions BSDS revealed
three distinct states: as expected, we detected robust ON and OFF
states that were consistently aligned, but not completely defined,
by the external optogenetic stimulation protocol (Fig. 2c). More
interestingly, BSDS revealed a third state that appeared
immediately before and after the onset of the ON state (Fig. 2c).
Thus, BSDS not only uncovers task-induced brain states, but also
latent transition states and their temporal boundaries.

Latent brain states during WM and task-boundary alignment
WM. To address the main scientific goal of our study, we char-
acterized latent brain dynamics, including latent states, their

occupancy rates and transition probabilities, relation to task onset
and offset, dynamic functional connectivity and relation to task
boundaries (Fig. 3c) using high-temporal resolution fMRI data
from the HCP. These data were acquired in two separate sessions
and each session included a run with multiple blocks of a 2-back
WM task, a 0-back control task and a passive fixation (rest)
condition (Fig. 4b)40. Data from the two sessions were analyzed
separately to determine robustness and replicability of our
findings.

We applied BSDS to cingulo-opercular, lateral frontoparietal,
and default mode network regions that showed the strongest WM
load-dependent activations and deactivations in this group of 122
participants. Consistent with previous studies of WM, this
included key nodes of the SN, CEN, and DMN: bilateral anterior
insula (AI), middle frontal gyrus (MFG), frontal eye field (FEF),
intraparietal sulcus (IPS), right dorsomedial prefrontal cortex
(DMPFC), left ventromedial prefrontal cortex (VMPFC), and
posterior cingulate cortex (PCC) (Fig. 3a, b).

Next, we used BSDS and classification analysis to probe latent
brain dynamics associated with these network nodes, including
distinct brain states, their fluctuations over time and their relation
to experimental manipulation of WM load. BSDS isolated four
dynamic brain states, each with a distinct pattern of covariance
across SN, CEN, and DMN nodes, and brain states were matched
between the two sessions (Methods; Supplementary Tables 4, 5).
The four brain states were only partially aligned with onset and
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offset of the three experimental task conditions (Fig. 4a, b).
Analysis of the moment-by-moment correspondence between the
posterior probabilities of individual brain states and the actual 2-
back, 0-back, and fixation (rest) conditions using a multiclass
classifier revealed within-session and cross-session cross-

validation accuracies that significantly exceeded the chance level
of 33%. However, prediction accuracies ranged from 49 to 55%,
far less than would be expected from a complete alignment with
temporal boundaries of task onset and offset (Supplementary
Fig. 2).
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Occupancy of latent brain states during WMWM. The 2-back,
0-back, and fixation conditions were each dominated by distinct
brain states designated SH (high-load state), SL (low-load state),
and SF (fixation state) respectively (Fig. 4d). The brain state
dominant during the 2-back WM task condition had an occu-
pancy rate of 52.9 ± 13.9% in session 1, while the other three non-
dominant states had occurrence rates of 35.3 ± 10.7, 5.8 ± 5.7, and
6.0 ± 4.6%, respectively. In both Sessions, the occurrence of the
dominant state during the 2-back condition was significantly
higher than the occurrence of other non-dominant states (all ps
< 0.001, two-tailed t-test). The mean lifetime of the dominant
state in the 2-back condition was 10 ± 4 s in both sessions, sig-
nificantly longer than the mean lifetime of the other non-
dominant brain states (all ps < 0.001, two-tailed t-test), but much
shorter than the 27.5 s task block (Fig. 4e). Thus, the 2-back
condition is characterized by a mixture of brain states, with the
dominant state active for only a relatively short interval. A similar
pattern was observed for the states that were dominant in the 0-
back and fixation conditions (Fig. 4d, e). These results demon-
strate that the WM task is characterized by latent task-induced
states whose fractional occupancy is relatively short compared to
the task blocks.

A novel transition state during WM. In addition to SH, SL, and
SF, BSDS uncovered a fourth (transition) state (ST in Figs. 4 and
5). The occupancy rate and mean lifetime of this state during the
2-back, 0-back, and fixation conditions was lower than the three
other states (<25% and 3 s, respectively). ST was more likely to
occur during transition after the onset of new task blocks (32 ±
16% in session 1 and 44 ± 14% in session 2, Fig. 4f, Supplemen-
tary Fig. 3), significantly higher than other latent states in both
sessions (all ps < 0.001, two-tailed t-test). These results demon-
strate that cognitive tasks with multiple conditions are char-
acterized not only by latent task-induced states but also by
transition states.

Transition probabilities of latent brain states during WM.
Next, we used BSDS to investigate dynamic temporal properties
of transitions between hidden brain states. A powerful feature of
BSDS is that it provides moment-by-moment estimates of the
probability of either switching between latent states or staying
within the same brain state. We computed the state transition
matrix for each participant and first examined the likelihood that
a brain state at time instance t remained within the same brain
state in the previous time t− 1. This analysis revealed that all four
brain states are sticky: i.e., states are not volatile from one-time
step to another, they persist over time (Fig. 5), but, as shown
above, they also do not persist over the entire durations of task
blocks. These findings are significant because they suggest that
latent brain states are stable over time.

State transitions during WM are constrained by switch paths.
We next analyzed dynamic properties associated with switching
from one brain state to another. Interestingly, this analysis
revealed that while most brain states switch between each other in
an equi-probable manner, the dominant states in the high-load 2-
back WM task and fixation conditions (SH and SF, respectively)
do not directly switch between each other (Fig. 5d). By further
examining specific state switching paths (Fig. 5e, Supplementary
Table 6), we determined that transitions between SH and SF
requires passing through SL or through ST. Thus, the brain state
that dominates the high-load WM condition does not suddenly
shift to the state that dominates the fixation condition without
first accessing a state associated with an intermediate cognitive
demand.

Dynamic latent state brain connectivity changes during WM
WM. We next examined dynamic functional connectivity pat-
terns associated with each latent brain state (Fig. 6). Multivariate
analysis was first conducted to determine patterns of functional
connections that differentiated the latent brain states. We found a
consistent pattern of connections that differentiated brain states
in both Sessions 1 and 2. Each state determined by BSDS was
associated with a distinct pattern of functional connectivity
between SN, CEN, and DMN nodes (Fig. 6a–d). Importantly,
classifiers based on connectivity features accurately and reliably
differentiated between all latent brain states (all ps= 0.002, per-
mutation test, Supplementary Table 7). Analysis of specific links
using univariate link-by-link analysis revealed that SH, which
dominates the 2-back condition, compared to SL, which dom-
inates the 0-back task condition, showed stronger connectivity of
right front-parietal CEN nodes (ps < 0.05, two-tailed t-test, FDR-
corrected for multiple comparisons, Fig. 6e, f).

Dynamic brain connectivity of transition states during WM.
Crucially, the transition state, ST, had the strongest connectivity
within and between the SN, CEN, and DMN nodes in both ses-
sions (ps < 0.05, two-tailed t-test, FDR-corrected for multiple
comparisons, Fig. 6e, f). Thus, as expected, the state that dom-
inates the 2-back high-load WM condition has higher fronto-
parietal connectivity compared to the state that dominates the 0-
back low-load condition. The surprising finding here is that it was
the novel transition state, ST, identified by BSDS that was highest,
with higher and more extensive enhancements in connectivity
than even the state SH that dominates the high-load WM
condition.

