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Physical mechanism of mind changes and tradeoffs among speed,
accuracy, and energy cost in brain decision making: Landscape and

flux perspective*
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Cognitive behaviors are determined by underlying neural networks. Many brain functions, such as learning and mem-
ory, have been successfully described by attractor dynamics. For decision making in the brain, a quantitative description
of global attractor landscapes has not yet been completely given. Here, we developed a theoretical framework to quantify
the landscape associated with the steady state probability distributions and associated steady state curl flux, measuring
the degree of non-equilibrium through the degree of detailed balance breaking for decision making. We quantified the
decision-making processes with optimal paths from the undecided attractor states to the decided attractor states, which are
identified as basins of attractions, on the landscape. Both landscape and flux determine the kinetic paths and speed. The
kinetics and global stability of decision making are explored by quantifying the landscape topography through the barrier
heights and the mean first passage time. Our theoretical predictions are in agreement with experimental observations: more
errors occur under time pressure. We quantitatively explored two mechanisms of the speed-accuracy tradeoff with speed
emphasis and further uncovered the tradeoffs among speed, accuracy, and energy cost. Our results imply that there is an
optimal balance among speed, accuracy, and the energy cost in decision making. We uncovered the possible mechanisms
of changes of mind and how mind changes improve performance in decision processes. Our landscape approach can help
facilitate an understanding of the underlying physical mechanisms of cognitive processes and identify the key factors in the
corresponding neural networks.
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1. Introduction

The neural circuit as a dynamical system is the basis of
cognitive function, including decision making.[1–4] We face
different choices in our daily lives. Most decisions are made
unconsciously. Sometimes we must first evaluate the costs
and benefits of addressing the situations of risk or uncertainty
before we make an optimal decision, choosing from a set of
alternatives.[5–7] Understanding the mechanisms of decision
making has been challenging. In recent years, researchers
have made progress in both theoretical and experimental fields
related to cognitive processes, such as decision making.[8–11]

The diffusion model was successful in describing behav-
ior responses such as accuracy and the shape of response-time
distributions in two-choice decision making tasks.[8,12] In the
diffusion model, a decision variable evolves from a starting
point until it reaches one of the two response boundaries cor-
responding to the two decisions, as the result of fluctuations.
Although the diffusion model gives a good account of behav-
ior data, some features observed in the experiments cannot be
easily captured in the diffusion model. For example, the exper-

imental observation that longer response times in error trials
than in correct trails cannot be fitted by the diffusion model
unless it is assumed that parameters of the model (the initial
condition and the drift rate) vary across trials. In the delayed
visual motion discrimination task, the monkey is required to
hold the decision in the working memory for a few seconds.[13]

The working memory, which is needed to account for the de-
layed response in this task cannot be easily explained in the
diffusion model.

However, these features can be naturally explained in
the biophysically motivated attractor model of a two-choice
decision-making task,[14–16] where a decision is made when
the system is attracted to one decided attractor associated with
one of the two choices. The attractor dynamics have been
shown to be successful in describing biological and cognitive
processes.[3,17–23] In the attractor model, the working memory
can be stored in the decided attractor even after the stimulus
is removed. The dynamics of the attractor model are domi-
nated by an attractor landscape in which the states correspond
to activities of neural populations. Both behavioral and neuro-
physiological data in the decision-making process can be well
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described by such a model.[14–16] However, the attractor land-
scape introduced provides a qualitative concept, and further
quantification is required.

Based on the advantages of the above models, Roxin and
Ledberg made progress in relating the diffusion model to the
neuronal activities by suggesting a general method to reduce
multi-dimensional biophysical models to a one-dimensional
nonlinear diffusion model.[11] This one-dimensional nonlin-
ear diffusion model also provides an excellent fit to behavioral
data in the two-choice decision-making tasks. Furthermore,
an analytical form of energy function can be constructed, with
a negative gradient serving as the driving force of the system.
Although great efforts have been made to relate the diffusion
model to biophysically realistic neural circuits, the detailed in-
formation of the complicated dynamical system consisting of
a great number of neurons cannot be easily obtained from the
one-dimensional diffusion model. The main purpose of our
work is to explore the underlying mechanisms of the cognitive
processes of decision making from the physical and quantita-
tive perspectives.

In general, biophysics-based decision-making models can
show more neurophysiological information such as the evolu-
tion of the average firing rates of neural populations and the
sources of fluctuations.[14–16] Parameters in the model are di-
rectly related to biologically meaningful quantities, which pro-
vides us with a chance to explore the neuronal mechanisms of
decision-making systems. However, the attractor landscape in
the attractor model is not completely quantified. Although the
position of each attractor state is shown, the relative weights
of these states and the quantified attractor landscape are not
given.[14–16] Quantifying the topology of the attractor land-
scape through the relative weights of states can account for the
stability of the global system, particularly for the functional
attractors. Previous works have shown better performances in
easier decision tasks.[15,16] The underlying mechanisms deter-
mining the speed, accuracy, and changes of mind in the attrac-
tor model remain challenging to quantify. Furthermore, what
should be noticed is that the realistic neural networks are al-
ways non-equilibrium systems due to the material, energy, and
information exchanges with the environment. For the general
non-equilibrium dynamical systems, the driving force of the
dynamics cannot be written as a pure gradient of an energy
landscape.[20–23]

In our previous works, we have developed a land-
scape and flux theory for general non-equilibrium dynam-
ical systems.[20–25] The potential landscape we constructed
is closely related to the steady-state probability distributions
of the non-equilibrium systems. The probability density
distributions of neuronal activity variables have been stud-
ied to explore the influences of fluctuations on decision-
making behavior.[26,27] We found that the dynamics of the

non-equilibrium systems are determined by both the under-
lying landscape and the curl probability flux. The flux, in ad-
dition to the gradient of the non-equilibrium landscape, is re-
sponsible for many characteristic non-equilibrium behaviors.
For example, our previous studies showed that the flux pro-
vides the main driving force of oscillatory behaviors in neural
networks.[23] Furthermore, as the result of the flux, the domi-
nant kinetics path does not necessarily pass through the land-
scape saddles (local maximum) to get to the local minimum,
and the forward and backward paths are irreversible.[22,24]

Furthermore, we established the non-equilibrium thermody-
namics, extending the equilibrium thermodynamics based on
the landscape and flux theory.[23,24,28,30] The entropy pro-
duction rate in the non-equilibrium systems is linked to the
flux term, which originates from the energy pump from the
environments.[29–31] Quantifying the entropy production rate
or energy dissipation rate gives us new insights into the en-
ergy cost in non-equilibrium biological systems.

In this work, we applied the landscape and flux theory
to a biophysics-based model to quantitatively investigate the
nature of the decision-making process from a physical per-
spective. We quantified basins of attraction as the fates of
decision-making with higher probabilities. The stability of
basins of attraction corresponding to functional states was ex-
plored by quantifying the underlying potential landscape to-
pography through the barrier heights and the kinetic transi-
tion times characterized by the mean first passage time be-
tween the basins of attraction. We also quantified the opti-
mal path from the undecided state to the decided state with a
path integral approach.[32] We found that both the landscape
and flux determine the dynamical processes and the associ-
ated speed. Furthermore, we explored how the potential land-
scapes are influenced by the changes of the key factors of the
underlying neural network. The underlying mechanism of the
speed-accuracy tradeoff was quantitatively explored by vary-
ing the additional stimulus input and input threshold in this
study, and both of them increase the baseline activity of the
integrator neurons. Differently from previous works, here our
quantifications of the decision time and accuracy performance
avoid time-consuming calculations from the statistics of the
data. Furthermore, we quantified the energy costs and ex-
plored the tradeoffs among speed, accuracy, and energy cost
in decision-making. We found speed emphasis will cost more
energy in unit time. However, a varying input threshold and
additional input play different roles in regulating the total en-
ergy cost, which is defined as the entropy production rate mul-
tiplied by the decision time. If the input threshold is the main
regulation mechanism, we showed that the total energy cost
increases monotonously as the accuracy increases, and it de-
creases monotonously as the decision time decreases. When
presenting additional stimulus input is the dominated mecha-
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nism, the total energy cost in decision making changes non-
monotonically as the additional input increases. Reasonable
but suboptimal accuracy and performance can be achieved
with optimal energy cost and speed. In other words, for deci-
sion making in this case, there is an optimal energy cost with
a nearly optimal fast speed at an intermediate accuracy. We
also explored the mechanism of changes of mind, and we sug-
gested a physical explanation of the interesting phenomenon
observed in the experiments. Above all, the novelty of our
work lies in the global quantification of the dynamics and
identifications of the driving force (landscape and curl flux),
thermodynamics (energy cost), the underlying mechanisms of
decision-making (processes quantified by the optimal paths
and the speed of decision-making) and quantifications of the
relations of speed, accuracy, energy cost, and changes of mind.

