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SUMMARY
Learning new rules and adopting novel behavioral policies is a prominent adaptive behavior of primates. We
studied the dynamics of single neurons in the dorsal anterior cingulate cortex and putamen of monkeys while
they learned new classification tasks every few days over a fixed set of multi-cue patterns. Representing the
rules and the neuronal selectivity as vectors in the space spanned by a set of stimulus features allowed us to
characterize neuronal dynamics in geometrical terms. We found that neurons in the cingulate cortex mainly
rotated toward the rule, implying a policy search, whereas neurons in the putamen showed a magnitude in-
crease that followed the rotation of cortical neurons, implying strengthening of confidence for the newly ac-
quired rule-based policy. Further, the neural representation at the end of a session predicted next-day
behavior, reflecting overnight retention. The novel framework for characterization of neural dynamics sug-
gests complementing roles for the putamen and the anterior cingulate cortex.
INTRODUCTION

Learning to classify multi-cue stimuli is an adaptive behavior

required by animals on a daily basis. To do so, primates acquire

novel rules and apply newbehavior policies basedoncombinations

of stimulus cues. Accordingly, such tasks have been commonly

used to explore learning strategies in humans under normal condi-

tions (Glucket al., 2002;Goodmanet al., 2008; Lagnadoet al., 2006;

Nosofsky et al., 1992; Shepard et al., 1961) as well as pathological

ones (Meeter et al., 2008; Shohamyet al., 2008;Speekenbrink et al.,

2010; Stuss et al., 2000).While typically the complexity of classifica-

tion ruleswasmeasured by the average performance over subjects

(Feldman, 2000),more recentworkhasshown that theperformance

of individuals may vary widely, but can be predicted accurately us-

ing models that rely on a combination of stimulus features with a

prior assigned to each individual subject (Cohen and Schneidman,

2013). In non-human-primates, studies of rule-based classification

have ascribed complementary roles to the striatum and regions of

the prefrontal cortex (PFC) (Balleine et al., 2007; Seger and Miller,

2010). Specifically, in paradigms that require classification of stimuli

intodistinct categories, individual neurons in thePFCacquireapref-

erence for one category over the others (Cromer et al., 2010;

FreedmanandAssad, 2016; Freedmanet al., 2003;Gold andShad-

len, 2007; Histed et al., 2009; Kim and Shadlen, 1999; Muhammad

et al., 2006; Wallis et al., 2001).
Within the PFC, the dorsal anterior cingulate cortex (dACC)

projects widely to striatal regions (Averbeck et al., 2014; Heil-

bronner et al., 2016; Ong€ur and Price, 2000) and is involved in

several cognitive functions that contribute to the learning pro-

cess. Neurons in the dACC represent attention, reflect actions

that lead to reward, signal outcomes of previous trials, and

form integrated representations of task structure (Chudasama

et al., 2013; Haroush and Williams, 2015; Hayden and Platt,

2010; Heilbronner and Hayden, 2016; Kolling et al., 2016; Lee

et al., 2007; Mansouri et al., 2009; Rudebeck et al., 2008; Rush-

worth and Behrens, 2008; Saez et al., 2015; Seo and Lee, 2007,

2009; Wallis and Kennerley, 2011). The striatum, in turn, receives

wide projections from the dACC and plays a role in choosing ac-

tions and providing reinforcement signals that may help to direct

learning (Averbeck and Costa, 2017; Graybiel andGrafton, 2015;

Jin andCosta, 2015; Kim andHikosaka, 2013; Lau andGlimcher,

2008; Merchant et al., 1997; Seger, 2008; Seo et al., 2012; Wil-

liams and Eskandar, 2006).

Most studies have characterized neural correlates of final task

representation, perception, and recognition, mainly following

extensive training. Less is known about how single neurons

form and change their preferences during de novo learning of

such tasks. Rule-based classification can take several forms

(Seger and Miller, 2010), and key studies showed that individual

neurons represent behavior when animals learn to assign
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Figure 1. Trial-by-trial learning of classification rules

(A) Behavioral paradigm: pressing and holding the middle button initiates a

new trial. After a 3-bit pattern (black/white squares) appears on the screen, the

monkey has 30 s to classify it with the left or right button. A fluid reward follows

a correct choice, and a short timeout follows an incorrect choice.

(B) A schematic of the rule-based classification. Top: labeling all eight 3-bit

patterns using the correct response (pressing the left or right buttons) divides

the patterns into two categories (truth table marked by green and purple

boxes). Bottom: representing the patterns as variables, ½x1;x2;x3�˛ f�1; 1g3,
allows describing truth tables by Boolean expressions that define classifica-

tion rules; namely, the relationship between patterns and correct responses.

Different rules are presented graphically in the 3D space defined by individual

bits and coloring each pattern tomatch its label. Shown are the one-bit rule (1),

where the decision is based only on the identity of the left bit; the two-bit-rule

(12), where the decision is based on a XOR of the left and middle bits; and the

majority rule, where the decision is based on summing all 3 bits.
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different outcome probability or value (Padoa-Schioppa and As-

sad, 2006; Yang and Shadlen, 2007), when they acquire arbitrary

stimulus-motor associations (Brasted and Wise, 2004; Buch

et al., 2006; Mitz et al., 1991), or when they switch contingencies

between the rules (Buckley et al., 2009; Wallis et al., 2001).