To further characterize the unique functional organization of
ST, we conducted network analyses and computed degree and
betweenness centrality of each region of interest (ROI) for each
latent brain state. We found a significant interaction between
region (11 ROIs) and state (four latent states) for both node
degree and betweenness centrality (p < 0.001, two-tailed t-test).
Post-hoc t-tests revealed that DMPFC has significantly higher
node degree than all the other ROIs in state ST (all ps < 0.001,
two-tailed t-test) and significantly higher node betweenness
centrality than all the other regions but left FEF (all ps < 0.01,
two-tailed t-test). Furthermore, DMPFC has significantly higher
node degree in ST than all the other states (all ps < 0.001, two-
tailed t-test) and has significantly higher betweenness centrality in
ST than SL and SF (all ps < 0.05, two-tailed t-test, Supplementary
Fig. 4). Multiple comparisons were corrected using Bonferroni
procedure. All of these results were replicated across Sessions
1 and 2.

Latent brain states predict WM performance. To probe the
relation between latent brain states and task performance, we
took advantage of a key feature of BSDS, which provides esti-
mates of moment-by-moment changes in brain states and con-
nectivity. We examined whether time-varying brain state changes
could predict WM performance. Specifically, we trained a mul-
tiple linear regression model to fit estimated the 2-back accuracy
using occupancy rates of brain states in the 2-back condition,
applied the model on unseen data to predict accuracy, and
evaluated model performance by comparing estimated accuracy
and observed value across all the subjects. This analysis revealed a
significant relation between predicted and actual accuracy (all
ps < 0.001, Pearson’s correlation, Fig. 7a). Notably, each of these
results was replicated in both Sessions 1 and 2, highlighting the
robustness of our brain behavior findings.

We then tested the hypothesis that the occupancy rate of
individual brain states in the 2-back condition is associated with
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Fig. 5 Dynamic switching properties of latent brain states. a–c State transition probability, defined as the probability that a latent brain state at time
instance t stays in its own state or switches to other states at time instance t− 1, for each of the four latent states that were identified in the three task
conditions. States are persistent over time in each of the task conditions, i.e., they are more likely to stay in their own state rather than to switch to other
states in the next time point (ps < 0.001, two-tailed t-test). d State transition probability diagram illustrating that the state SH, which dominates the 2-back
task condition, does not switch directly to SF, the state which dominates the fixation condition, and vice versa. As shown in a–c the transition probability
between these states was zero. e Analysis of likely switching paths between SH and SF, revealed that these states first pass through SL and ST
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Fig. 6 Dynamic functional connectivity patterns that distinguish latent brain states. a, b Brain connectivity patterns that distinguish the latent states SH, SL,
and ST in Sessions 1 and 2, respectively. The pink and orange nodes represent SN and CEN ROIs, respectively, activated during WM, while the green nodes
represent DMN ROIs deactivated during WM. The red and blue edges represent positive and negative nonzero weights. c, d Common patterns of
connectivity that distinguish latent states in both sessions. e, f Specific links that showed significant differences in functional connectivity between latent
brain states in Sessions 1 and 2, respectively. State SH, which dominates the 2-back WM task, showed higher frontoparietal connectivity compared to the
state SL which dominates the 0-back low-load condition. Crucially, it was the transition state ST which had the strongest connectivity. Cells are color-coded
and scaled by t-score (ps < 0.05, two-tailed t-test, FDR corrected)
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performance in the 2-back block. We found that WM task
accuracy was positively correlated with the occupancy rate of the
dominant state, SH, in the 2-back WM task condition (all ps <
0.001, Pearson’s correlation, Fig. 7b). Conversely, the occupancy
rate of non-dominant brain states during the 2-back task was
associated with poorer performance (Supplementary Table 8).
Thus, the dominant state SH is a behaviorally optimal brain state

for 2-back working performance—the more time spent in this
brain state the better WM task performance, with more
deviations leading to poorer performance.

Next, we investigated the mean lifetime, another key feature of
temporal evolution of latent brain states, in relation to WM
performance using the same analytic procedures described above.
We found that the mean lifetimes of the latent brain states in the
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2-back condition predicted WM task accuracy (all ps < 0.005,
Pearson’s correlation, Fig. 7c); furthermore, the mean lifetime of
SH in the 2-back task was correlated with 2-back task accuracy
(all ps < 0.005, Pearson’s correlation, Fig. 7d; Supplementary
Table 9). Occupancy rate of the state SH was the most robust
predictor of WM performance in the 2-back task even after
controlling for age, gender and ethnicity (Supplementary
Table 10). Finally, we confirmed these results using non-
parametric Spearman’s correlation (Supplementary Tables 11
and 12). Thus, maintenance of optimal hidden brain states results
in better WM task performance.

Latent brain states predict decision-making dynamics. To
determine whether the optimal brain states, identified above, are
associated with efficient decision-making, we used a hierarchical
drift-diffusion model to estimate the drift rate, decision threshold
and non-decision time based on reaction time data from each
participant41 (Fig. 8a). We found that both the occupancy rate
and mean lifetime of the dominant brain state during the 2-back
WM task, SH, was correlated with the drift rate, indicating that
more the time spent during this state, and the longer the duration
of this state, the faster the accumulation of evidence to reach the
decision threshold (all ps < 0.005, Pearson’s correlation, Fig. 8c, e;
Supplementary Tables 13 and 14). We confirmed the robustness
of this result using a multiple linear regression model with cross-
validation in data from both Sessions 1 and 2 (all ps < 0.001,
Pearson’s correlation, Fig. 8b, d). This finding suggests that higher
occupancy and longer dwelling time of the dominant brain state
contributes to faster and more efficient information processing
during the high-load WM condition.

Robustness of findings with respect to ROI selection. To
examine the robustness of our findings with respect to ROI
selection, we conducted a complete set of parallel supplemental
analyses using functional clusters from brain networks derived
using ICA on resting-state fMRI42. All major findings were
replicated with this more general resting-state network-derived
choice of ROIs (Supplementary Note 1, Supplementary Figs. 5–7,
Supplementary Table 15).

Robustness of findings with respect to head movement. To test
the robustness of our findings with respect to motion, we con-
ducted additional analyses using 12 head motion regression
parameters and replicated all the key findings (Supplementary
Note 1, Supplementary Figs. 8 and 9, Supplementary Table 16).

Performance of related HMM-based models WM. Next, we
examined a broad class of HMM-based methods and applied
them to opto-fMRI and n-back WM fMRI task data, including
Hierarchical Dirichlet process hidden Markov model43, Hier-
archical Dirichlet process autoregressive hidden Markov model15,
Hierarchical Dirichlet process switching linear dynamical sys-
tems15 and Bayesian switching factor analysis29. These methods
were unable to handle model complexity and either overestimated

uncertainties resulting in over-pruning of the latent states thereby
converging to a single state, or underestimated uncertainties
resulting in multiple states (>10) with little resemblance to the
underlying task (Supplementary Note 1; Supplementary Figs. 10–
15).