2. Models and methods
2.1. Non-equilibrium landscape theory for general neural

networks

In realistic biological systems, there are always intrinsic
and extrinsic fluctuations.[33] For neural circuits, fluctuating
components of the inputs outside the circuits give the external
fluctuations, and the statistical fluctuations within the circuit
give the intrinsic fluctuations. Therefore, we should take the
fluctuations into consideration when studying the dynamics of
neural network systems. The underlying dynamics of neural
network systems are generally non-linear and unpredictable,
and chaos can emerge. The conventional way of exploring
neural network dynamical systems by following the single tra-
jectories of the time evolution of the system cannot easily cap-
ture the global properties of the systems. However, the prob-
abilistic evolution is often linear and predictable, which can
shape the global nature of the stochastic dynamics. Therefore,
we focus on the probabilistic evolution of the system by solv-
ing the corresponding Fokker–Planck equations. We can ob-
tain the steady state probability distribution Pss, which satisfies
∂Pss/∂ t = 0. Then, the probabilistic landscape can be quanti-
fied as U = − lnPss, where U is the quantified potential land-
scape and Pss is the steady-state probability distribution.[20–23]

Dynamical systems will be expected to be attracted to some
states with higher probabilities and lower potentials in the tem-
poral evolution processes because the weight of each state is
inhomogeneously distributed in state space. The states with
the locally highest probability represent attractor states which
are typically related to biological functions.

Cognitive functions are achieved by the collective efforts
of neural circuits rather than individual neurons. The potential
landscape can provide a quantitative description of the global
nature of neural networks rather than the local information
from single trajectories.[20–23] To quantify the potential land-
scapes, we focus on the steady-state probability distributions.

Here the noise term should be taken into account to capture
the statistical properties. Because we start with the dynami-
cal equations of the neural network, we can write the corre-
sponding Langevin equations as: zdxi/dt = 𝐹 (𝑥)+ ζ . Here
we assume the noise is Gaussian distributed. The autocorre-
lation of the fluctuation is assumed to be < ζi(t)ζ j(t ′) >=

2𝐷δ (t − t ′), 𝐷 is the diffusion coefficient tensor (matrix)
measuring the strength of the fluctuations. The probabil-
ity evolution can be quantified by solving the corresponding
Fokker–Plank equation: ∂P(𝑥, t)/∂ t = −∇ ·𝐽 , where 𝐽 is
the probability flux defined as 𝐽 =𝐹 (𝑥)P(𝑥, t)−𝐷∇P(𝑥, t).
The Fokker–Planck equation can be interpreted as local prob-
ability conservation, where the local probability change is
determined by the inward or outward flux. Here, we take
𝐷 as a constant diffusion tensor independent of underlying
variables. The steady-state probability distribution satisfies
∂Pss(𝑥, t)/∂ t = −∇ · 𝐽ss = 0. Finally, the potential land-
scape U can be quantified by the steady-state probability (Pss)
U =− lnPss.[20,21,32,34] The driving force of the dynamics can
be decomposed into a gradient of the potential landscape and
steady state curl flux force as: 𝐹 =−𝐷∇𝑈+𝐽ss/𝑃ss. When
the steady state flux is zero, there is no net flux flow in or out;
the system is in a detailed balance. When the flux is not zero,
there is a net steady state flux flowing around. This breaks
the detailed balance and measures how far away the system is
from the equilibrium. Because the steady-state flux satisfies
the curl free condition (∇ ·𝐽ss = 0), the flux is rotational or
curl. Whereas the landscape provides a gradient driving force,
the flux provides a curl driving force for the dynamics.

2.2. Reduced two-population neural network model

We have introduced our non-equilibrium landscape and
flux theory for general networks. Here we applied this theory
to a simplified biophysics-based model that could account for
the experimental results in decision-making processes.[15,16]

This simplified model is a reduced version of the neural net-
work model with thousands of spiking neurons that interact
with each other. With a mean-field approach, the dynamics
of a neural population can be represented by a single unit.
The mean activity (firing rate) of a neural population depends
on the synaptic input currents. The input current is a func-
tion of synaptic gating variables, which represents the frac-
tion of the activated synaptic conductance. Furthermore, a
third inhibitory neural population through which the two ex-
citatory neural pools inhibit each other is neglected for sim-
plicity. Then the dynamics of the decision-making neural net-
work model can be represented by the dynamics of two exci-
tatory neural populations. The details of model reduction can
be found in a previous paper.[15]

As shown in Fig. 1(a), this reduced model consists of two
competing neural pools that are selective for the leftward or
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rightward direction of decision making, respectively. Within
each pool of neurons, there are strong recurrent excitatory
connections that are dominated by NMDA-mediated recep-
tors. Since the time constant of NMDA synaptic gating vari-
ables is much slower than the time constant of firing rate r.
The dynamical evolution of firing rates (quickly reaching the
steady state values) can be neglected compared with the slower
change of the NMDA gating variables. Firing rate ri of neural
population i as a function of total synaptic input current Ii,tot

can be written as

ri = f (Ii,tot) =
aIi,tot −b

1− exp[−d(aIi,tot −b)]
, i = 1,2, (1)

where the input–output function parameter values are a =

269.5 (VnC)−1, b = 108 Hz, and d = 0.154 s.[15] The con-
tributions of AMPA receptors to the total synaptic currents in-
side the circuit can be also neglected. Then the dynamics of
the network is dominated by the gating variable Si. The model
can be described by the following dynamical equations:

dSi

dt
=− Si

τS
+(1−Si)γ f (Ii,tot) i = 1,2 (2)

According to the above equations, the average gating vari-
ables Si at the steady state are positively correlated with the
average firing rates of neural population 1,2. Therefore, the
gating variables Si also reflect the mean activity of the neural
population. The total synaptic input currents of the two neural
populations dominated by the NMDA receptors are

I1,tot = J11S1 − J12S2 + I0 + Imotion,1, (3)

I2,tot = J22S2 − J21S1 + I0 + Imotion,2. (4)

Here the NMDA synaptic couplings are J11 = J22 = 0.2609 nA
and J12 = J21 = 0.0497 nA, and I0 = 0.3255 nA is the average
background synaptic input. Also, γ = 60 ms and τS = 100 ms.
The particular values of the parameters in the model here are
the same as the ones shown in the previous work.[15] These
two neural groups are self-activated and mutually inhibited
with each other. The competition between these two excita-
tory neural populations is determined by the sensory input.

Random dot motion (RDM) tasks were designed to
study decision-making behavior.[13,35–37] Monkeys are asked
to watch the random dot motion and make a decision by
saccadic eye movement. Here we use Imotion,i as the exter-
nal sensory input to selective neural population i correspond-
ing to the random dot stimulus current in RDM tasks. It
can be written as: Imotion,i = JA,extµ0(1 ± c′/100%), where
JA,ext = 5.2 × 10−4 nA·Hz−1 is the external average synap-
tic coupling with the AMPA receptors.[15] The + or − sign
refers to whether the motion direction is the preferred one or
not the preferred one of the neural pool. In the schematic di-
agram Fig. 1, the neural population 1 is specifically selective

for the leftward direction. If more dots move leftward, popu-
lation 1 is favored and receives more stimulus. c′ here is the
motion coherence, which is used to indicate the degree of di-
rection bias of moving dots. As shown in Fig. 1(b), when the
motion coherence level is high, most dots move in the same di-
rection. Figure 1(c) shows that dots move at a low coherence
level. As seen, the dot motion hardly has an obvious direc-
tional bias. Note that µ0 is the stimulus strength when there is
no bias (c′ = 0%).

I1 I2

1 2

left

left

right

right

high coherence level

low coherence level

(a)

(b)

(c)

Fig. 1. (color online) (a) The schematic diagram of the reduced two-
population decision-making model. This reduced model consists of two
competing neural populations that are selective for leftward or right-
ward directions, respectively. The arrows represent excitatory connec-
tions, and the lines with solid circles represent inhibition. (b) and (c)
The schematic representation of the random dots motion. For higher
motion coherence, most dots move in one direction, whereas the dots
move with no directional bias at a low motion coherence level.

In the original model,[15,16] the stimulus strength µ0 is set
to 30 Hz when the stimulus is presented. In this work, we
discussed the system with different stimulus strength µ0 and
motion coherence c′, and the detailed values are shown in the
corresponding figure captions. We also found that the value of
parameter b/a plays the role of input threshold in this dynam-
ical neural model, which is represented by Thin in this paper.
We will call it the input threshold because the average activity
of the selective neural population is very low when the cor-
responding stimulus input is below Thin. Once the input is
beyond this threshold, the activity of the neural population in-
creases significantly. Due to the great influences of parameters
a and b on the dynamics of the decision-making model, we
primarily discuss the corresponding details in the results and
discussion section. The detailed values of parameters a and b
are shown in the figure captions and text. The values of the
rest of the parameters are set as shown above.
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Here, we quantitatively uncovered such probabilistic
landscapes from the underlying dynamics to explore the global
properties of decision-making neural networks. The global
stability of the neural circuits, which determines the difficulty
of making decisions and changes of decisions can be explored
by quantifying the probability landscape topography and the
kinetics of state switchings. The population activity (firing
rate) ri of selective excitatory population i is a monotonically
increasing function of the corresponding average gating vari-
able Si,[15,16] which means that a larger Si indicates higher
activities of neural population i. Therefore, quantifying the
landscape of the network in the state plane of (S1, S2) is bet-
ter for global understanding the dynamical process of decision
making. Because we know the dynamical equations of the
decision-making neural network, we can write the correspond-
ing Langevin equations as: dIi,tot/dt = 𝐹 (I1,tot, I2,tot) + ζ

through the transformation of coordinates (𝑆 to 𝐼) because the
noise term ζ is actually added to the driving force of the total
current of neural population i. Then, we can obtain the poten-
tial landscape as the function of S1 and S2 with the method we
discussed above through the transformation of coordinates (𝐼
to 𝑆).