Here we studied neural dynamics in the dACC and the striatum

of monkeys during learning of visual rule-based classification

tasks. Rules were changed every few days, which allowed us

to characterize de novo learning and its neural correlates. We

analyze the learning and neural activity in the space spanned

by features of the stimuli, enabling a geometric interpretation

of learning and describing complementing roles for the dACC

and the striatum.

RESULTS

Two monkeys (Macaca fascicularis) performed trial-by-trial clas-

sification of visual patterns composed of black and white

squares (‘‘bits’’; Figure 1A). In each session, the set of eight

3-bit patterns was presented in pseudo-random order, and the
840 Neuron 109, 839–851, March 3, 2021
monkeys had to learn by trial and error which of two response

buttons to press when presentedwith each pattern. The relation-

ship between the eight patterns and the correct responses (‘‘la-

bels’’) defines a classification rule (Figure 1B). Of the 256 (28)

possible deterministic rules for 3 bits, we chose seven rules in

which the label was determined according to single, pairwise,

or triple-wise dependencies between the bits in the pattern.

For example, in rule 1, the monkeys had to learn to choose the

left/right button when the left bit was white/black, and in rule

12 when the left and middle bits were equal/different (Figure 1B).

All seven rules are unbiased so that for 4 patterns the correct la-

bel is left, and for the other 4 it is right. Moreover, these rules are

independent of each other in the sense that perfect learning of

one rule would result in chance performance on all other rules.

We also included the majority rule (which is also unbiased;

‘‘Maj’’ in Figure 1B), in which the label of a pattern depends on

themajority color among the bits. Eachmonkey learned the eight

rules over 4 weeks, each rule for typically 2–4 sessions on

consecutive days. We then repeated the same set of rules for

another 4weeks (second and third cycles; Figure S1A). Themon-

keys did not experience any of these rules in the training prior to

the recordings.

Learning of classification rules
Both monkeys exhibited within-session learning (Figure 2A) and

continuous performance improvement throughout long sessions

(Figure 2B; Pearson r(118) = 0.49(0.34,0.61), p < 1e–8) as well

as next-day retention of the learned rule (Figure 2C; Pearson

r(70) = 0.58(0.4,0.71), p < 1e–3). Neither monkey showed reten-

tion benefits when presentedwith the same classification rules in

the second cycle of the rules (Figure 2D; Pearson r(28) =

0.28(�0.08,0.58), p = 0.12). Both monkeys demonstrated

learning of each of the rules in some sessions, but their perfor-

mance levels varied across sessions and rules (Figures 2E and

S1B). This diversity was also apparent in additional sessions in

which the monkeys were presented with 2-bit rules and 4-bit

ones (Figure 2F). This individual diversity is akin to that of human

subjects who exhibited large variability across individuals and

rules in a similar task (Cohen and Schneidman, 2013).

The notion that the monkeys learned the rules rather than the

label of individual patterns was supported by several lines of ev-

idence. First, in pure stimulus-response associative learning, the

correct response to each stimulus would be acquired indepen-

dent of other stimuli, and the performance on particular patterns

would be the same under different rules. In contrast, we found

that pattern-specific error rates show dependence on the spe-

cific rule (Figure S1C; Kruskal-Wallis test,c2ð7;366Þ= 89, p <

1e�15) and were correlated with performance on other patterns

(Figure S1D; Kruskal-Wallis test, c2ð7;440Þ> 88, p < 1e�10).

Second, classification of the visually salient patterns showed

variability across rules and dependence on the specific rule (Fig-

ure S1E; Kruskal-Wallis test, 24<c2ð3;36Þ< 33, p < 1e�4).

Third, rule learning was supported by the consistency across

learning of different rules (Figures S1G and S1H). Fourth, mon-

keys could even learn 4-bit rules for which memorization is

extremely unlikely (Figure 2F; there are 65,536 different deter-

ministic rules for the 16 stimulus patterns). Fifth, performance

for specific patterns deteriorated following a change of the
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Figure 2. Rule-dependent learning

(A) Learning curves show within-session improvement. Shown are individual learning curves from 3 example days, each with a different rule (monkey G, two left

examples; monkey D, right example). Also shown is the underlying truth table of the rule (patterns are stacked by category).

(B) Continuous longer learningwithin the session is beneficial. Shown is the location within the session of themaximumperformance plotted against themaximum

performance (best 30 consecutive trials) for all sessions.

(C) Overnight retention. Shown are two examples of learning curves on consecutive days, with vertical lines separating the sessions. Over all sessions, therewas a

significant correlation between performance at the end of a session and performance at the beginning of the next-day session with the same rule (monkey D: light

blue, r = 0.48, p < 0.001; monkey G: dark blue, r = 0.61, p < 0.001; both: r = 0.58, p < 0.001).

(legend continued on next page)

ll
Article

Neuron 109, 839–851, March 3, 2021 841



ll
Article
rule, even when the new rule did not require learning new asso-

ciations for these patterns (Figures S1I–S1N). Finally, a simple

strategy based on performance (win-stay, lose-switch) poorly

described answer sequences (Figure S1O; Wilcoxon’s signed-

rank test, p < 1e�15). The evidence suggests that monkeys

did not use simple memorization of stimulus-response associa-

tions as the main strategy and therefore supports the notion of

rule learning.

We conclude that both monkeys learned the rules in individual

sessions, with some rules easier to learn than others. The

complexity and richness of the task led to error rates that reflect

a more natural learning setting compared with over-trained ani-

mals and therefore enable comparison of neural responses be-

tween easy and hard rules as well as between sessions with

low and high performance.