Performance of temporal clustering techniques during WM
WM. Finally, we examined temporal clustering, an approach that
is widely used to investigate dynamic functional connectivity in
the human brain20,44,45. Briefly, this included: (1) ICA to identify
functional clusters from Shier et al.42 and extracting time series
from the ROIs, as described above, (2) applying a sliding window
on the time series and estimating time-varying covariance
matrices, (3) clustering based on time-varying covariance matrix,
and (4) determining the optimal number of clusters. Clustering
analysis revealed that the optimal number of clusters was 2 in
both data sessions (Supplementary Note 1; Supplementary
Fig. 16). Thus, despite the presence of three separate task con-
ditions, only two dynamic brain states could be identified using
this approach (Supplementary Note 1; Supplementary Fig. 17).
Crucially, we did not find any significant correlation between the
occupancy rate of any latent brain states in the 2-back task blocks
and WM accuracy (p > 0.6, Pearson’s correlation, Supplementary
Table 17).

Discussion
Uncovering hidden brain states and their dynamic spatio-
temporal evolution in relation to cognitive task demands is a
central problem in human brain research. To address this chal-
lenge, we developed a state-space approach that identifies
moment-by-moment changes in dynamic brain circuits using a
rigorous Bayesian Switching Dynamical Systems (BSDS) model.
Novel computational tools and unsupervised algorithms allowed
us to, for the first time, address critical questions about context-
dependent latent brain dynamics, including identification of (i)
time-varying functional connectivity, (ii) dynamic functional
networks associated with distinct brain states, (iii) the occupancy
and mean lifetime of task dominant and sub-dominant brain
states, (iv) transition states and their relation to task switching,
and (v) brain states that best predict accurate task performance
and decision-making dynamics. These analyses allowed us to
probe optimal brain states associated with behavior and examine
whether the inability to switch between different network con-
figurations impairs cognitive performance. Our findings present a
new unsupervised computational model for probing human brain
dynamics and time-varying functional interactions that tran-
siently link distributed brain regions during cognition.

BSDS implements an unsupervised learning algorithm which
determines latent brain states and dynamic switching processes
from observed data. Each brain state is associated with a unique
pattern of time-varying functional connectivity in an optimal
latent subspace that simultaneously achieves dimensionality and
noise reduction. The ensuing brain states are temporally corre-
lated in a Markovian sense—the brain state at a given time

Fig. 7 Occupancy and mean lifetimes of latent brain states predict WM performance. a A multiple linear regression model was trained using occupancy
rates of latent brain states in the 2-back task to predict WM accuracy. A significant association was observed and predicted accuracies were correlated
with observed accuracy in both sessions: (Session 1: r= 0.30, p < 0.001; Session 2: r= 0.34, p < 0.001, Pearson’s correlation). b Occupancy rate of the
latent brain state SH which dominates the 2-back WM task condition was correlated with WM task accuracy in both sessions (Session 1: r= 0.39, p <
0.001; Session 2: r= 0.31, p < 0.001, Pearson’s correlation). No such relations were found for any of the other latent states. c A multiple linear regression
model was trained using mean lifetimes of latent brain states in the 2-back task to predict WM accuracy. Here again, a significant association was found
and the predicted accuracy was correlated with observed accuracy in both sessions (Session 1: r= 0.28, p < 0.005; Session 2: r= 0.35, p < 0.001, Pearson’s
correlation). d Mean lifetime of the latent brain state SH which dominates the 2-back WM task condition was correlated with WM task accuracy in both
sessions (Session 1: r= 0.37, p < 0.001; Session 2: r= 0.27, p < 0.005, Pearson’s correlation). No such relations were found for any of the other latent
states. Shaded area represents 95% confidence interval. Color code mapping in b and d: dark blue—SL, cyan—SH, yellow—ST, red—SF
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instance depends on the brain state in the previous time instance.
Unlike conventional methods, BSDS does not use arbitrary
moving windows or impose temporal boundaries associated with
predefined task conditions4,19,24,46. Crucially, BSDS learns latent

representations and states in a unified framework by optimization
of a single objective function within a Bayesian framework using
variational inference. The Bayesian framework provides a struc-
tured way to automatically regulate model complexity, and the
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optimal number of latent states and dimensionality of the latent
representations are learnt from a formal mathematical model.
These features allow BSDS to uncover latent brain states, their
temporal evolution, volatility and persistence over time, prob-
ability of transition to other brain states, and time-varying
functional connectivity in a stable and reliable manner.

To demonstrate that BSDS can accurately learn and identify
brain states, we conducted extensive simulations on
neurophysiologically-realistic simulations using The Virtual Brain32

and Neural Engineering Object (Nengo)47 (see Methods for simu-
lation method details and Fig. 2 for results). A novel test of BSDS,
however, comes from application to fMRI data obtained during
targeted optogenetic stimulation. In this case, BSDS identified dis-
tinct ON and OFF states which overlapped with, but were not
defined by, the exact onset and offset of external stimulation. In
addition, BSDS uncovered a novel transition state between ON and
OFF states. Together, two independent simulation experiments and
one opto-fMRI experiment demonstrate the reliable and robust
performance of BSDS in uncovering dynamic brain states. Fur-
thermore, BSDS identified dynamic latent states which could not be
predicted by stimulation onset and offset alone. Below we show that
when applied to human task-related fMRI data this feature not only
helps us uncover latent brain states, and their dynamical properties,
but also helps identify a novel link between brain states and cog-
nitive task performance.

An important challenge addressed by our study is that brain
states during cognition are influenced by unobserved mental
processes, such as momentary lapse in attention, changes in
motivation, alertness, and fatigue, which can lead to dynamic
variations in internal brain states with potentially dramatic
negative impact on cognitive performance12–14. Crucially, there-
fore, it cannot be assumed that latent brain states are aligned with
task conditions necessitating unsupervised algorithms for esti-
mating dynamic states and the transitions between them.
Accordingly, we used a novel computational model and BSDS to
probe latent brain states, their fluctuations over time and their
relation to experimental manipulation of working memory (WM)
load in HCP fMRI data obtained in two different sessions.

Across a large group of 122 participants we detected activation
in lateral and medial frontoparietal regions that overlapped with
key nodes of the salience, central executive and default mode
networks (SN, CEN, and DMN, respectively), three major large-
scale neurocognitive networks48 which underlie a wide range of
cognitive functions31,49–51 including WM9,10,30,31. BSDS applied
to time series extracted from these regions isolated four latent
brain states, each with a distinct covariance pattern associated
with frontoparietal, cingulo-opercular, and default mode network
regions. Although each task condition was dominated by a dis-
tinct brain state (SH, SL, and SF), the four brain states were only
partially aligned with onset and offset of the three experimental
task conditions (Fig. 4). While the posterior probabilities of
individual brain states could accurately predict 2-back, 0-back,

and fixation (rest) task conditions, prediction accuracies were far
less than would be expected from a complete alignment with
temporal boundaries of task onset and offset. The occupancy rate
and mean lifetime of these latent states was much shorter than the
duration of the task blocks and each task condition was char-
acterized by a mixture of brain states, with the dominant state
active for only a relatively short interval. These results demon-
strate that latent (internal) brain states and their associated
dynamic functional connectivity patterns are only partially con-
strained by experimental (external) manipulations. Another novel
finding here was the discovery of a fourth transition latent brain
state, ST, which was more likely to occur during the transition
from one task block to another (Fig. 4). Our identification of such
a transition state in the HCP fMRI data mirrors findings from
direct optogenetic stimulation noted above. Such novel brain
states are difficult to identify without unsupervised probabilistic
learning models, such as those implemented in BSDS, which
provide a mechanism for capturing latent nonlinear changes in
brain connectivity. Together, our results demonstrate that each
experimental task condition is characterized by a mixture of
dominant, non-dominant and transition states, and that these
latent brain states are consistent with, but only weakly defined by,
task boundaries. This finding is important because it suggests that
previous studies of WM tasks, which have almost always focused
on predefined task boundaries to examine functional con-
nectivity, are likely to miss key features of brain state dynamics
and the unique functional circuits associated with them. This is
most clearly illustrated here by our discovery of the transition
state, ST, which would be completely missed by conventional
analyses.