3. Results and discussion
3.1. Quantified attractor landscapes of the decision-

making neural network

Although attractor landscapes have been introduced to
describe the dynamics of decision-making neural networks,
such landscapes still need to be further quantified. As we dis-
cussed in the method section, for a given dynamical neural
system, we can obtain the temporal evolution of the probabil-
ity distribution in the state space by solving the corresponding
Fokker–Plank diffusion equation. Furthermore, we can quan-
tify the potential landscape as U = − ln(Pss(𝑠)),

[20,21,23,32,34]

where Pss is the steady-state probability distribution. In the
two-variable decision-making model, the dynamics of the sys-
tem are determined by the external motion stimulus inputs to
the two selective neural populations, which can be written as:
Imotion,i = JA,extµ0(1± c′/100%), i = 1 and 2. Therefore, the
absolute stimulus strengths µ0 and the motion coherence c′

(direction bias) are the key factors in decision-making tasks.
In Fig. 2, we quantitatively mapped out the landscapes of the
decision-making network in the state space plane of (S1,S2)
for different stimuli strengths µ0 (µ0 = 0,10,30 Hz, c′ = 0 for
the top row) and motion coherence levels (c′ = 0.2, 0.3, 0.65,
µ0 = 30 Hz for the bottom row).
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Fig. 2. (color online) The potential landscapes for different stimulus inputs and motion coherence. (a)–(c) Potential landscapes in the state space of
average gating variables S1 and S2 at the zero coherence level for different stimulus inputs, where the stimuli strength µ0 = 0,10 and 30 Hz, respectively.
The central attractor corresponding to the undecided state is indicated by c in the figure, and a and b on two sides indicate the two decided states. (d)–(f)
Two-dimensional potential landscapes at the non-zero coherence level, where µ0 = 30 Hz and the coherence c′ = 0.2, 0.3 and 0.65, respectively. In all
these subgraphs, the parameters a = 269.5 and b = 108 and the diffusion coefficient D = 3.6×10−7.

Before stimulus onset (stimulus input strength µ0 =

0 Hz), three stable attractors coexist in Fig. 2(a). As we have

introduced in the model section, the average gating variables

Si at the steady state are positively correlated with the aver-

age firing rates of neural population 1,2. Therefore, the gating

variables Si can reflect the mean activity of neural population.

In the phase plane (S1, S2), the attractor that emerges at the

bottom left corner corresponds to the undecided state with low
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activities of both neural populations, which is indicated by c in
the landscape. One of the two decided states, a and b, on two
sides emerges with higher activity of one neural population
(group 1 or group 2, shown in Fig. 1(a)) and lower activity of
the other one (group 2 or group 1). Decision making is the in-
terplay between self-activation and mutual repression among
two populations. Without external motion stimulus inputs, the
effective background input, I0, can keep the decided states but
cannot destroy the undecided state. For increasing stimulus
strength (µ0 = 10 Hz) in Fig. 2(b), the central basin for the
undecided state (c) becomes weaker. When the stimulus input
is strong enough, the central undecided state c disappears, and
only two decided states a and b remain on two sides (Fig. 2(c)
where µ0 = 30 Hz). The undecided state is no longer stable,
so the system driven by the attractor dynamics now can only
stay in one of these two decided states. Therefore, a decision is
made. Once the stimulus input is no longer presented to selec-
tive neural pools, the landscape returns to the one in Fig. 2(a).
The decided states are still strong enough to hold the decision
being made, which ensures the sufficient time to produce a mo-
tor response, such as a saccade to the target, before returning
to the rest state.

The difficulty of this random-dot motion direction dis-
crimination task varies depending on motion coherence c′.
When coherence c′ = 0, two selective neural groups receive
the same stimulus. Coherence c′ = 1 indicates that there is
only one group receiving a stimulus. We can see in Figs. 2(d),
2(e), and 2(f) that once c′ is not zero and the input strength
µ0 = 30, the two basins of attraction are no longer symmet-
ric. As the motion coherence c′ increases, which indicates that
one selective neural pool receives an increasing stimulus and
the other one receives less, the basin of attraction at the upper
left for the incorrect choice (indicated by a in the figure) be-
comes smaller and shallower. An advantage of our landscape
theory is not only showing the positions of stable states but
also giving the relative weight of each state. Accordingly, we
can clearly see which state is more preferred. As shown in
Fig. 2(f), the attractor for the incorrect choice at the upper left
almost disappears when c′ = 0.65. At zero coherence, the fi-
nal decision is mostly determined by the fluctuations because
of the symmetrical landscape. However, at a large coherence
level, the effects of fluctuations on the decision are limited.
When the motion coherence is large enough, the network is led
to the correct choice in the beginning. This is because once the
stimulus input is presented to drive the decision-making pro-
cess, the system has been dominated by the attractor for the
correct decision. It then requires strong fluctuations to over-
come the barrier to reach the incorrect decided state a. There-
fore, it is more likely to make a correct decision at larger co-
herence c′. Staying in a steeper basin of attraction initially for
the case of higher c′ also leads to the quick correct decisions.
Once an incorrect decision is made because of fluctuations,

it takes much more time to cross the barrier to reach the in-
correct basin. Therefore, the average decision time is longer
in error trails than in correct trails. These theoretical results
are in agreement with the observations in decision-making ex-
periments that show better performances and shorter decision
times for larger coherence.[36,38] We will show more details in
later sections.

3.2. Landscapes with varying stimulus inputs and decision
paths on the decision-making landscapes

Figure 2 shows the landscapes of the decision-making
neural network when the stimulus inputs are directly pre-
sented to the decision-making neurons. Some previous studies
have suggested that changes of mind may occur after the ini-
tial decision because not all the information is used to make
the initial choice.[39] Therefore, we would like to explore
the situation in which stimulus input Imotion increases in time
rather than the constant input (in time) presented directly dur-
ing the decision-making process. When the varying input in
time is taken into account, the underlying potential landscapes
are more complicated and should be presented in the three-
dimensional state space. First, we made an extreme assump-
tion that the stimulus input changes relatively slowly com-
pared with the dynamics of neural activities. This assumption
is used only in Fig. 3(a). The varying input is described as
dImotion/dt = λ Imotion, and λ = 0.0001 is the varying rate of
the stimulus input. Here, we use Itot,1 and Itot,2 (equivalent
to S1 and S2 indicating the neural activities) as the horizon-
tal axis, and the logarithmic function of input log10(Imotion) as
the vertical axis. As shown in Fig. 3(a), before the input on-
set, there are three basins of attraction, and the central basin
disappears gradually as the input increases.

The advantage of our approach over the previous
studies[15,16] is that we not only quantify the relative weights
of states on the landscape but also identify the optimal kinetic
paths for the decision-making process. With a path integral
approach,[22] we can quantify the weights of paths between
each pair of states. The quantified optimal decision path has
the highest probability between the undecided state and each
of the two decided states. Furthermore, in our method, the
way we quantify the decision path avoids time-consuming nu-
merical calculations to obtain statistically meaningful data by
averaging many trials in previous approaches. The details of
the path integral approach are shown in the Appendices. As
shown in Fig. 3, the pink lines indicate the optimal paths of de-
cision making from undecided state c to decided states a and b.
The system lies in the central basin of attraction at first. With
fixed low inputs, the system can only get to the decided at-
tractor on the two sides by going across the barrier. However,
for changing inputs, the system is dominated by the central
attractor at first. Then, it falls into the basin of one decided
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attractor as the input increases. The whole process is contin-
uously dominated by attractor dynamics on the landscape in
3 dimensions (with two dimensions being the neural activities
and one dimension being the stimulus input). Here we also
show the paths from two decided states back to the undecided
state as a result of fluctuations, which are represented by red
dotted lines. As a non-equilibrium system, the dynamics of the
decision-making network are controlled by both the gradient
force and the curl flux force. With the non-equilibrium flux
force, we can see in the figure that the system does not return
to the spontaneous undecided state following the same path
of the decision-making process. The quantified paths show
that the system still prefers to stay in the basins of attraction
associated with the decided states even when there is no stim-
ulus input presented. This landscape picture of the decision-
making process in the brain resembles the Waddington land-
scape for differentiation and development.[20,40] The paths can
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Fig. 3. (color online) (a) The potential landscape of the decision-making
network with varying inputs and pathways. For the purpose of clear
visualization, here we use I1,tot and I2,tot as x- and y-axis coordinates,
which are equivalent to S1 and S2 for showing the positions of attrac-
tors. The pink lines indicate the paths of decision making from unde-
cided state c to decided states a and b. The red dotted lines represent
the paths from the two decided states back to the undecided state c.
We should notice that once the external inputs are not presented, the
system does not return to the rest state following the same path of the
decision-making process. (b) The potential landscape of the decision-
making network with faster varying input. The values of the parameters
in Fig. 2 are a = 270, b = 108, c′ = 0, and D = 1.0×10−6.

quantify the detailed process of decision making in the brain,
which will help us to understand the underlying mechanism
of how the brain makes the decision. We also showed the po-
tential landscape for the case of faster changing stimulus input
in Fig. 3(b), where the varying rate λ = 0.01. We found that
if the stimulus input increases faster, the probabilities of the
two decided states corresponding to higher stimulus inputs are
much larger (smaller potentials) than other states with a lower
input. This result implies that the decision process is faster
because the spontaneous undecided state disappears sooner.