Neurons in the dACC and putamen represent the
learned rule
We recorded single-unit activity during all sessions of the 3-bit

rules in the dACC (Brodmann area 24), caudate, and putamen

(Figures 3A and 3B; 543,115,114 neurons recorded in the

dACC, caudate, and putamen in 3-bit rule sessions). First we

identified neurons with a stimulus-evoked spiking pattern that

responded to the stimuli but with no preference for rule/category

(stimulus-specific; Figure 3C, right). Supporting the notion that

neurons represent rules rather than stimulus-response associa-

tions, we found that only 3%of neurons exhibited selectivity for a

specific pattern (not different than chance level, p > 0.1, binomial

tests; Figure S2A).

We then identified neurons that were not rule selective early on

but changed during learning to distinguish between the two cate-

gory labels (category-specific; Figure 3C, left and center; Figures

S2B–S2E). To identify correlates of successful learning, we

separated the sessions of easy and hard rules based on the

average success rate for each rule (Figures 2E, S1P, and S1Q).

This separation of easy versus hard rules is also evident in the

learning curves (Figure 2E, inset; Figure S1R) and captures the

largest performance variance (Figure S1S). We found that, at

the end of the session, the dACC and putamen had significantly

more category-specific neurons for easy rules compared with

hard rules (Figure 3D; dACC: 21% versus 12.5%, Pu: 22%

versus 8% for easy versus hard, binomial comparison z-test;

dACC: z = 2.43, p < 0.01; Pu: z = 2.12, p < 0.02). This was also

the case when considering individual sessions and separating

them based on high versus low performance (Figures S2F and

S2G; dACC: z = 2.046, p < 0.021; Pu: z = 1.79, p < 0.04; and

for each monkey separately; Figures S2F and S2G). Moreover,
(D) No retention between rule repetitions after several weeks. Use of eight differen

would be very hard to memorize the different rules. Shown are two examples of re

4 weeks between repetitions. Over all sessions, there was no relationship between

next repetition of the same rule (monkey D: light blue, r = 0.23, p > 0.5; monkey

(E) Performance in all 3-bit rules. Shown is average performance in the last quarter

blue; monkey G, dark blue). For each rule, bars and error bars show themean and

performance is significantly above chance level on average). The inset shows aver

rules. Truth tables for all rules are shown below.

(F) Performance in 2-bit and in 4-bit rules (neural activity was recorded only durin

See also Figure S1.
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there was a monotonic relationship between performance

and the proportion of neurons showing correct classification

(Figure 3E).

Because the correct label of a stimulus and the choice of the

monkey become correlated in successful learning, we used error

trials to distinguish between them. In sessions of easy rules,

more neurons became selective for the category than for the

choice in the dACC and putamen (Figure 3F). In contrast, signif-

icantly more neurons became choice selective in the caudate

(binomial comparison z-test for easy and hard rules; dACC:

13.3% versus 5.48%, z = 2.88, p < 0.003; Cd: 9.57% versus

1.86%, z = 1.72, p < 0.05; Pu: 9.95% versus 1.55%, z = 2,

p < 0.03), with similar proportions of neurons being category

specific in easy and hard rules (Figure 3D). Therefore, the mod-

ulation of single-neuron activity indicates that the dACC and pu-

tamen mainly represent the learned classification, whereas the

caudate mainly represents the choice. Therefore, in the following

analyses, we mainly focus on the dACC and putamen.

A geometric representation to track neural dynamics
during learning
We next examined how the modulation of neural activity de-

velops during learning. To characterize the neural representa-

tions during rule acquisition, we represented each stimulus

pattern using a complete set of statistically independent binary

features (Figure 4A). Using this representation, we can then

describe each of the rules as a linear weighted combination of

these features. In other words, each rule can be described as

a vector in this feature space, which we call the rule vector

(Equation 4). We then express the selectivity of individual neu-

rons using this set of basis features, which we call the neural

vector (Equation 5). This gives a natural way to follow the

neuron’s preference over time by computing the trajectory of

its neural vector (using a rolling regression; Figures 4B and

S3A–S3D).

Importantly, because the neural vector is described in terms of

movement in the space of features and by its relation to the rule

vector, we can compare neural dynamics across sessions of

different rules using the magnitude of the neural vector (vector

magnitude) and its angle relative to the rule imposed in the ses-

sion (angle to rule). The geometric projection of the neural vector

onto the rule vector is equivalent to the correlation between neu-

ral activity and the categories determined by the rule (Lemma 3

corollary 2). This projection of the neural vector on the rule vector

can increase by two independent mechanisms: changes in the

vector magnitude (Figure 4B, left), suggesting an increase in

confidence (Figure S3E), or by rotating toward the rule vector
t rules that use the same stimulus patterns over 4 weeks or more means that it

peats of the same rules over multiple sessions (scales of gray), with more than

performance at the end of learning a rule and performance at the beginning of

G: dark blue, r = 0.21, p > 0.3; both: r = 0.12, p > 0.2).

of each session for all rules and all sessions for both monkeys (monkey D, light

SE over animals and sessions, classified into easy and hard rules (in easy rules,

age learning curves for all rules, further justifying separation into easy and hard

g 3-bit rules).
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B Figure 3. Single neurons represent learning

of rule-based classification

(A) Recording locations projected on a coronal MRI

section. Recording locations span ~12 mm on the

anterior-posterior axis (hence, some locations

seem to be outside of the regions of interest). Red

marks, border of the dACC; yellow, caudate; cyan,

putamen.