Brain states, and their associated functional circuits, are
thought to be dynamically reconfigurable to support adaptive
cognitive functions. However, the lack of rigorous computational
tools has precluded examination of how individual brain states
change over time. Specially, we know little about the transition
probabilities between likely states and the extent to which latent
brain states are persistent over time. BSDS is a generative model
that provides a way to address these questions in ways that were
virtually impossible heretofore. Examination of moment-to-
moment switching between latent brain states in each task con-
dition revealed that while individual brain states do not last over
the entire duration of task blocks, these states does not rapidly
switch to other states in a random manner (Fig. 5). For all four
latent states, transition probabilities were diagonally dominant—
they were highest within each state and transitions across states
occurred much less frequently. On average, the ratio of switch to
non-switch probability was 4:1. Analysis of the state transition
probabilities and state switch path further revealed a key con-
straint on switching between states. Importantly, the dominant
brain state in high cognitive load condition (SH) did not directly
switch to brain states that dominate the minimal cognitive load
condition (SF) or vice versa (Fig. 5). Specifically, transitions

Fig. 8 Occupancy and mean lifetimes of latent brain state predict decision-making dynamics. a Illustration of hierarchical drift-diffusion model (HDDM) and
parameter estimates based on the distribution of reaction times (RTs) in the 2-back and 0-back task conditions. b A multiple linear regression model was
trained using occupancy rates of latent brain states in the 2-back task to predict drift rate in the WM task. A significant association was found, and
predicted accuracy was correlated with observed accuracy in both sessions (Session 1: r= 0.40, p < 0.001; Session 2: r= 0.38, p < 0.001, Pearson’s
correlation). c Occupancy rate of the latent brain state SH which dominates the 2-back WM task condition was correlated with WM task drift rate in both
sessions (Session 1: r= 0.35, p < 0.001; Session 2: r= 0.28, p < 0.002, Pearson’s correlation). No such relations were found for any of the other latent
states. d A multiple linear regression model was trained using mean lifetimes of latent brain states in the 2-back task to predict drift rate in the WM task. A
significant accuracy was found with predicted accuracy was correlated with observed accuracy in both sessions (Session 1: r= 0.34, p < 0.001; Session 2: r
= 0.34, p < 0.001, Pearson’s correlation). No such relations were found for any of the other latent states. e Mean lifetimes of the latent brain state SH
which dominates the 2-back WM task was positively correlated with WM task drift rate in both sessions (Session 1: r= 0.32, p < 0.001; Session 2: r= 0.26,
p < 0.005, Pearson’s correlation). No such relations were found for any of the other latent states. Shaded area represents 95% confidence interval. Color
code mapping in c and e: dark blue—SL, cyan—SH, yellow—ST, red—SF
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between SH and SF almost always passed through SL the state
mostly closely aligned with the intermediate cognitive load con-
dition. These results demonstrate for the first time that the
dynamics of brain state switching is constrained by the current
brain state as well as changes in cognitive load. Furthermore, not
all switch paths are equally likely and there are specific sequences
for state switching. As we show below, these dynamic latent brain
states features have important behavioral consequences.

Each latent state is associated with a distinct pattern of inter-
regional connectivity, indeed, BSDS relies on changes in network
covariance structure to uncover latent brain states. Consistent
with this, multivariate analysis of connectivity patterns confirmed
high classification rates between each of the four latent brain
states. Link-by-link analysis (with FDR correction) identified
multiple loci of functional connectivity differences across condi-
tions. The state SH that was dominant during the 2-back high
WM load task condition was associated with increased con-
nectivity in the right CEN nodes, specifically frontoparietal con-
nectivity involved the right MFG, FEF, and IPL (Fig. 6). Our
findings converge on and extend previous observations based on
neuronal activity and brain activation aligned with task onset and
offset in WM9,52,53. Crucially, while previous studies have shown
that structural, intrinsic and task functional connectivity of the
dorsolateral frontoparietal circuits play a crucial role in WM
performance54–56, what could not be uncovered previously are
changes in functional circuits during the transition state ST, a
unique state identified here using BSDS. The transition state ST,
showed a unique pattern of extensive differences in cross-network
functional connectivity between SN, CEN, and DMN. Specifically,
connectivity between the SN and DMN nodes, including AI,
DMPFC, and VMPFC, increased significantly during the transi-
tion state (Fig. 6). These results emphasize the crucial roles of the
SN and DMN in regulating access to attentional resources and
modulating large-scale brain networks with changing cognitive
task demand57.

Our analysis not only uncovered unique connectivity patterns
associated with the transition state, but also automatically iden-
tified that the transition state occurred most frequently right after
the onset of a new task block, suggesting that the transition state
plays an important, if not critical, role in reconfiguring task-set.
Graph-theoretical network analysis of state ST revealed that the
DMPFC has the highest node degree and betweenness centrality;
furthermore, it was in state ST, that the DMPFC showed the
highest node degree and betweenness centrality amongst all four
states. Previous research has suggested an important role for this
DMPFC region, which overlaps with the pre-supplementary
motor areas, in both task control and action selection58. However,
a recent study using an adaptive control task which required
context-sensitive configuration of task-sets and
stimulus–response mappings found that activation in the pre-
SMA tracked task-set control cost but not response level con-
trol59. Intracranial recordings have further revealed that neuronal
activity in the DMPFC is modulated by task-set but persistent
activity in this region was not stimulus-specific60. Taken together,
these results point to an important role for the DMPFC as a hub
for switching internal states in response to changing task
conditions.

In sum, our findings provide a dynamic view of brain network
reconfiguration during human cognition and highlight novel
features of dynamic functional interactions between three core
neurocognitive networks during transitions between latent brain
states that dominate individual task conditions.

Crucially, the temporal dynamics of latent brain states is not an
epiphenomenon; the ability to engage specific brain states has
major behavioral implications. Latent factors, such as momentary
lapse in attention, have been thought to influence cognitive task

performance12–14 but their effects on brain states and dynamic
functional circuits have been hard to characterize. In this context,
our study overcomes limitations of previous studies and
demonstrates key features of optimal brain states for cognitive
task performance.

As noted above, although the 2-back WM task is dominated by
a single brain state (SH), this state did not occur for the entire
duration of the block during which the task is performed. Rather,
participants typically also engaged other non-dominant states in
this task block. Furthermore, the onset and duration of latent
brain states was highly variable across participants. This varia-
bility in engagement of specific states has a strong relation with
behavior. Specifically, we found that the occupancy rate as well as
the mean lifetime of SH during the 2-back task were positively
correlated with accuracy on this task (Fig. 7). In contrast, the
occupancy rate and mean lifetime of the other states during the 2-
back task was negatively correlated with task accuracy. These
results demonstrate that SH is an optimal latent brain state for
cognitive performance during the high-load WM task and that
deviations from this optimal state impairs performance.