3.3. Landscape topography and the mean first passage
time quantify the global stability and decision time of
the decision-making system

Our quantified potential landscapes show the global prop-
erties of the neural network in the course of decision mak-
ing. In previous studies,[15,16] the information on the positions
of the attractors can be obtained. However, the quantitative
information on the weight of each state of the multidimen-
sional model and therefore the corresponding landscape were
not known. An advantage of our landscape approach is that it
provides a way to quantify the stability of the functional states
though the quantification of their weights. The stability of at-
tractors is very important for decision-making networks. For
example, if the spontaneous state is not stable before the stim-
ulus onset, more errors occur. If the decided state is not stable
after the stimulus offset, the decision can be easily changed
by small fluctuations. This also may result in that the deci-
sion cannot be held long enough to produce a timely response,
i.e., a saccadic motor response in a visual motion direction
discrimination task.

In this study we use the topography of the underlying
landscape through the barrier height between basins of attrac-
tion to quantify the stability of stable states. Here, the barrier
height is defined as Usaddle −Umin, Umin is the potential mini-
mum of one local stable state and Usaddle is the potential at the
saddle point between two stable states. In addition to barrier
heights, we also quantified the mean first passage time (MFPT)
from one stable state to another to describe the stability of sta-
ble attractor states (see Appendixes for methods to acquire the
MFPT). It turns out that the mean first passage time is closely
related to the barrier height. It will take a longer time to escape
the attractor with a higher barrier.

First, we showed the landscapes at different fluctuation
levels before the stimulus inputs onset in Figs. 4(a) and 4(b)
through changing diffusion coefficient D, which measures the
strength of fluctuations. We can see for a larger diffusion co-
efficient, the potential barriers between attractors are lower,
which means that such attractors are less stable. Figure 4(c)
shows the details of how the barrier height decreases as the
fluctuations, characterized by diffusion constant D, increase.
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This result is consistent with the above discussion that the
basins of attraction are shallower for larger fluctuations. Then,
we calculated the corresponding MFPT both from decided
state a (lying on the left) to saddle point s and central unde-
cided state c to s. We can see from Fig. 4(d) that escaping the
basin of attraction with a higher barrier takes longer. A longer

(shorter) escape time implies less (more) ability to move to
other places in the whole system and therefore more (less) sta-
ble. The escape time quantifies the global stability of the sys-
tem. Therefore, the landscape topography through the barrier
height can quantitatively measure the global stability of attrac-
tors, in addition to the escape time.
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Fig. 4. (color online) (a), (b) Potential landscapes for different diffusion coefficients, where µ0 = 0 Hz, c′ = 0, and the diffusion coefficient D =
1.6×10−7, 1.0×10−6, respectively. a and c represent the decided state and undecided state, respectively. s represents the saddle point between a and
c. (c) The barrier heights versus D. Here Usa = Us −Ua and Usc = Us −Uc. (d) The barrier heights versus the corresponding mean first passage time.
τas and τcs indicate the mean first passage time from state a and state c to saddle point s, respectively. (e) The barrier heights versus input strength µ0.
(f) The mean first passage time versus input strength µ0. τca indicates the mean first passage time from state c to state a. τac indicates the mean first
passage time from state a to state c. In all these subgraphs, parameters a = 269.5 and b = 108 and motion coherence c′ = 0.

The central undecided attractor disappears very quickly
when the stimulus input strength increases. Therefore, to
quantify the stability of different function states, we show
here the barrier heights and the corresponding MFPT versus
the varying input for a short range, in which the stimulus
strength µ0 varies from 0 to 10 Hz. As shown in Figs. 4(e)
and 4(f), the central attractor that represents the undecided
state becomes shallower (smaller Usc), and the attractors of
two decided states become deeper (larger Usa) for a larger in-
put. Furthermore, the corresponding MFPT also shows that it
is easier to escape the undecided attractor as the stimulus in-
put increases. On the contrary, the decided attractors become
deeper and more stable due to the increase of the correspond-
ing MFPT for escape. The solid line in Fig. 4(f) shows non-
monotonic behavior. This illustrates that the barrier height
cannot always be used as the quantitative measurement for
global stability, but the MFPT can.

The time taken in the process of decision making is al-
ways an issue of concern. Another benefit of quantifying the
mean first passage time is that we can quantitatively explore

the decision-making speed or time (from the undecided state
to a decided state) under different biological conditions. As
shown in previous research, when the motion coherence in-
creases (the decision task becomes easier), the decision time
to make the correct choice decreases monotonously and the
decision time in error trials is always longer.[15,36,38] Here, we
obtain similar results by solving the corresponding MFPT. As
shown in Fig. 5, we can see that for a lower motion coher-
ence level, the decision times in the correct and incorrect trials
are nearly the same. This is because the two populations of
decision-making neurons have similar inputs, and it is difficult
to make a choice. As the coherence level increases, the deci-
sion time in the correct trial decreases monotonously, and it
increases in the incorrect trial. The decision time in the error
trial is always longer. Our theoretical predictions are in good
agreement with the experimental results. The difference is that
when the coherence is large enough, errors may not happen in
the experiments. In our probabilistic landscape description,
we used the mean first-passage time to quantify the decision
time. Theoretically, we could obtain the decision time for any
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conditions by solving the equation. We found when the co-
herence is large enough, the time required to make the wrong
decision is so long that it may not happen in practice.
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Fig. 5. (color online) The decision time in the correct and error tri-
als. Here the parameters are a = 269.5, b = 108, µ0 = 30 Hz, and
D = 3.6×10−7.

3.4. Quantifying the mechanisms of the speed-accuracy
tradeoff of decision-making from the landscape per-
spective

When people make decisions, they often face opposite
demands in speed and accuracy. How this speed-accuracy
tradeoff (SAT) is implemented in neural decision-making cir-

cuits has received attention in recent years.[41–43] In previ-
ous models of the decision-making network, the activities
of decision-making neurons increase gradually as the stim-
ulus input is presented. Once the activities reach the deci-
sion threshold, the decision is made. The decision-making
neurons can be seen as integrators of stimulus input informa-
tion. Mathematically speaking, an increase in the initial ac-
tivities of integrator neurons (baseline) and the reduction of
the decision threshold seem to be equivalent for speed em-
phasis because both ways shorten the process of information
accumulation. Meanwhile, decisions are less accurate because
the decision-making process can be more easily affected by
the fluctuations due to the shortening distance between the
baseline and the decision threshold. Many modeling studies
have implied a lower decision threshold as the mechanism for
speed emphasis.[44,45] However, recent human brain-imaging
studies and neurophysiological recordings provide strong evi-
dence for the changing-baseline hypotheses.[43,46,47] The cor-
responding intrinsic mechanisms of the speed-accuracy trade-
off in the attractor model need to be quantified. The advantage
of quantifying the potential landscape is that it can directly
and quantitatively reflect the influences of varying parameters
with specifically biological meanings on the landscape, which
can help us to uncover the mechanisms of the decision-making
process.
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Fig. .6 (color online) (a) The two-dimensional potential landscape for a higher input threshold before the stimulus inputs presented (µ0 = 0 Hz). (b)
The two-dimensional potential and pathways for constant stimulus input µ0 = 30 Hz and different parameter b. The green line and white line show the
decision-making pathways with different input threshold b/a where b = 108.5 and 107.5, respectively. In subgraphs (a) and (b), parameters a = 269.5
and b = 108 and the diffusion coefficient D = 3.6×10−7. (c), (d) The barrier heights versus parameters a and b, respectively. Here µ0 = 0Hz,c′ = 0,
and the diffusion coefficient D = 1.6×10−7. (e), (f) The potential landscapes for different input thresholds when a biased input is presented, where the
parameter b = 107.5 and 108.5, respectively. Attractors a and b represent the incorrect choice state and correct choice state, respectively. c represents
the undecided state. (g) The first passage time versus parameter b. (h) The ratio of the probability of the path of the correct choice to the error one versus
parameter b. In subgraphs (e) and (h), parameters µ0 = 5 Hz, c′ = 0.24, D = 1.6×10−7, and a = 269.5.