(B) 3D reconstruction of all recording locations. The

gray plane is the midline, anterior-posterior zero is

at the anterior commissure, and depth is measured

from the dura surface.

(C) Rule learning in neurons. Spiking patterns are

divided by the category label (orange and black

rasters and PSTHs). Spike times are aligned to the

stimulus onset (dashed line). The order of trials is

top to bottom. Trials are divided into the first half

(top row) and second half (bottom row) of the ses-

sions. The two left neurons differentiated between

categories in the second half significantlymore than

in the first half, whereas the right neuron did not

differentiate categories.

(D) Fraction of single units whose firing pattern

correlated with the rule at the end of learning (mean

and SE). Sessions are divided according to easy

versus hard rules, with more neurons signaling

correct classification in easy rules in the dACC and

the putamen (p < 0.05 for both, binomial tests) but

not in the caudate.

(E) Instantaneous performance parallels neurally

based categorization. The fraction of neural seg-

ments with significant rule representation increases

with mean performance (calculated by rolling

regression windows of 40 trials in steps of 4 trials,

averaged over sessions). Error bars show SE.

(F) Percentage of neurons with stronger correlation

to the rule (bottom) and with stronger correlation to

the actual choice (top) over successful and error

trials (Williams’s test) and comparing easy versus

hard rules. The dACC and putamen are correlated

significantly more with the rule and not with the

actual choice, whereas caudate neurons are

correlated significantly with the choice only and not

with the rule (error bars show SE, significant com-

parisons are p < 0.05, binomial tests).

See also Figure S2.
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(smaller angle to rule; Figure 4B, right), suggesting a policy

change. Choosing a different set of features to represent the

rules and neural preferences would simply imply that this other

basis is a linear combination of the current set of features, and

so our analysis of the dynamics and our findings are independent

of the specific set of features we used.

This geometrical representation of rules and neural responses

revealed several types of neuronal dynamics: first, neurons that
remained selective for a feature regard-

less of the performance improvement

(Figure 4C); second, neurons that rotated

toward the rule during learning (Figures

4D and S2B–S2E); third, neurons that

increased their neural vector magnitude

with no regard to the rule of that session
(Figure 4E); and fourth, neurons that demonstrated changes in

several features in parallel and, as a result, changes in rotation

and magnitude (Figure 4F). These more complex trajectories

can eventually lead to significant agreement with the rule

vector (Figures S3F–S3J). Indeed, the two processes were not

mutually exclusive, and many neurons with vector magnitude

changes also exhibited angle-to-rule changes (Figures S5A

and S5B).
Neuron 109, 839–851, March 3, 2021 843
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Differential representations of confidence and policy in
the putamen and the dACC
To examine whether the two components of learning are repre-

sented differently in the two regions, we separately examined

the increase in themagnitude of the neural vector and its rotation

toward the rule vector (angle to rule). In the dACC and putamen,

more neurons rotated toward the rule during learning of easy

rules, resulting in having a smaller angle to rule (Figures 5A

and 5B; binomial z-test comparing easy with hard rules;

dACC: 40% versus 25.5%; putamen: 49% versus 34%; dACC:

z = 3.32, p < 0.001; Pu: z = 1.68, p < 0.05). This rotation pro-

gressed gradually along the session as performance improved

(Figures 5A and 5B, right panels). Similar findings were obtained

when dividing sessions into high- and low-performance ones in-

dependent of the specific rule (Figures S4A–S4I). Moreover, the

rotation across all dACC neurons correlated with the increase in

performance and with performance at the end of the session for

putamen neurons (Figure 5C).

Conversely, changes in vector magnitude between easy

and hard rules were not observed in the dACC (Figure 5D;

binomial z-test; dACC: 38% versus 34%, p > 0.1) but did

occur in the putamen, where more neurons increased their

vector magnitude in easy rules (Figure 5E: binomial z-test; pu-

tamen: 47% versus 31%, z = 1.82, p < 0.04; Figures S4C and

S4D: similar findings for high and low performance; Figure 5F:

magnitude across all putamen neurons but not the dACC,

correlated with performance). These changes became more

prominent toward the end of the sessions (Figure 5E, right

panels), suggesting strengthening of the recently acquired

policy, and were accompanied by a reduction in response

time (Figures S4J–S4L), further supporting the notion that

they represent confidence.

In contrast to the angle and magnitude, there was no differ-

ence between easy and hard rules in terms of the representation

of the actual choice in the dACC and putamen (Figures S4M and

S4N). Complementing this and further supporting the conclusion

that the dACC and putamen mainly represent learning, whereas
Figure 4. A geometrical representation of neural activity reveals learni

(A) The 7 features that form a spanning linear basis for the space in which all

x!=-,- = ð�1; 1;�1Þ by the set of binary features: the three first-order ones

one ðP123 = x1 $x2 $x3Þ. Also shown is a representation of the majority rule as

(B) A schematic demonstrating that, in this feature space, the change in a neuron’s

by the black arrow). An increase in the projection can result from two processes: a

vector rotation toward the direction of the rule vector—the angle to rule (right). T

jections of the trajectory on the axes. Insets separate the dynamics of vector ma

jectory is plotted in the space of the three main principal axes (PCs), but for

feature space.