Another novel finding of our study is the link between latent
brain states and decision-making. Decision-making during the
challenging 2-back WM task involves making trial-by-trial
judgments on whether the current stimulus matches a pre-
viously seen stimulus, two time points prior. This process is likely
susceptible to moment-by-moment variations in perception,
attention, and in the ability to dynamically store and refresh the
contents of WM. We used a hierarchical drift-diffusion model to
determine whether the optimal brain states, identified above, are
associated with efficient decision-making. Drift-diffusion models
quantify the underlying decision-making process by estimating
three latent components underlying the time to respond on each
trial: (i) drift rate which indexes how fast evidence is accumulated
for a decision, (ii) decision threshold, which indexes the distance
to a decision boundary, and (iii) a non-decision time which
indexes encoding time prior to decision making61. In monkey
neurophysiological studies, the drift rate has been linked to
cognitive processes during simple two-choice decision tasks62.
This analysis revealed that higher occupancy and longer dwelling
time of the dominant brain state contributes to faster and more
efficient information processing during the high-load WM con-
dition. Specifically, engagement and maintenance of the optimal
state SH contributes to faster accumulation of evidence allowing
individuals to reach the decision threshold whereas shifting to
other states results in less efficient decision-making process
(Fig. 8).

These results identify brain state properties that are optimal for
WM performance and, specifically, identify rapid accumulation of
evidence as a key feature associated with this process. Our results
also emphasize that maintaining this optimal brain state while
performing a high-load cognitive task is beneficial to performance
while switching to non-optimal states diminishes performance.
Finally, our findings illustrate the power of BSDS and the novel
computational model developed here to uncover dynamical fea-
tures of brain states associated with cognition. Our approach
contrasts with previous research, which has assumed a one-to-one
correspondence between brain states and WM task conditions,
thus missing a crucial link with optimal brain states for behavior.
Our analysis thus links the precise temporal boundaries at which
states and transitions occur to help disentangle the behavioral
significance of temporal fluctuations in dynamic brain con-
nectivity. Whether deviations from the optimal state are related to
attentional lapses and changes in arousal4 is an interesting
question for future studies. Dynamic state switching techniques,
such as those developed and applied here, provide useful new
tools to investigate such questions.
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Reproducibility is an important challenge for all of neu-
roscience research, especially human brain imaging. A recent
study reported that statistical power ranges from about 8 to 25%
in most neuroimaging studies63. The present study makes a
unique contribution to the neuroscience literature on human
brain dynamics in this regard. Remarkably, as shown in Figs. 4–8,
we replicated all key findings in HCP data from Session 2,
including identification of dominant and transition brain states,
their dynamic spatiotemporal properties, dynamic functional
connectivity, and optimal brain states for facilitating cognitive
task performance and decision making. Finally, we further
demonstrated the robustness of our findings using cross-
validation within and across the two sessions. Our study adds
to a small but growing body of studies examining reproducibility
of dynamic connectivity in the human brain64.

Earlier approaches for characterizing dynamic interactions
have primarily been based on a combination of sliding window
and clustering techniques20,44,45. These methods rely on ad hoc
procedures for determining critical parameters, such as the win-
dow length and number of brain states (clusters), which are
known to greatly influence the estimation of dynamic brain states
and connectivity19. The same concern is true of temporal ICA65

as determining the optimal number of spatial and temporal
components is non-trivial. In contrast, BSDS uses a Bayesian
framework to automatically regulate model complexity and
directly estimates the optimal number of latent states. HMM-
based models are well motivated as they are easier to interpret
and provide important insights about the states and their tem-
poral evolution, lifetimes, and occurrence of states, which ulti-
mately helps in better characterization of the dynamic brain
functional interactions underlying the observed data and their
relation to behavioral performance. It should be noted that unlike
the present study, previous studies using HMMs for estimation of
brain states27–29 do not explicitly model latent processes under-
lying observed data. In contrast, BSDS applies HMM to latent
space variables generated by an autoregressive process, resulting
in greater robustness to abrupt and noisy local changes in the
observed data and more robust state identification. Our approach
is also an advance over other broad classes of HMM-based
methods, including Hierarchical Dirichlet process HMM43,
Hierarchical Dirichlet process autoregressive HMM15, Hier-
archical Dirichlet process switching linear dynamical systems15,
and Bayesian switching factor analysis29. We found that these
methods underperformed BSDS and failed to accurately identify
the underlying brain states. An important challenge for BSDS,
and all other HMM-based approaches, is scaling up to a large
number of brain regions due to model computational complexity
and the limited number of time points in most fMRI studies.
Semi-informative initialization of models by bounding the
dimensionality of the latent space variables along with inter-
pretable data reduction techniques are needed to address this
question.

Our study applied a novel switching dynamical systems
approach for investigating fundamental aspects of latent circuit
dynamics in the human brain, and their relation to cognition.
Leveraging sub-second resolution fMRI data from the HCP we
uncovered several novel features of human brain dynamics dur-
ing WM including dominant and transition brain states, their
temporal evolution and dynamic connectivity associated with the
SN, CEN, and DMN, three key large-scale brain networks con-
sistently implicated in human cognition. We demonstrate that
latent brain states are only weakly aligned with task boundaries
and that BSDS not only uncovers task-induced brain states, but
also latent transition states and their temporal boundaries during
cognition. Thus, a powerful feature of our computational
approach is that we can now identify hidden dynamic states that

are important for cognition and which cannot be predicted by
stimulus onset and offset alone. This feature allowed us to
determine how dynamic latent state transitions allow for flexible
reconfiguration of functional circuits in the human brain. Fur-
thermore, we identify latent brain states optimal for task per-
formance and demonstrate that inability to engage and maintain
these states in a timely manner is associated with poorer and
weaker decision-making dynamics.

More broadly, our study advances computational methods for
probing latent dynamical models of human brain function. While
there has been an explosion of invasive tools to investigate brain
function in animal models, they are of limited use in character-
izing functional circuit dynamics in the human brain. As such,
our understanding of the behavioral relevance of latent dynamic
processes in the human brain has not been adequately addressed.
Our report thus fills a critical gap in human neuroscience
research. The mathematical framework and computational tools
developed here may have wide-ranging applications to the study
of aberrant brain dynamics and pervasive cognitive impairments
in neuropsychiatric disorders.

Methods
Ethics statement. Data acquisition for the Human Connectome Project was
approved by the Institutional Review Board of The Washington University in St.
Louis (IRB # 201204036), and all open access data were de-identified.

Bayesian switching dynamical systems model. Here, we briefly describe the
generative model and inference of the BSDS model. Detailed theoretical derivations
are provided in Supplementary Methods. Measures extracted from BSDS include
occupancy rate, mean lifetime of latent brain state, temporal evolution of latent
brain state, transition probability of latent brain states, state switching probability
and mean and covariance of states. Mathematical expression of these measures are
discussed in Supplementary Methods.