Based on the changing-baseline hypothesis, theories are
proposed to explain how the speed-accuracy tradeoff is con-
trolled in the cortical-basal ganglia circuit.[43] The cortical
theory suggests that cortical decision-making integrator neu-

rons receive additional excitatory input (the baseline is in-
creased) with speed emphasis. Previous theoretical studies
support this theory with the one-dimensional non-linear dif-
fusion model.[11] In our attractor landscape, presenting addi-
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tional inputs to selective decision-making integrator neurons
can be described as the decision process initiated at state c′

instead of state c in Fig. 3(a) because the initial activities of
the neurons (baseline) are increased. The central attractor for
undecided state c′ is not as strong as c, and it is closer to de-
cided state a or b, which makes the decision faster. Although
information accumulation will take a shorter time to exceed
the threshold, it is more likely to be influenced by the noises
to make wrong choices.

Differently from the cortical theory, the striatal theory
suggests that with speed emphasis, the striatum receives ex-
citatory input from cortical (non-integrator) neurons, increas-
ing striatal activity and thus decreasing the inhibitory control
of the basal ganglia over the brain.[43] Because of the strong
functional projections from the basal ganglia back to the cor-
tex via the thalamus, the striatal theory also predicts that the
baseline of the cortical decision-making integrator neurons is
increased with speed emphasis. As a result, the decisions are
fast but error-prone. How can this mechanism be quantita-
tively explored with our landscape approach? To address this
issue, we focused on the input–output function of the selec-
tive integrator neurons in the mathematical model. As we in-
troduced in the model section, we defined Thin = b/a as the
input threshold of the decision-making neural network model.
We found the activities of decision-making integrator neurons
are very low when the corresponding stimulus input is below
Thin. Once the input is beyond this threshold, the activity of
the neural population increases quickly.

Lower input threshold Thin indicates that the selective
neurons can be more effectively activated by the same stimulus
inputs. In other words, the stimulus inputs become more effec-
tive. Therefore, the effects of decreasing input threshold Thin

here are equivalent to less inhibitory control in the decision-
making integrator neurons, which is consistent with what the
striatal theory suggests. According to the input–output func-
tion of integrator neurons, a lower Thin increases the baseline.
In Fig. 6(a), we can clearly see that before the stimulus in-
puts are presented, the central basin for the undecided state
becomes deeper and larger when Thin is higher (larger param-
eter b), compared with the landscape shown in Fig. 2(a) where
the central attractor is approximately as stable as the other two
basins for decided states. We also show the decision paths
for different input threshold Thin in Fig. 6(b). When Thin is
higher, the path indicated by the green line prefers to stay in
the states where the activity difference between two compet-
ing neural groups is smaller (along the diagonal of the square
state plane). In other words, the decision is more difficult to
make. Then, we plotted how barrier heights of Usa and Usc

change with the parameters a and b, respectively in Figs. 6(c)
and 6(d). We can see the potential barrier from central un-
decided state c to decided state a (Usc) increases as Thin in-

creases, and on the contrary, the barrier from decided state a

to central undecided state c (Usa) decreases. This indicates a

larger Thin results in stronger and more stable central basin

of attraction for the undecided state. This result can be easily

understood. For a larger input threshold, it requires stronger

stimulus input to excite the decision-making neurons to reach

the decided attractors.

Furthermore, we quantitatively explored how the input

threshold affects the performance and decision time of the

decision-making processes with the landscape approach. In

Figs. 6(e) and 6(f), we show the potential landscapes for two

different input thresholds Thin when a biased input is presented

(c′ = 0.24,µ0 = 5 Hz). Figures 6(e) and 6(f) show the central

undecided basin is more stable, and both barriers to two de-

cided basins are higher for a larger Thin. Then, we show the

details of how the decision time increases as the input thresh-

old Thin increases in Fig. 6(g) by increasing parameter b. As

we have discussed above, it is easier to make a decision for

an unstable central basin because of its shorter decision (es-

caping to the decided state) times. In the random dot motion

tasks, shorter decision times are always accompanied by more

errors. Here we studied the performance of the neural network

with a path integral method.[?] The advantage of the path inte-

gral method is that it can quantify the weights of the optimal

path between each pair of states. The basin for the correct

choice state is indicated by b in Figs. 6(e) and 6(f). Once the

system has reached state b from spontaneous undecided state

c, such a trial is regarded as a correct one. Otherwise, an error

choice emerges if the system reaches the wrong decided state

indicated by a. Here, we defined the performance (accuracy)

of the decision-making task as the ratio of the weight of the

optimal correct path (Pcb) to the weight of the error one (Pca).

We can see in Fig. 6(h) that ratios Pcb/Pca are all larger than 1,

which implies that the probability of making a correct choice

is always larger than that of an error one. Figure 6(h) also

shows the performance is worse when parameter b is smaller

(lower Thin). Therefore, we found that with a lower Thin, the

baseline is increased, and the decision speed is improved at

the expense of reducing accuracy. These theoretical predic-

tions are consistent with the speed-accuracy tradeoff observed

in experiments.[47–49] Our predictions can be tested in future

experiments to distinguish which mechanism is more impor-

tant in the speed-accuracy tradeoff control. The cortical theory

wins if the cortical neurons receive the additional input. The

striatal theory better explains if there are additional inputs to

the striatum.
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3.5. Energy cost and the speed-accuracy-energy tradeoff
of decision making

In addition to speed and accuracy, the energy cost is
another focus of attention in the decision-making process.
Both receiving additional excitatory input and lowering input
threshold Thin increase the baseline and play similar roles in
the speed-accuracy tradeoff with speed emphasis. However,
whether two mechanisms show similar natures when the en-
ergy cost is taken into consideration remains to be addressed.
It is expected that speed emphasis may cost more energy with
faster speed from intuition. To test this prediction, we cal-
culated the entropy production rate as a measurement of en-
ergy dissipation per unit time[28] (see details in Appendixes).
We found the total entropy production rate (the change in the
entropy inside the system adds to the entropy flow rate from
the environments) is always larger or equal to zero. It has the
physical meaning of the energy cost or dissipation rate (the
temperature is regarded as a constant for simplicity). For a
given non-equilibrium dynamical system (all parameters are
set), there will always be a certain amount of energy dissipated
in unit time (measured by the entropy production). The en-
tropy production rate is closely related to the probability flux.
The flux is the origin of the entropy production. Therefore,
quantifying the flux of the decision-making network provides
us with a chance to explore the energy cost in the decision-
making processes.

Figures 7(a) and 8(a) show that the entropy production
rate (EPR) is larger with lowering input threshold represented

by the smaller parameter b and the increasing additional in-
put, indicated by the larger input strength µ0. Our results sug-
gest that more energy is dissipated in unit time with speed
emphasis. Neuroimaging techniques such as positron emis-
sion tomography (PET) and fMRI are used to measure neu-
ronal activities. We should notice that the nature of these
brain-imaging methods is not detecting brain activity di-
rectly but rather measuring signals that reflect brain energy
consumption.[50] In fact, PET records change in blood flow
and oxygen consumption, whereas fMRI signals reflect the de-
gree of blood oxygenation. We know that the brain energy cost
comes from the oxidation of glucose delivered in the blood.
Although we cannot precisely measure the energy cost in the
brain, these neuroimaging recordings can give us some infor-
mation about the trend in energy consumption through oxygen.
Previous fMRI studies show that in easier decision tasks the
blood-oxygenation-level-dependent (BOLD) signal increases
greatly in the sensory processing area.[51,52] With lower diffi-
culty levels, the activities of decision-making neurons increase
quickly, just as the decision-making process with speed em-
phasis can. Our predictions are consistent with the fMRI stud-
ies. Furthermore, we explored the total energy cost in decision
makings for two modulating mechanisms. Here, we calculated
the total energy cost as the entropy production rate multiplied
by the decision time. To make the discussions clearer and
more complete, we also show how the decision time changes
as the parameter b and input strength µ0 vary in Figs. 7(a) and
8(a).
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Fig. 7. (color online) (a) The entropy production rate (EPR) versus parameter b. The decision time represented by the MFPT versus parameter b shown
with the red line. (b) The total energy cost versus parameter b. (c) With speed emphasis, less energy is required, but the performance is worse. Here the
accuracy is represented by the ratio of the probability of the path of the correct choice to the error one. (d)–(f) The inter-relationship among the speed,
accuracy, and energy cost based on the varying input threshold. In all subgraphs, parameters a = 269.5, µ0 = 10 Hz, c′ = 0.24, and D = 1.6×10−7.
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Let us focus now on the speed-accuracy tradeoff mech-
anism by varying input threshold Thin, as the striatal theory
suggests. As shown in Fig. 7(b), the total energy cost in de-
cision making increases when the input threshold increases
(larger parameter b). Although the energy cost in unit time
is lower for a higher input threshold, the total energy cost
is larger because of the significant increase in the decision
time. In Figs. 7(c)–7(f), we show the inter-relationship among
speed, accuracy, and the energy cost with varying input thresh-
old. Here, the accuracy is represented by the ratio of the
probability of the path of the correct choice to the error one

(Pcorrect/Pwrong). When the speed is the main concern of the
decision making, with speed emphasis (Fig. 7(c)), the perfor-
mance of the decision making is worse, but it costs less energy.
If the accuracy is the main concern in decision making, the de-
cision accuracy is demanded (Fig. 7(d)), and a longer decision
time and higher energy costs are required. When the energy
cost is the main concern in decision making (a lower energy
cost) (Fig. 7(e)), the decision can be made faster, but the ac-
curacy is worse. Figure 7(f) shows the full interrelationship
among speed, accuracy, and the energy cost in decision mak-
ing with varying input thresholds.
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Fig. 8. (color online) (a) The entropy production rate (EPR) versus motion input strength µ0. The decision time represented by the MFPT versus input
strength µ0 is shown with the red line. (b) The total energy cost versus motion input strength µ0. (c) The total energy cost increases as the decision time
increases. For fast (slow) decisions, the performance can be improved with decreasing (increasing) decision time. Here the accuracy is represented by
the ratio of the probability of the path of the correct choice to that of the error one. (d)–(f) The inter-relationship among the speed, accuracy, and energy
cost based on presenting additional input to cortical integrators. In all subgraphs, parameters a = 269.5, b = 108, c′ = 0.24, and D = 3.6×10−7.