(C–F) Examples of the neural vector dynamics of individual neurons. Each row s

stimulus onset, with trials ordered from top to bottom, divided by the two catego

bottom, black). Each raster is for the 4 patterns that together form a category.

regression correlation coefficients (blue-red color bar) for each feature in the basis

Red arrow marks the feature that defined the correct label in the specific session.

orthogonal subspace (categoryt, z axis) over time (y axis). The blue surface conn

neural vector magnitude (top) and angle to category (bottom) plotted over time.

jectory projected on the threemain PCs and curve-fitted, color-coded for time pro

session, and the red curves are the projections of the trajectory on the axes. (C) s

neuron that rotates toward the correct rule by learning the right feature; (E) shows

that exhibits a complex relationship of vector extension and rotation.

See also Figure S3.
the caudate mainly represents the choice (Figure 3F), caudate

neurons represented the actual choice differentially in easy

versus hard rules (Figure S4O) but not for angle to rule or vector

magnitude (Figures S4P–S4R).

These findings indicate that the putamen and dACC reflect a

process of policy search for the correct rule; but although the

dACC represents change of policy, the putamen also represents

strengthening and confidence gain that accompany successful

learning.

Neuronal policy follows behavioral change
We first wanted to find out whether the representation depicted

by the neural vectors shows similar dynamics as that of the

behavior. We found that a large fraction of neurons in both re-

gions showed dynamics of angle to rule that were correlated

with the learning curve (Figures 6A and 6B; 32% of dACC neu-

rons and 37% of putamen neurons, Pearson, p < 0.01). Similarly,

a large fraction of neurons changed their vector magnitude

in correlation with performance (Figures 6C and 6D; 19%

of dACC neurons and 18% of putamen neurons, Pearson,

p < 0.01; Figures S5A and S5B).

We hypothesized that a sequence of successful trials

should lead to rotation of the neural vector; namely, adopting

a more accurate policy. To test this, we measured the rotation

by taking the derivative of the angle to rule and found that

more neurons followed the behavior in easy rules than in

hard ones when using a lag of four trials (Figure 6E; binomial

z-test; dACC: z = 2.24, p < 0.02; Pu: z = 2.03, p < 0.03). The

difference between easy and hard rules was smaller for lags of

8 trials as well as for zero lag (Figure 6E, bottom; Figure S5C).

This suggests that, when a search for answers succeeds or

fails beyond average, it is followed by a neural vector rotation.

To test this more directly, we examined the distribution of

angle to rule after a sequence of successful trials and found

the angles to be smaller compared with the overall distribution

(Figure 6F; both regions: p < 0.005; putamen: p < 0.05; dACC:

p < 0.02; Wilcoxon’s rank-sum tests). The fact that the rotation
ng dynamics

3-bit rules reside. Shown is an example of the representation of the pattern

ðfxig3i =1Þ, three second-order ones ðfXORij = xi$xjg3i < j = 1Þ, and a third-order

a combination of these features (bottom).

response, the neural vector, modulates its projection on the rule vector (shown

trajectory change that increases the neural vectormagnitude (left) and/or neural

he trajectory is color-coded to reflect time, and the red curves show the pro-

gnitude (top) and angle to rule (bottom). For presentation only, the neural tra-

all actual analyses, the neural vectors were computed in the complete 7D

hows the following for one neuron from left to right: (1) Raster plot aligned to

ries describing the neuron’s preference at the end of the session (top, orange;

(2) Top: the behavioral learning curve (20 trials running average). Bottom: the

(y axis) along all trials (x axis) construct the dynamic neural vector (Equation 5).

(3) The norm projections of neural vectors (red) on the category (x axis) and its

ects (0,0) to the smoothed dynamics to visualize rotation and extension. (4) The

Red, raw data; blue, smoothed data. (5) The high-dimensional (7D) neural tra-

gress in the session (light/ dark blue). The black arrow is the rule vector in that

hows a neuron that does not change its selectivity during learning; (D) shows a

a neuron that extends its vector toward a ‘‘wrong’’ feature; (F) shows a neuron
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Figure 5. Differential representation in the dACC and putamen

(A and B) The proportion of neurons that significantly decreased their angle to rule during the session was different for easy rules versus hard rules in the dACC (A)

and putamen (B) (error bars show SE, p < 0.05 in both, binomial z-test). The right panels show the population-average angle change (bottom, SE in shaded color)

and the normalized cumulative change (top). Sessions were time warped for averaging. Gray bars indicate significant difference between easy and hard rules (p <

0.05, bootstrap).

(C) Correlation coefficient between performance change and rotation for all dACC neurons and between performance at the end of the session and angle to rule

for all putamen neurons. Bars mark the range of significant correlations (Pearson, p < 0.05).

(D and E) The same as in (A) and (B) for change in vector magnitude. In contrast to rotation, only the putamen showed a significant increase in vector magnitude in

easy versus hard rules (p < 0.05, binomial z-test).

(F) Correlation coefficient between performance change and vector magnitude for all dACC neurons and between performance at the end of the session and

vector magnitude for all putamen neurons. Bars mark the range of significant correlations (Pearson, p < 0.05).

See also Figure S4.
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was directed toward the rule (smaller angles) indicates that

the change is not only due to reward. These findings show

that adopting a new correct policy by rotation of the neural

vector toward the rule vector is more likely to occur after a

sequence of successful responses.