Let yst denote a D-dimensional vector of observed fMRI measurements in time t
and for subject s. Further, let zst denote a 1-of-K discrete vector of latent state
variables of a hidden Markov model (HMM) with elements zskt ; 8k ¼ 1; ¼ ;K: As
shown in Supplementary Fig. 1 (top panel), two consecutive time instances are
dependent via a first-order Markov chain through an HMM. Specifically,
probability distribution of zst depends on the state of the previous latent variable

zst�1 through a conditional distribution p zst jzst�1;A
� � ¼ QK

k¼1

QK
j¼1 A

zst�1;j z
s
tk

jk for all
t>1 represented by the transition probabilities A, where Ajk � pðzstk ¼ 1jzst�1;j ¼ 1Þ,
and a marginal distribution pðzs1 j πÞ ¼

QK
k¼1 π

zs1k
k represented by a vector of initial

probabilities π where πk � p zs1k ¼ 1
� �66. Next, we assume that at a given mode of

the system given by the latent state zskt ¼ 1, observed vector yst is generated via a
state-space model in form of:

yst ¼ Ukx
s
kt þ μk þ ekt ; 8t j zskt ¼ 1;

xskt ¼ �Xs
kt
~Vk þ ϵkt ; 8t j zskt ¼ 1:

ð1Þ

The first line of the generative model in Eq. (1) can be viewed as a probabilistic
factor analysis model18,67 where Uk is a D × P dimensional linear transformation
matrix that transforms data to a subspace of lower dimensionality, P <D, described
using a P-dimensional vector of latent space variables xskt mediated by an overall
bias μk and a measurement noise ekt � Nð0;ΨkÞ. The second line of the generative
model can be viewed as an autoregressive (AR) process of order R defined on the
latent space variables of the factor analysis model15. ~Vk is a vector of AR
coefficients. �Xs

kt ¼ diagð�xsktÞ is a block diagonal isotropic matrix with elements of
�xskt ¼ ðxsk;t�1

T; xsk;t�2
T; ¼ ; xsk;t�R

TÞ represented using latent space variables from
the previous R time frames where T indicates the transpose operator. ϵkt �
Nðmk;ΣkÞ models the remaining error term in the latent space. Supplementary
Fig. 1 (top panel) shows an AR process of a first-order, R= 1 defined on the
representations of the observations in the latent subspace, xskt . Note that all analyses
use a first-order autoregressive model, R= 1.

A full graphical representation of the generative model is shown in
Supplementary Fig. 1. We have introduced some hierarchical parameters, νkp ,
which are not explicit in the generative model of Eq. (1). These hyperparameters
regulate the model complexity. Detailed description of the model is presented in
Supplementary Methods.

We consider a Bayesian treatment of the model. In short, Bayesian inference
uses Bayes’ theorem to combine priors with data to produce posterior distributions
of all model parameters. An exact Bayesian inference for the model described in Eq.
(1) and most variants of switching dynamical models is intractable. However,
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approximate inference for this family of methods has been developed using Markov
chain Monte-Carlo (MCMC) sampling methods in a nonparametric Bayesian
framework15 and using variational inference68 in a parametric Bayesian
framework16. Similarly, we consider a parametric Bayesian formulation of the
model and use variational inference in order to learn the model parameters and
infer the latent variables. Our choice of prior distributions and the inference are
discussed in Supplementary Methods.

Validation experiment—the Virtual Brain model. To validate BSDS we first used
neuronal mass models and investigated whether BSDS can accurately identify brain
states and temporal onsets and offsets in simulated data. Simulations were carried
out using TVB32, a state-of-the-art platform for large-scale brain network mod-
eling, as well as custom Python scripts developed by our group. TVB utilizes a
dynamic mean field model33, which can approximate the temporal dynamics of a
full network of spiking neurons. Recent work has demonstrated the efficacy of such
models in emulating important features of human resting-state activity34,35. In this
model, the contribution of the inhibitory subpopulation is linearized under the
assumption that the typical firing rate of gamma-Aminobutyric (GABA)-ergic
interneurons falls in a linear portion of the f–I curve, and moreover that the time
constant of GABA receptors is significantly shorter than that of NMDA receptors
(10 vs 100 ms). Thus, the activity at each node is governed by the following set of
stochastic differential equations:

xi ¼ wþJESi þ GJE
PN

j¼1
CijSj þ Io

H xið Þ ¼ axi�b
1�exp �d axi�bð Þð Þ

dSi
dt ¼ � Si

τ þ 1� Sið ÞγH xið Þ þ συi tð Þ

ð2Þ

where xi, H xið Þ, and Si denote the driving current, firing rate, and average synaptic
gating variable (fraction of open synapses) respectively at each area i within the
overall N-node network. Anatomical links among brain regions are represented by
the structural connectivity matrix C and modulated by the free parameter G.
Synaptic coupling JE governs the interactions among regions while w+ further
modulates the level of local excitatory recurrence. These parameters are tuned to
yield physiologically realistic activity levels across all nodes in a disconnected
model. The synaptic gating variable decays with time constant τ ¼ 10 ms. The
parameters a, b, and d of the input-output function H xið Þ, as well as the kinetic
parameter γ are those from35 where they were optimized to fit numerical solutions
of the underlying spiking model. Finally, the Gaussian noise term σvi tð Þ is used to
drive the system during resting state.

We performed eight simulations of a three-node network using different
random initial conditions and noise streams. The following parameters were shared
across all simulation runs: raw simulation time step= 0.09765625 ms, sampling
rate= 1024 Hz, white matter conduction velocity= 4.0 m/s, noise amplitude σ=
0.0001 nA, inter-regional connection length= 140 mm. The first 5 s of data from
each simulation were discarded to allow for clearance of the initial transients. Local
excitatory synaptic activity was converted to BOLD signal via convolution with the
canonical hemodynamic response function (HRF) and decimated to TR= 0.7 s
using a zero-phase forward–backward filter prior to further analyses. We
performed eight simulations of the three-node network using different random
initial conditions and noise streams. Each simulation run contained five 60 s ON/
OFF task cycles. Task was modeled by stimulating node 1, providing 0.1 nA current
with 5 ms pulse width at a rate of 50 Hz for the duration of each 20 s ON block
(Fig. 2a).

Validation experiment—the Neural engineering object model. Next, we
examined whether BSDS could uncover latent states in a more realistic neuro-
biological circuit with a more complex mix of excitatory–inhibitory interactions.
Data for this analysis was generated using neural engineering object (Nengo), a
neural simulator that utilizes a large-scale modeling approach36. To generate time
series data, we used a Nengo-based spiking model of action selection in the cortex-
basal ganglia-thalamus circuit with timing predictions that are well matched to
both single-cell recordings in rats and psychological paradigms in humans37.
Ensembles of leaky integrate-and-fire neurons comprised seven nodes of this cir-
cuit (basal ganglia: globus pallidus internal, globus pallidus external, subthalamic
nucleus, striatum D1, striatum D2; thalamus; motor cortex). To mimic multiple
task conditions with individual subject variation, three sufficiently different 16-
dimensional input vectors were selected for each individual.

Nengo is a neural simulator that utilizes a large-scale modeling approach69

based on the Neural Engineering Framework (NEF). By providing a neural
compiler, the NEF can take high level algorithms and implement them in neural
models that incorporate anatomical and biological restrictions, functional
computation, and dynamical systems70. A primary principle of the NEF is that
ensembles of neurons represent vectors and that connections between these
ensembles can compute arbitrary functions on these vectors.