In addition, focusing on the speed-accuracy tradeoff
mechanism proposed in the cortical theory, we find that the
energy cost does not change monotonously when the cortical
decision-making integrator neurons receive larger additional
input. As shown in Fig. 8(a), the decision time decreases
quickly at first and then decreases more smoothly. The slight
increase in the decision time next can be understood as the fact
that when µ0 = 10, the central attractor of the undecided state
disappears and the system is more easily influenced by the
fluctuations and noises to go to the wrong attractor first, which
results in a slightly longer decision time. By contrast, the en-
tropy production rate increases monotonously. Therefore, the

total energy cost shows the non-monotonic nature with an in-
creasing additional input. The inter-relationship among speed,
accuracy, and the energy cost with a varying additional input
is shown in Figs. 8(c)–8(f). If the speed is the main concern
of the decision making, there is an optimal (minimal) decision
speed (Fig. 8(c)) with a nearly optimal (minimal) energy cost
and reasonable accuracy performance. A higher accuracy still
requires a longer decision time (slower decision speed). We
now discuss the situation when the accuracy and performance
are the major concern of decision-making (Fig. 8(d)). We can
see in Fig. 8(d) that reasonable but suboptimal accuracy and
performance can be achieved with optimal energy cost and
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speed. With the best accuracy and performance, the energy
cost and time for decision making are higher than the opti-
mum. If the energy cost is the main concern for decision mak-
ing (Fig. 8(e)), the decision accuracy and performance may
not be the best with the least energy cost; however, we can
still reach a faster speed based on the varying additional in-
put mechanism. Figure 8(f) shows the entire interrelationship
among speed, accuracy, and energy cost in decision making
with varying additional input to cortical integrators.

In summary, we have quantitatively discussed the cortical
theory and the striatal theory of the speed-accuracy tradeoff in
decision making. If the energy cost is taken into considera-
tion, there should be a speed-accuracy-energy tradeoff. With
speed emphasis, although the accuracy is sacrificed, the energy
cost may be minimized. Our results imply there is an optimal
balance among speed, accuracy, and the energy cost with a
varying additional input. They may also serve as a basis for
the optimal design of decision-making with speed, accuracy,
and energy cost. The fMRI study supports our predictions that
more energy costs in unit time with speed emphasis, but the
total energy cost in the whole decision process still needs to
be confirmed in future experiments.

3.6. Changes of mind in decision making

In our daily lives, making decisions is often accompanied
by situations in which we change our minds. Usually, such
changes can lead to the correction of initial errors. An addi-
tional strong opposite stimulus may result in decision reversal
because the corresponding attractor landscape reverses. How-
ever, a decision reversal sometimes happens without adding an
input with an opposite direction. Here, the changes of mind we
discussed refer to making different choices under no changes
in the direction of the stimulus inputs(random dots motion co-
herence c′) after an initial decision has been made.

Without an opposite input, the two attractors of the de-
cided states do not reverse. We obtain some insights from
the recent research findings: when strong inputs are presented
to both selective decision-making neural populations, a new
state emerges.[15,44] From Fig. 9(a), where stimulus strength
µ0 = 50 Hz and motion coherence c′ = 0, we can see there are
only two distinct basins of attraction each representing two de-
cided states. As the input increases, a new attractor emerges in
the center with high activities on both populations in Fig. 9(b)
(µ0 = 60Hz). Here, we use larger strength of stimulus µ0 in-
stead of adding a common input to both neural pools for sim-
plicity, and this does not affect the results. The new stable
state indicated by d in Fig. 8 corresponds to the state where
both decision-making neural groups have higher activities or
firing rates. Therefore we can call this state a “double-up”
state, compared to the two decided states a and b with only
one neural group activated (“single up”). This “double-up”

state d becomes increasingly stronger as the input increases.
In Fig. 9(c) (µ0 = 65 Hz), the system is completely dominated
by this “double-up” state. Therefore, we can understand the
whole process of changes of mind from the potential landscape
perspective. Once a decision has been made, the system stays
at one of the decided states (a or b). Then, a higher com-
mon input is presented to both selective neural populations,
which leads to the domination of one activated central basin
(d). However, this new attractor will disappear soon after the
inputs return to normal levels (the landscape returns to the one
with only two decided states). Therefore, the network has to
make a new choice after being attracted to this new central
basin of attraction, as shown in Fig. 9(c). If the system makes a
different choice with the help of biased inputs and fluctuations,
a change of mind occurs. Our results are supported by spik-
ing model simulation studies, which showed that with larger
stimulus inputs the firing rates of both decision-making neural
populations stay at a high level (“double-up”) during changes
of mind rather than only one neural group being highly acti-
vated according to winner-take-all.[44] These findings suggest
that changes of mind are due to the emergence of the new cen-
tral basin of attraction, or a new “double-up” state, with high
activities in both populations. In fact, this “double-up” state
has been found in the previous experiments before the random
dot motion onset.[35,37] It is explained as the decision-making
integrator neurons receiving a target input during the target
presentation.[16,44] However, the role of this state in the pro-
cess of an initial decision is still unclear. Now because the
“double-up” state is so important in changes of mind, where
does the additional input come from after the initial decision
has been made? It is suggested that not all the information is
used to make the initial choice. The changes of mind may be
caused by the unprocessed information that is not presented
before the first decision.[39]

Figures 9(d)–9(f) show that the landscapes when large in-
puts (here µ0 = 55 Hz) are presented at non-zero coherence
levels, c′ = 0.02, 0.06, and 0.12, respectively. We can see that,
for biased inputs, attractor b for the correct choice is more at-
tractive. The stability of attractor b guarantees that changes in
the initial correct decisions are not likely to occur. On the con-
trary, if the network made a wrong decision at first, changes
may happen more easily. The reason is that although the net-
work has a second chance to make a decision due to the very
large stimulus input, it is still more likely to be attracted to the
stronger basin of attraction for the correct choice after the large
input offset. Therefore, there are more chances for changes to
the correct choice.

According to our potential landscape theory, we can pro-
vide a physical explanation of other experimental findings in
changes of mind. Previous works show that with increasing
coherence, the probability of changes to the wrong choice
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from the correct one decrease monotonically.[39,44,45] In the
meantime, changes to the correct choice peak at intermediate
motion strength and then decrease gradually. First, we need
to sum up the whole process of changes of mind in three nec-
essary steps: making the initial choice, then being attracted
to the new basin of attraction or, in other words, getting to a
“double-up” state (high activities for both groups of neurons,
the central basin) and, at last, making a different choice. A
change of mind requires that process. Then these experimental
findings can be easily understood with our potential landscape
theory.

Although changes from the wrong to the correct choice
are always more frequent than changes from the correct to
the wrong choice, the trends of the probabilities of the two
types of changes versus the motion coherence are slightly dif-
ferent. We have shown that the network is more likely to
make a correct decision at a higher coherence level. Com-
pared with the landscape shown in Fig. 9(b) whose stimulus
strength µ0 = 60, we can see that for the cases of biased inputs
shown in Fig. 9(f) where the coherence is c′ = 0.12, even the
input becomes large, and the basin for correct choice state b
is still very strong and stable. Such a large input is still not
strong enough to force the system to escape from the attractor

for the correct choice. We also found that new central attrac-
tor d cannot emerge when the motion coherence is too large,
which implies that the attractor with the correct decision is the
only dominated one. Therefore, for the case that most initial
choices are correct at high coherence levels, changes may not
happen. Furthermore, even though a second choice occurs,
it is still not possible to make errors. In other words, mind
changes do not occur due to the biased potential landscape.
This is why the overall trend of the probability of changes is
decreasing gradually with increasing coherence. However, at
low coherence levels where c′ is smaller than 0.1, the poten-
tial landscape is almost symmetric, and there are more initial
errors. We also noticed that at such low coherence levels, it
is increasingly likely to go to the central double-up state from
the wrong decision attractor as the coherence increases, and
larger coherence results in a higher probability of changes to
the correct choice. On the contrary, with increasing coherence
the initial correct choice is more likely to be kept, as we have
discussed. Therefore, at low motion coherence levels, it is
more likely for the neural system in the brain to make a differ-
ent decision and the changes to the correct decision may even
increase with increasing coherence.
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Fig. 9. (color online) Comparison of potential landscapes with different large inputs. (a)–(c) The two-dimensional potential landscapes for
different large inputs at zero coherence level. The strength of stimulus µ0 = 50,60 and 65 Hz respectively. (d)–(f) The two-dimensional
potential landscapes for large input (µ0 = 55) when coherence c′ = 0.02, 0.06, and 0.12, respectively. In all subgraphs, parameters a = 269.5,
b = 108, and D = 3.6×10−7.