Representation of confidence in the putamen follows
policy representation in the dACC
To examine temporal differences between the dACC and puta-

men, we also studied neurons that were recorded simulta-

neously from the two regions. Using pairs of neurons from the

two areas that were recorded in the same session, we computed

the correlation between all combinations of vector magnitude

and angle to rule, across regions and within a region, and using

different temporal lags. There was no directional temporal pref-

erence when comparing vector magnitude or angle to rule

across regions or within a region or when taking angle to rule

in the putamen and vector magnitude in the dACC (Figure S5D;

p > 0.1 for all, Wilcoxon’s signed-rank tests). In contrast, only the

lags between vector magnitude in the putamen and angle to rule

in the dACC showed a clear directionality, with the putamen
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magnitude following dACC rotation (Figure 6G; Wilcoxon

signed-rank test, z = �2.81, p < 0.005, mean lag �2.8 ± 0.96 tri-

als). Moreover, this was more dominant in neural pairs recorded

during easy rules (Figure 6H, top; Wilcoxon signed-rank test,

z = �2.64, p < 0.01, mean lag �3.56 ± 1.36 trials).

These results are in agreement with previous findings of infor-

mation transfer in corticostriatal loops, showing that the interac-

tion between the two regions occurs over a short time window.

The findings also suggest that when a series of successful trials

is followed by neural rotation toward the rule, the rotation in the

dACC is followed by magnitude extension in the putamen.

Neural policy at the end of a session predicts next-day
behavior
If the neural vector at the end of a session reflects learning a pol-

icy during that session, then it might predict early performance in

the session of the next day. This would also point to a retention

mechanism. To examine this, we projected each neuron’s neural

vector at the end of a session onto the rule vector of the following

day and computed the correlation between these projections

and the behavior from the next day. Indeed, neural vectors in
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Figure 6. Differential learning dynamics in the

putamen and dACC

(A) Change in angle to rule during a session overlaid

with the performance behavior (black), showing a

highly similar temporal pattern. Three dACC neurons

(top row, red) and three putamen neurons (bottom

row, cyan), all with significant correlation between

neural dynamics and performance (p < 0.01 for all,

Pearson).

(B) Histograms of correlation coefficients for all neu-

rons, with the shaded area marking neurons exhibit-

ing significant correlations at p < 0.01. Insets show

the distribution of trial lags between neural dynamics

and behavior, with the mean lag not different than

zero (p > 0.1, t tests).

(C) The same as (A) for dynamics in vectormagnitude.

(D) The same as (B) for dynamics in vector magnitude.

(E) Local shifts in angle to rule follow the behavior in

more neurons when comparing easy with hard rules,

but only in a lag of 4 trials (main panel) and not in zero-

or 8-trial lags (bottom insets). Error bars show SE.

(F) The distribution of angle to rule (absolute cosine

value) at the end of all strips of 10 successful trials

(dashed line) compared with the distribution of all

angles (solid line) (p < 0.005,Wilcoxon rank-sum test).

(G) Distribution of optimal lags for all simultaneously

recorded pairs of neurons between vector magnitude

of the putamen neuron and angle to rule of the dACC

neuron. The mean is significantly below zero, indi-

cating that changes in angle in dACC neurons pre-

ceded changes in magnitude in putamen neurons.

(H) The same as (G) but separately for easy and hard

rules.

See also Figure S5.
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the putamen predicted next-day early performance (Figure 7A;

Pearson’s r(99) = 0.33(0.15,0.5), p < 0.0007; no correlation was

found when reversing the days as a control). Therefore, the

closer the neural vector was at the end of one day to the rule

used the next day, the better the initial performance.

We further tested whether the neural vectors also bias learning

in sessions when a new rule was presented the next day and

again found a significant correlation for putamen neurons (Fig-

ure 7B; Pearson’s r(39) = 0.38(0.08,0.62), p < 0.014; no correla-

tion when reversing days as a control). Together with the finding

that the angle to rule across putamen neurons correlated with

performance at the end of the session (Figure 5C), this suggests

an overnight retention of policy in single neurons.

These results establish the effectiveness of using the geomet-

ric framework for identifying functional representations in neural

activity, further showing that the policy represented by the angle

to rule at the end of daily learning affects and biases performance

the next day.
DISCUSSION

We studied the dynamics of neural repre-

sentations in the dACC and the striatum

while monkeys learned to classify multi-

cue patterns. We developed a novel mathe-
matical approach to represent neural selectivity and its

properties for a rich set of rules that changed every few days.

To characterize the neural dynamics during such de novo

learning, we represented each rule in the space formed by a

spanning set of the stimulus features, which enabled us to

explore the information carried by single neurons as a vector in

that space. The angle between the neural vector and the rule vec-

tor reflects learning-related policy and change in strategy, and

themagnitudeof the neural vector reflects changes in neural con-

fidence.We then used these two geometric traits as a framework

for exploring the dynamics during learning and across rules.

This approach revealed a dissociation in functionality; neurons

in the dACC mostly rotated to decrease their angle to rule

(changed their strategy), whereas neurons in the putamenmostly

changed their activity to increase the magnitude of the neural

vector, reflecting confidence and reinforcement of the correct

strategy (Graybiel and Grafton, 2015). In line with this interpreta-

tion and the role of the striatum in reinforcement, rotation
Neuron 109, 839–851, March 3, 2021 847
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Figure 7. Neural representation at the end of a session predicts

next-day performance

(A) The projection of each putamen neuron’s policy (angle to rule) at the end of

the session onto the next-day rule (rule vector) against the mean performance

at the beginning of the next-day session (the maximal neural vector projection

is calculated over the last 25% of the session, and performance is averaged

over the first 25% of the next-day session), showing a positive correlation

(r = 0.33, p < 0.001, black regression line).