To mimic multiple task conditions with individual subject variation, three
sufficiently different 16-dimensional input vectors for each individual were defined

as:

u1� Uniform 0:5; 1:0½ �
u2� Uniform 0:15; 0:45½ �
u3� Uniform 0:1; 0:4½ �
On1¼ u1; 1� u1; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0½ �
On2¼ u2; 1� u2; 0; 2; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0½ �
Off ¼ 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; u3; 1� u3; u3; 1� u3½ �

Ten simulations (raw simulation time step= 1 ms) were performed for 20 trials
of 40 s off and 20 s on (alternating ON1 or ON2) for a total of 1200 s (Fig. 2b). A
biological synapse model was applied to filter the output of each of the seven
ensembles and then the resulting signal was recorded at each simulation time step.
Neural output was converted to BOLD signal by convolving each sample with the
canonical HRF at TR= 0.7 s.

Validation experiment—the optogenetic fMRI data. Opto-fMRI data, including
five adult female Sprague-Dawley rats (250–350 g; Charles River Laboratories,
Wilmington, MA), were acquired38,39. Two rats were excluded because one did not
respond to optical stimulation and the second had movement related artifacts. Of
the final three rats included in this study, one was imaged at University of Cali-
fornia, Los Angeles (UCLA) and two at Stanford University using identical imaging
protocols. During surgery, M1 was targeted and injected with an adeno-associated
virus expressing a ChR2-EYFP fusion protein using coordinates −2.7 mm ante-
roposterior (AP), +3.0 mm mediolateral (ML) right hemisphere, −2.0 mm and
−2.5 mm dorsoventral (DV). Additional surgical procedures and details can be
found in previous of MRI publications38.

Experiments were conducted 3 weeks after virus injection for optimal ChR2
expression. The fMRI scans were performed on a 7T small animal MRI system
(UCLA: Brucker Biospec, Stanford: Magnex Scientific). All scans used a 39 mm
outer diameter and 25 mm inner diameter custom-designed transmit/receive
single-loop surface coil. During the fMRI experiment, animals were artificially
ventilated under light anesthesia with a mixture of O2 (35%), N2O (63.5%),
isoflurane (1.2–1.5%) and CO2 (3–4%). A block designed fMRI stimulation scheme
consisting of six ON–OFF cycles at 20 s ON and 40 s OFF for a total of 6 min was
used. During the ON cycles, optical stimulation was delivered at 20 Hz, with a 5 ms
pulse duration. The data were acquired using an interleaved spiral readout
Gradient Recalled Echo BOLD sequence with 0.5 mm slice thickness and 23 slices.
In-plane field of view was designed to be 35×35 mm2 and in-plane spatial
resolution was 0.5×0.5 mm2. A sliding window reconstruction was then performed
to reconstruct the data into 128×128×23 matrix-size, 750 ms temporal resolution
images.

After reconstruction, subject head motion was corrected by the inverse Gauss-
Newton motion correction algorithm and 4D fMRI data was analyzed with
statistical parameter mapping using the general linear model with five gamma
basis. An F-test was then conducted and active voxels were selected as those with
corresponding Bonferroni-corrected p-values < 0.05. The ROIs were manually
selected based on a standard digital rat brain atlas71 (Fig. 2c).

Human Connectome Project data. The Human Connectome Project (HCP) n-
back WM task fMRI data of 122 individuals (session 1, left-right encoded; session
2, right-left encoded; age: 22–36 years old, 79 female/43 male) were selected from
500 subjects (HCP Q1-Q6 Data Release) based on the following criteria: (1) range
of head motion in any translational and rotational direction is less than 1 voxel; (2)
average scan-to-scan head motion is less than 0.25 mm; (3) performance accuracy
per task block per session is >50%; (4) criterion (1)–(3) must met in both sessions
separately; and (5) subjects are right handed.

The HCP n-back WM task combines the category specific representation task
and the n-back WM task in a single task paradigm40. Subjects were presented with
blocks of trials that consisted of pictures of faces, places, tools, and body parts.
Within each session, the four different stimulus type were presented in separate
blocks. Furthermore, within each session, half of the blocks are 2-back WM and
half are 0-back WM task. In the 2-back WM task blocks, subjects were requested to
determine whether the current stimulus matches the stimulus in two presentations
of stimuli prior within the same block. In the 0-back WM task blocks, subjects were
requested to determine whether the current stimulus matches the target that was
presented in the beginning of each block (cue). A 2.5 s cue indicates the task type
(and target for 0-back task) at the beginning of each block. Each of the two sessions
contains 8 task blocks (10 trials of 2.5 s each, for 25 s) and 4 fixation (rest) blocks
(15 s). On each trial, the stimulus is presented for 2 s, followed by a 0.5 s inter-trial-
interval (ITI).

Human fMRI acquisition. For each individual, 405 frames were acquired in each
session using multiband, gradient-echo planar imaging with the following para-
meters: RT, 720 ms; echo time, 33.1 ms; flip angle, 52°; field of view, 280×180 mm;
matrix, 140×90; and voxel dimensions, 2 mm isotropic.
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fMRI preprocessing. Minimally preprocessed fMRI data for both sessions were
obtained from the Human Connectome Project72. Spatial smoothing with a
Gaussian kernel of 6 mm FWHM was first applied to the minimally preprocessed
data to improve signal-to-noise ratio as well as anatomy correspondence between
individuals. High-pass temporal filtering (f > 0.008 Hz) was applied to remove low
frequency signals related to scanner drift.

General linear model and contrast of interest. A conventional general linear
model (GLM) analysis was conducted in order to determine load-dependent and
categorical-dependent activation/deactivation peaks. Each block in each session
was modeled as one of the following vector: 0-back-faces, 0-back-places, 0-back-
tools, 0-back-body, 2-back-faces, 2-back-places, 2-back-tools, and 2-back-body.
The onset and duration of each vector were the onset and duration of the corre-
sponding block. The contrast of interest was WM load effect: 2-back vs 0-back.

Region of interest and time series. Load-dependent ROIs were determined on
the contrast of interest: 2-back vs 0-back, including 9 load-positive (2-back > 0-
back) ROIs: bilateral anterior insula (AI), bilateral middle frontal gyrus (MFG),
bilateral frontal eye field (FEF), bilateral intraparietal sulcus (IPS) and dorsomedial
prefrontal cortex (DMPFC), and 2 load-negative (2-back < 0-back) ROIs: ven-
tromedial prefrontal cortex (VMPFC) and posterior cingulate cortex (PCC). Each
ROI was 6-mm radius sphere centered at the corresponding peak voxel. Time series
of the 1st eigenvalue was extracted from each ROI. A multiple linear regression
approach with 6 realignment parameters (3 translations and 3 rotations) was
applied to time series to reduce head motion-related artifacts and resulting time
series was further linearly detrended and normalized.

Matching BSDS states between sessions. To determine whether one brain state
identified in one session match one brain state identified in another session, we
conducted cross-session brain state correlation analysis. Each brain state was
defined by a covariate matrix in the latent space, estimated from the set of ROI
activation time series in each session separately; and ROI time series can, in turn,
be represented as a time series of posterior probabilities of estimated brain states. If
a brain state in one session corresponds to a brain state in another session, then
time series of posterior probabilities of these two brain states in the same data
session should be highly correlated. Specifically, after obtaining four brain states in
each session, we first computed posterior probability time series of each brain state
in the data session from which brain states are estimated. An example is to
compute posterior probability of State 11, estimated from Session 1 data. Next, we
computed posterior probability time series of each brain state in the other data
session. An example is to compute posterior probability of State 12, estimated from
Session 2 data. Then, we computed correlation posterior probability time series of
brain states, which were estimated from different sessions, in the same data session.
For example, compute correlation between the posterior probability of State 11 in
Session 1 and the posterior probability of State 12 in Session 1. High correlation
would suggest that State 11 matches State 12 as the two states have highly similar
posterior probability in the same data. Indeed, we found exclusive one-to-one
mapping between brain states estimated from two data sessions. The Pearson’s
correlation coefficients between the matched brain states across two sessions range
from 0.83 to 0.98 (Supplementary Table 4). To simplify the report and improve the
readability, we relabeled the matched brain states in the two sessions to State 1,
State 2, State 3, and State 4 in the following data analyses.