We also used a path integral method to quantify the
weights of the paths of changes of mind to give a quantita-
tive explanation of the experimental observations in changes
of mind.[22] We can compare the probabilities of two paths in
changes of mind for certain coherence c′. In Fig. 10(a), we use

Pright to indicate the probability of the optimal path that the de-
cision network made a wrong choice at first and then changed
from the wrong to the right choice. Pright here is quantified
by Pca ×Pad ×Pdb. Contrarily, the Pwrong(Pcb ×Pbd ×Pda) rep-
resents the probability of the optimal path from the right to
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the wrong choice. Our theoretical results with the path inte-
gral approach are consistent with the experimental observa-
tions, which are shown in Fig. 10(a). We can see that the ratio
Pright/Pwrong, is always larger than 1, which indicates that the
probability of changes to the correct choice is always larger
than changes to the wrong choice. Pright/Pwrong increases first
and then falls down to 1 as coherence c′ increases from 0 to 1.
This result is consistent with the experimental results and our
qualitative explanation discussed above. With unbiased inputs
(c′ = 0), the probabilities of changes to the right choice and
changes to the wrong choice are the same. At low coherence
levels, changes to the right choice are relatively more likely to
happen than changes to the wrong choice. When the coher-
ence c′ is close to 1, neither of the two changes may happen,
and Pright/Pwrong drops to 1 again.
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Fig. 10. The ratio of the probability of two paths and the energy cost of
changes of mind. (a) Pright represents the probability of the optimal path
that the decision network made a wrong choice at first and then changes
from the wrong to the right choice. Contrarily, Pwrong represents the
probability of the optimal path from the right to the wrong choice. (b)
The total energy cost in changes of mind versus parameter b.

We believe the change of mind is an intrinsic mechanism
of improving performance in decision-making tasks. Initial
correct decisions are more likely to be kept. For error trials,
changes of mind give the neural network a second chance to
make a new choice; thus, many errors will be corrected. We
know that a longer reaction time is important for the perfor-

mance (accuracy) of decision making. There is also evidence
showing that when subjects were asked to perform decision
tasks more slowly, there were fewer changes of mind and more
accurate initial decisions.[39] We have discussed the mecha-
nism of the speed–accuracy tradeoff in decision making from
the landscape perspective. Here, we also explored the effects
of input threshold Thin on the potential landscapes during the
process of changes of mind. In Fig. 11, as the threshold Thin

decreases (smaller parameter b), which indicates that the stim-
ulus inputs are more effective to activate the decision-making
neural pools, we can see the new central attractor (“double-up”
state d) that is crucial for changes of mind becomes stronger.
The stronger new central attractor implies that the probability
of making a second choice is higher, particularly for initial er-
rors, with increasing inputs. Comparing the relative weights
of the three attractors shown in Figs. 11(d), 11(e), and 11(f),
we also find that the new central attractor is always stronger
than the attractor with the incorrect decision for a lower input
threshold, whereas the strength of the correct attractor changes
little. This finding suggests that changes to the correct choice
are more likely to occur, and the initial correct choice is still
likely to be kept. Behavioral data in the experiments of pre-
vious studies[39] show there are more changes with a shorter
decision time, and our theoretical results suggest most of these
incremental changes will correct initial errors.

Lower input threshold Thin reduces the difficulty in mak-
ing a choice, both correct and incorrect. It also makes the
new central attractor (“double-up” state) stronger for more
changes. Therefore, we can conclude although the time pres-
sure may lead to more initial errors, there will be more changes
made to correct these errors if there are large enough inputs
presented. The speed-accuracy tradeoff always works. Fortu-
nately, the mechanism of changes of mind guarantees the rea-
sonable performance of decision making with speed emphasis
as long as people have the chance to make the changes. We
have discussed the speed–accuracy–energy tradeoff. It seems
that not focusing on accuracy may save energy. The conclu-
sion is not clear if we take changes of mind into consideration.
A faster speed may result in more initial errors. Once the ini-
tial error is corrected by changes of mind, an additional energy
cost is required. As shown in Fig. 10(b), much more energy
is required for changes of mind than for the initial choices,
particularly for a larger input threshold. On the contrary, with
enough time, the initial decisions are more accurate; therefore,
there is less need to make changes and a lower additional en-
ergy cost. With accuracy emphasis, one has to choose between
a higher energy cost in the initial decision and additional en-
ergy cost in changes of mind. Regardless, more energy is re-
quired for better performance in decision making. Our the-
oretical predictions provide guidelines for future experiments
on the speed-accuracy-energy tradeoff in decision making.
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Fig. 11. (color online) Comparison of potential landscapes of different input thresholds for large inputs. (a)–(c) The two-dimensional potential
landscapes for different input thresholds at the zero coherence level, where the strength of stimulus µ0 = 60 Hz and parameter b = 107.5, 108,
and 108.5, respectively. (d)–(f) The two-dimensional potential landscapes for biased input (µ0 = 55 Hz) and with coherence c′ = 0.06 and
parameter b = 107.5, 108, and 108.5, respectively. In all subgraphs, parameters a = 269.5 and D = 3.6×10−7.

4. Conclusions

Although the attractor ideas have been used to describe
cognitive processes such as decision making, a quantitative
description of attractor landscapes has not been completely
given yet, particularly at the non-equilibrium level. Here,
we developed a theoretical framework that has been shown
to be successful in describing associative memory and circa-
dian rhythm,[23] to quantify the landscape for decision making.
Furthermore, we quantified the decision-making processes by
the optimal paths from undecided attractor states to decided at-
tractor states on the landscape. An advantage of our landscape
theory is not only showing the locations of attractors, but also
showing the weight or depth of the attractors. We can quantify
the stability of the functional attractors with the corresponding
escape time and barrier heights on the potential landscape. The
escape time quantified by the mean first passage time MFPT
can also be used to quantify the decision times important in
decision-making processes. Differently from the traditional
way to get reaction time and performance, here, our quantifica-
tions of these features avoid the time-consuming calculations
of the statistics of the data. Based on the potential landscapes
and the optimal paths, we provided quantitative explanations
of the experimentally observed behaviors and explored the un-
derlying mechanisms of the speed-accuracy-energy tradeoff
and changes of mind in the decision processes.

Following the neural trajectories, previous research
showed the correlation between the decision time and accuracy
for decision tasks with varying difficulty (c′).[15,16] However,

the underlying intrinsic mechanisms of the tradeoffs among
speed, accuracy, and particularly the energy cost in decision
making have not been explored. Recent fMRI studies on
the speed-accuracy tradeoff strongly suggest the brain imple-
ments speed emphasis through increasing the baseline activ-
ity of cortical integrator neurons. We quantitatively discussed
two mechanisms in speed emphasis with our landscape ap-
proach: one is increasing the baseline directly through present-
ing additional excitatory input (cortical theory) and the other
one is increasing the baseline indirectly by reducing the in-
hibitory control to the integrator neurons (striatal theory). Our
results suggest that these two ways show similar properties
in the speed-accuracy tradeoff; i.e., the speed is increased at
the expense of lost accuracy and higher energy cost in unit
time. However, our results predict the two theories can be
distinguished by the total energy cost in the whole decision-
making process. If varying the input threshold (striatal the-
ory) is the main regulation mechanism in the speed–accuracy
tradeoff, the energy cost increases monotonously with increas-
ing accuracy and decreases monotonously with a decreasing
decision time. When presenting additional input is the dom-
inated mechanism of regulating the speed-accuracy tradeoff,
the total energy cost does not change monotonically with an
increasing additional input. There is an optimal total energy
cost with near optimal fast speed at intermediate accuracy. In
other words, reasonable but suboptimal accuracy and perfor-
mance can be achieved with optimal energy cost and speed.
Some of our predictions have been supported by the experi-
mental recordings that showed that the BOLD signal increases
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in faster decisions. The total energy cost in the whole decision
process should be tested in future experiments, which might
also help in the optimal design of decision-making with speed,
accuracy, and energy cost. It should be noted that we used a re-
duced two-population model to describe the decision-making
process. When adding more biological details to the neural
work, such as basal ganglia and globus pallidus, which are
associated with movements, we may uncover more detailed
mechanisms in decision making through quantifying the cor-
responding potential landscape and kinetic paths.