(B) Similar to (A) but when the rule changed overnight, again showing a positive

correlation (r = 0.38, p < 0.02).
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changes in the dACC were followed by magnitude extensions in

the putamen. In addition, we found that neurons in the putamen

were related to overnight retention because their representation

at the end of a day predicted next-day behavior. Because the

classification task was complex and learning usually continued

over sessions, this suggests that the striatum represents the pol-

icy used for retention within striatal populations or by transfer to

other regions (e.g., as in a consolidation processes). This inter-

pretation further supports previous studies showing that the

striatum maintains intermediate representations, potentially via

sustained activity (Deffains et al., 2016), and by studies showing

that the striatum supports learning under spaced conditions that

require reinforcement and memory (Doll et al., 2015; Wimmer

et al., 2018).

The geometrical framework we present here allows identifica-

tion of neurons that retain stable representation and ones that

change during learning (Chen et al., 2001; Genovesio et al.,

2005; Sadtler et al., 2014). Interestingly, these changes were

observed during successful and unsuccessful learning sessions,

suggesting that single-neuron dynamics reflect a mixture of the

search for a new policy and memory for previously acquired

rules. However, although most neurons change by rotating to-

ward the correct rule, some change in other directions. One

possible interpretation is consistent with the common view that

behavioral decisions rely on averaging of large neural popula-

tions where the misguided neurons are overruled. Alternatively,

this could suggest a strategy of maintaining representations of

other rules but suppressing their effect on the decision (Klavir

et al., 2012), which would be a beneficial memory for future

(different) tasks. Our approach would enable examination of

suchmemories and their relative strength (e.g., by characterizing

the rules to which the neurons that do not rotate point). It could

also enable prediction of behavioral biases by examining the dis-

tance of a new rule from the preferred direction of the set of

observed neurons. The notion is directly related to the ability to

generalize from one rule to another and could explain why
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some rules are learned better when presented in succession

whereas others are not (Oby et al., 2019). This is in line with

the idea that similarity in the space of neural activity defines a

metric on the stimulus or action space (Bernardi et al., 2020;

Ganmor et al., 2015; Pryluk and Paz, 2019; Resnik and Paz,

2015; Tka�cik et al., 2013).

In contrast to the putamen and the dACC, caudate neurons

did not show substantial representation of the learned rule

and instead reflected the instantaneous choice. This was not

a motor-related activity per se because it was stronger for

easy rules than for hard ones. Because in the current task the

objective value of stimuli is constant, the difference observed

between rule types might suggest that caudate neurons are

sensitive to the value of applying the chosen behavioral policy

(internal, even when wrong) or with representation of subjective

value (Cai et al., 2011). This is also in line with findings showing

that, in visuomotor associations, the dorsal striatum represents

the value of actions (Lau and Glimcher, 2008) and follows the

choice representation observed in the lateral PFC (Seo et al.,

2012) but can also learn without the LPFC (Minamimoto et al.,

2010). Our observations therefore support the notion that,

in rule learning, caudate activity reflects value-based action

selection (Cai et al., 2011; Desrochers et al., 2015; Kim and Hi-

kosaka, 2013; Williams and Eskandar, 2006; Yanike and Fer-

rera, 2014).

Our analyses were focused on single-neuron activity, demon-

strating that we can track dynamics of representations even at

the single-cell level. This complements the recent emphasis on

neural ensembles to decode behavior from mixed representa-

tions (Golub et al., 2018; Grewe et al., 2017; Gr€undemann

et al., 2019; Karpas et al., 2019; Levy et al., 2019; Mante

et al., 2013; Maoz et al., 2020; Rigotti et al., 2013). The readout

of a neural ensemble can improve performance because of a

change in individual neuron properties or because of a change

in weights given to each neuron by a readout node. Our results

offer a window into single-neuron properties and dissect task-

relevant dynamics and therefore provide novel insights into

the mechanisms involved in the changes seen in population

dynamics during learning (Figure S7). Our results here show

categorical properties after learning is complete (Figure S6),

in agreement with recent studies of prefrontal neurons (Hiro-

kawa et al., 2019; Onken et al., 2019). In addition, here we

describe the dynamics that led them to develop these final

representations.

Overall, here we developed a new computational framework

to examine dynamics of neural representations during de novo

learning and used it to shed light on two complementing roles

that are necessary to accomplish any learning of classification

rules: acquisition of policy and strengthening of confidence.

We show that the former is more represented in the anterior

cingulate cortex, whereas the latter is more represented by

the putamen. Future work is required to understand how abnor-

malities in extended cingulate networks that enable rich learning

in primates (Pryluk et al., 2019) can result in maladaptive

processes that would lead to applying incorrect rules and, in

extreme cases, even lead to psychopathologies (Averbeck

and Chafee, 2016; Dunsmoor and Paz, 2015; Lee, 2013; Likhtik

and Paz, 2015).
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Critical commercial assays

0.6–1.2 MU glass coated tungsten electrodes Alpha Omega N/A

metal guide (outer diameter: 0.51 mm, inner diameter: 0.41 mm) Cadence Gauge 25xxtw

Head-tower and electrode-positioning-system Alpha Omega N/A

Recording chamber Alpha Omega N/A

Deposited data

Raw electrophysiology and behavior data This manuscript Upon request

Experimental models: organisms/strains

Macaca Fascicularis monkeys N/A N/A

Software and algorithms

Alpha Lab SNR Alpha Omega N/A

Offline sorter Plexon N/A

MATLAB Mathworks N/A

In-house developed code This manuscript https://github.com/yardencsGitHub/

CohenSchneidmanPaz2020_Code
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to Yarden Cohen (ycohen1@mgh.harvard.edu), Elad Schneidman

(elad.schneidman@weizmann.ac.il), or Rony Paz (rony.paz@weizmann.ac.il)

Materials availability
This study did not generate new unique reagents.