Temporal properties of time-varying latent brain states. BSDS estimated
posterior probability of each latent brain state at each time instance, which allows
us to examine several temporal properties of time-varying brain states as the fol-
lowing: (i) the latent brain state with highest posterior probability at a specific time
point for a specific subject was chosen as the state at the time point for the subject;
(ii) we computed occupancy rate and mean life of each brain state in each task
condition (0-back, 2-back, and fixation), which provides task-specific state dom-
inancy information; (iii) we measured state switching probability in each task
condition, which quantifies the chance that a brain state at the time instance t stay
at its own state or switch to another brain state at the time instance t+ 1. Some of
these temporal properties of latent brain states were then used to examine their
relation with task manipulation and behavioral performance as discussed below.

Time-varying latent brain states predict ongoing task conditions. To evaluate
whether time-varying latent states possesses task manipulation information, we
conducted a classification and cross-validation analysis. We used a linear support
vector machine from the open-source library LIBSVM (http://www.csie.ntu.edu.tw/
~cjlin/libsvm/) to build multiclass classifiers to distinguish task conditions at each
time instance. Posterior probability of brain states estimated by BSDS at each time
instance were used as features to train classifiers. Classifier performance was
evaluated using a within-session and a cross-session cross-validations, separately.
First, within-session leave-one-out cross-validation (LOOCV) was conducted in
each data session. Specifically, ROI time series and posterior probability time series
of the four brain states from one participant was selected as a test set. The rest of
the data (training set) were used to train a classifier, which was then applied to the
test set to predict which task condition (0-back, 2-back, and rest) should be at each

time instance. This procedure was repeated S times (S is the number of partici-
pants) with each participant used exactly once as a test set. The cross-validation
accuracy across the test sets was used to evaluate the classifier’s performance. The
statistical significance of LOOCV accuracy was evaluated using permutation tests
(100 times). Second, between-session cross-validation was implemented in the way
that the model was trained from one session data and tested on the other session
data. Specifically, ROI time series and posterior probability time series of the latent
brain states from one session was used as a test set. The other data session was used
to train a classifier, which was then applied to the test set to predict task condition
at each time instance. The statistical significance of cross-validation accuracy was
evaluated using permutation tests (500 times).

Spatial properties of time-varying latent brain states. To determine which
dynamic functional connections are important for distinguishing different brain
states, we conducted feature identification analysis on the covariance matrix
derived from BSDS analysis. We first applied logistic regression with Lasso and
elastic-net-regularized generalized linear model on feature matrix to distinguish
brain states. A 10-fold cross-validation was implemented to optimize lambda for
minimizing misclassification error. The optimized lambda was then applied on the
full data set and connections with nonzero weights was selected. This multivariate
analysis was applied in the two data sessions, separately, and a logical AND
operation was used to find common connections with nonzero weights between
sessions. Next, we conducted a univariate analysis on the selected common con-
nections and examined which connections are significantly different between brain
states in each data session, separately. Last, we further examined whether the
common connection patterns are enough to distinguish brain states. To do so, we
trained logistic regression classifier only using the common features and LOOCV
to evaluate the performance. Static significance of the classifier performance was
evaluated using permutation test (500 times).

Graph analysis of time-varying latent brain states. To further understand
functional network organization in different brain states, we conducted graph
analyses using Brain Connectivity Toolbox73. First, we converted covariance matrix
from BSDS model to Fisher’s transformed Pearson’s correlation matrix per latent
brain state per subject. Then, subject-state-wise z-transformed correlation matrix
was binarized so that only edges with top 40% weights were set to 1 while others set
to 074,75 (results were replicated using other thresholds, e.g., 20, 30, and 50%). Next,
we applied Louvain community detection algorithm (gamma= 1) to create subject-
state-wise network community76 and computed node degree and betweenness
centrality73. Last, we examined interaction effect between node (11 regions) and
state (4 latent brain state) and conducted post-hoc t-test comparison with Bon-
ferroni correction.

Time-varying brain state in relation with performance in 2-back task. To
understand the relationship between latent brain states and behavioral perfor-
mance in the n-back task, we first examined whether occupancy rates of latent
brain state can predict behavioral performance across participants. Specifically, we
built a multiple linear regression model to predict accuracy in the 2-back task based
on occupancy rates of brain states in the 2-back task. Performance of prediction
model was evaluated using correlation between predicted accuracies and observed
accuracies in the 2-back task. Next, used Pearson’s correlation to examine the
specific relationship between occupancy rate of each brain state in the 2-back task
and accuracy in the 2-back task across subjects.

Time-varying brain state in relation to processing speed in 2-back task. To
further examine whether time-varying brain states impacts information processing
and decision making, we used the hierarchical drift-diffusion model (DDM) to
extract key parameter of processing speed and conducted brain behavior analysis
like above.

The DDM has been extensively used to estimate two-choice decision-making
processes61. In this framework, decisions are modeled as a combination of three
parameters: threshold (a) describing the distance between two decision boundaries,
drift rate (v) describing the rate at which evidence is accumulated for a given
decision, and non-decision time (t) which is representative of those aspects of
response time not included in decision making (e.g., stimulus encoding, movement
execution, etc.). Models will sometimes additionally include a decision bias
parameter (z) if there is a reason a priori to believe that such bias exists in the task
data. As there was no such reason for the n-back task, we chose not to model
decision bias in this study. Here, we estimated the parameters a, v, and t using the
hierarchical DDM (HDDM)41. In HDDM, Bayesian inference through Markov
chain Monte-Carlo (MCMC) sampling is used to approximate posterior
distributions for each parameter at both the individual and group levels. We
initialized HDDM to draw 10,000 posterior samples for each of the HCP data sets
with the first 1000 samples discarded as burn-in. In order to examine the effect of
condition (2-back v 0-back) on a, v, and t, these parameters were estimated
separately for 2-back and 0-back trials.

Next, we built a multiple linear regression model to predict drift rate in the 2-
back task based on occupancy rates of brain states in the 2-back task. Performance
of prediction model was evaluated using correlation between predicted drift rates
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and HDDM estimated drift rates in the 2-back task. Then, we performed Pearson’s
correlation analysis to examine the specific relationship between occupancy rates of
each brain state in the 2-back task and drift rates in the 2-back task across subjects.

Application of BSDS to a relational processing task from the HCP. To
demonstrate that BSDS can reliably estimate dynamic latent brain states in other
cognitive tasks, we used fMRI data from a relational processing task that involved
matching patterns in visual stimuli. Details of the participant selection, data ana-
lysis procedures, and results are in Supplementary Note 1 (Supplementary Figs. 18,
19, Supplementary Table 18).

Code availability. Code is available from the authors upon request.

Data availability. The n-back WM task fMRI data is accessible from the HCP
database (https://db.humanconnectome.org/). All of the simulation data are
available from the authors.
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