We explored the mechanism of mind changes with our
potential landscape approach and found that it may be closely
associated with the new state that emerges when the large stim-
ulus inputs are presented. We also gave a physical explanation
of why changes from the wrong to the correct choice occur
more frequently and why more changes occur at a low coher-
ence level, as has been observed in the experiments. We found
that although errors are more likely to be made for a shorter
decision time, there will be more chances for changes to cor-
rect these errors.

Our approach provides a general way to investigate cog-
nitive behaviors which are determined by neural networks and
the corresponding mechanisms. We wish to apply our theory
to more complicated systems in future studies, for example
decision makings with multiple alternatives and decisions as-
sociated with memory retrieval.

Appendix A: Mean first passage time

The mean first passage time τ from any state to a given fi-
nal state can be obtained by solving the following equation:
𝐹 ·∇τ +∇ ·𝐷 ·∇τ = −1.[28] The boundary condition is
taken as an absorbing boundary condition τ = 0 at the final
state and reflecting boundary conditions n∇τ = 0 for the outer
boundary.

Therefore, the average decision time can be approxi-
mately quantified by the mean first passage time from unde-
cided states to decided states without knowing the exact de-
cision threshold. It is because the time to the decided state
is quite shorter after the barrier is crossed, compared with the
time of crossing the barrier between two basins of the unde-
cided state and the decided state. There is no doubt that the
decision threshold lies in the basin of the decided state.

5. Appendix B: Entropy production rate

For non-equilibrium neural network dynamics, the driv-
ing force can be decomposed into a gradient of the potential
and a curl flux force as: 𝐹 = −𝐷∇U +𝐽SS/PSS. The en-
tropy production rate can be quantified as: EPR =

∫
dI(𝐽 ·

𝐷−1 ·𝐽)/P.[28]

6. Decision-making pathways through path inte-
gral
According to corresponding Langevin equations from the

decision-making neural network, we can now express the dy-
namics with the probability of starting from initial state 𝐼initial

at t = 0 and end at the final state 𝐼final at time t, with condi-
tional probability as

P(𝐼final, t,𝐼initial,0)

=
∫

𝒟[𝐼(t)]exp
[
−
∫

dt
(

1
2
∇ ·𝐹 (𝐼)

+
1
4
(d𝐼/dt −𝐹 (𝐼)) · 1

𝐷(𝑥)
· (d𝐼/dt −𝐹 (𝑥))

)]
=
∫

𝒟[𝐼]exp[−S(𝐼)]

=
∫

𝒟[𝐼]exp[−
∫

L(𝐼(t))dt]. (5)

Here, L(𝐼(t)) is called the Lagrangian and the S(𝐼) is the ac-
tion function or the weight for each path connecting initial
state to final state. The integration for 𝒟[𝐼(t)] represents the
sum over all possible paths between 𝐼initial at t = 0 and 𝐼final

at time t. It is a remarkable fact that not every path gives the
same contribution. Each path has exponential weight, so we
can approximate the path integral with a dominant path. The
contribution of the optimal path is greater than the other path,
therefore, the sub-leading path contributions are always small
and can be ignored. In general, we can minimize the action
function and resolve out the dominant path. Once the domi-
nant path is obtained, we can also substitute into the path in-
tegral formulation and calculate the probability evolution in
time.[22,32]

All the calculations above are completed with the COM-
SOL software.

7. Appendix D: Supplementary results and dis-
cussion about different initial conditions
The conventional way of exploring the neural network dy-

namical systems is always following the dynamical trajecto-
ries of the time evolution of the system. In these approaches
the results are often influenced by the initial conditions. How-
ever, following the single trajectories cannot easily capture the
global properties of the systems, especially for complex non-
linear neural network systems with intrinsic and external fluc-
tuations. In this work, we focused on the probabilistic evo-
lution which is linear and can give the global nature of the
stochastic dynamics. When the evolution time is long enough,
the probability distributions in the state space do not change.
This is the steady state and the steady state probability distri-
bution Pss satisfies dPss/dt = 0. By solving the correspond-
ing Fokker–Planck equation, we can quantify the steady state
probability distributions of the system in the state space. Then
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we define the potential function U = − lnPss. We should no-
tice that the steady state probability in the state space is only
determined by the system itself and not influenced by the ini-
tial conditions. Therefore, with different initial conditions,
the probability evolutions may follow different routes but will
eventually always settle down to the common steady state dis-
tribution. The corresponding quantified attractor landscape is
also independent of the initial conditions.

In the following figures, we show the evolution of the neg-
ative logarithm of the probability (− lnP) for three different
initial conditions, where no stimulus inputs are presented and
the motion coherence c′ = 0. When the evolution time is long
enough, we can get the steady state probability distributions

and the corresponding potential landscape U = − lnPss. As
we discussed in the main text of our paper, there are three at-
tractors coexisting which correspond to one decided state and
two undecided states before the stimulus onset. In Fig. D1,
we choose the initial condition with the states close to the un-
decided state having larger initial probabilities (lower poten-
tials). This implies the system starts from the state which has
only one decided state. We can see as the probability evolves
three attractors emerge on the landscape. Then we show the
initial condition focusing on one decided state. We can see in
Fig. D2 the potential landscape corresponding to steady state
probability distributions also has the same three attractors, al-
though the evolution follows a different route.
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Fig. D1. (color online) Probability evolution and emergence of the tristable landscape with the initial condition focusing on the
undecided state.

1.0

1.0

0.5

0.5
0
0

40

30

20

10

S1

S
2

1.0

1.0

0.5

0.5
0
0

40

30

20

10

S1

S
2

1.0

1.0

0.5

0.5
0
0

40

30

20

10

S1

S
2

1.0

1.0

0.5

0.5
0
0

40

30

20

10

S1

S
2

1.0

1.0

0.5

0.5
0
0

40

30

20

10

S1

S
2

1.0

1.0

0.5

0.5
0
0

40

30

20

10

S1

S
2

1.0

1.0

0.5

0.5
0
0

40

30

20

10

S1

S
2

1.0

1.0

0.5

0.5
0
0

40

30

20

10

S1

S
2

Fig. D2. (color online) Probability evolution and emergence of the tristable landscape with the initial condition focusing on one decided state.

We also try the initial condition that the initial probabilities of all the states in the plane are uniform. We reach the same
potential landscape in Fig. D3 with a different evolution track. These figures show different initial conditions can reach the same
steady state probability distributions and potential landscapes in our probabilistic description, taking different evolution paths.
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Fig. D3. (color online) Probability evolution and emergence of the tristable landscape with the uniform initial probability distribution.

With a path integral approach, we can quantify the
weights of both the optimal decision paths in error trials and
correct trials. Then we can quantify the ratio of correct re-
sponses in decision tasks. In our work, we defined the decision
path as the one from the spontaneous undecided state to one of
the two decided states, either the correct one or the incorrect
one. On the quantified landscapes of the decision making net-
work, there is a clear spontaneous undecided state. Our dis-
cussions about the decision time and performance (accuracy)
are based on this spontaneous undecided state. Different ini-
tial conditions mean that the system starts from different ini-
tial states instead of the spontaneous undecided state. In fact,
there is no difficulty to discuss the decision time and accu-
racy with our method for different starting points. We did not
show these discussions in the main text because we believe
setting the spontaneous undecided state as the starting point
has a clearer biological meaning and is more appropriate.

Here we also show the landscapes for some different ini-
tial conditions at two different coherence levels (c′ = 0 and
c′ = 0.36). In Fig. D4, we use the black dots to indicate the
initial states and the white dots to indicate the final decided
states. The blue lines represent the optimal paths from the ini-
tial state to the lower-right decided state (for biased motion
coherence that c′ is not zero, this state corresponds to the cor-
rect decided state). The pink lines represent the optimal paths
from the initial state to the upper-left decided state in the error
trials for non-zero coherence c′.

Then we calculated the accuracy (ratio of
Pcorrect/Pincorrect) for different initial conditions, which are
shown in Fig. D5. The x-coordinate 1, 2, and 3 correspond to
the three initial conditions as shown in the above figure. When
the motion coherence is unbiased (c′ = 0), the ratio of the
probabilities of two paths is equal to 1. For larger coherence
c′ (easier to make a decision), the accuracy of the decision

task is always higher. However, we should notice that if the
decision process from the initial state 2 in Fig. D4 (close to
the incorrect decided state), it is likely to make an incorrect
decision for lower motion coherence c′ (ratio < 1). When the
coherence c′ is large enough, it is still likely to make the cor-
rect choice even though the initial state is close to the incorrect
decided state.

1.0

0.8

0.8

0.6

0.4

0.4

0.2

0
0

40

30

20

10

(a)
1.0

0.8

0.8

0.6

0.4

0.4

0.2

0
0

40

30

20

10

(b)

S1

S
2

S1

S
2

Fig. D4. (color online) Optimal decision paths for different initial states.
(a) c′ = 0; (b) c′ = 0.36.
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