Materials and code availability
Data will be supplied upon request. All custom-made code in this manuscript is publicly available in the Github repository https://

github.com/yardencsGitHub/CohenSchneidmanPaz2020_Code.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Ethics declaration
All surgical and experimental procedures were approved and conducted in accordancewith the regulations of theWeizmann Institute

Animal Care and Use Committee, following National Institutes of Health regulations and with accreditation from the Association for

Assessment and Accreditation of Laboratory Animal Care International (AAALAC).

Subjects
Two healthy male monkeys (Monkeys G and D, macaca fascicularis, 4-6kg, ages 3-5) were chosen from our colony and participated

in the experiment. The animals were housed in pairs in cages according to EU and NIH standards, in rooms with controlled temper-

ature, humidity and daylight-cycle. The cages included toys, hideouts, and installments in different heights allowing the monkeys to

perform their natural social behaviors.When not participating in behavior training or experiments, the animals had unlimited access to

food and water. Animals participating in training and experiments were under a fluid restriction regime that always exceeded themin-

imal daily consumption of 20 mL/kg body weight (see Guidelines for Use of Fluid Regulation for Nonhuman Primates in Biomedical

Research published by AAALAC).

The animals did not participate in other experimental procedures prior to this study.
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METHOD DETAILS

Animal training
Twomalemonkeys (Monkeys G and D,macaca fascicularis, 4-6kg) participated in the experiment. Before data collection, eachmon-

keywent through a training phase that acquainted it with all the task components and their sequence in a learning session. Bothmon-

keys were trained similarly. They first learned rules with 2-bit patterns to understand the concept of the task. Then, immediately

before the surgery, they experienced three rules with 3-bit patterns so that they would not be surprised when they see 3-bits for

the first time during recordings. Importantly, these were 3 different rules than the 8 rules tested during recordings and shown in

the manuscript (there are 256 possible for assigning 8 patterns into 2 categories). Other than that, no training was done. Therefore,

in the recording sessions the monkeys were familiar with the concept of patterns and classification (Figure 1A). However, the mon-

keys did not experience any of the rules reported in this manuscript before the electrophysiological recordings began.

Experiment sessions
The monkeys learned to classify binary patterns of N = 3 squares. In each session, the entire set of 2N possible patterns was pre-

sented. The order of patterns was generated by concatenating full sets of randomly ordered 2N patterns. This process ensured

that all patterns appear with the same temporal frequency and that no choice of behavioral rule, apart from the correct one, is bene-

ficial in large portions of the session. For compactness we refer to the rules by their constituent squares. So, for example, in rule ‘30 the
label is determined by the color of the 3rd square and in rule ‘120 the label is determined by the XOR of squares 1 and 2. See Figures 1,

2, and S1 and main text for the list of rules used in this study and during recordings. Each classification rule was replaced every few

days and repeated after about a month and after a full cycle of the 8 rules was presented.

Neural recordings
Surgery

A craniotomy was performed under deep anesthesia and aseptic conditions and a recording chamber (27x27mm) was implanted

above the midline and anterior commissure to allow daily electrodes insertion. The chamber’s positioning was done according to

MRI calculated coordinates with respect to the identified bone structure around the ear canals and eye sockets. Still images were

taken during the surgery to record the location of the chamber, the head holder and the screws on the skull for easier extraction

process.

After surgery the monkeys were treated with analgesics (Buprenorphine) and antibiotics (Rocephin, Baytril). The monkeys were

allowed to recover for 1-2 weeks before the first head restraining in the setup. The fluid consumption regime was gradually reinstated

starting two weeks after surgery.

MRI-Based Electrode Positioning

Anatomical MRI scanswere acquired before, during, and after the recording period. Imageswere acquired on a 3-TeslaMRI scanner:

(MAGNETOM Trio, Siemens) with a CP knee coil (Siemens). A T1-weighted, three-dimensional gradient-echo (MPRAGE) pulse

sequence was acquired with a repetition time of 2,500 ms, an inversion time of 1,100 ms, an echo time of 3.36 ms, an 8 flip angle,

and two averages. Images were acquired in the sagittal plane, 192 3 192 matrix, and 0.63 mm resolution. The first scan was per-

formed before surgery and used to align and refine anatomical maps for each individual animal (relative location of the dACC and

the striatum, and anatomical markers such as the interaural line and the anterior commissure; confirmed using atlas). We used

this scan to guide the positioning of the chamber on the skull at the surgery. After surgery, we performed another scan with 2-4 elec-

trodes directed toward the dACC, Putamen and caudate. The regions’ depth was calculated from the dura surface and the plane of

the top of the chamber. We assessed estimation of electrode tip locations and comparison to the MRI image with < 1mm accuracy

(mean = 0.5mm).

Mapping recording regions

During the first week of electrode insertions we performed a mapping procedure to identify the depth of cell bodies in prominent

recording regions. During that week no behavior recordings were made and the fluid restriction was gradually reinstated.

Additionally, with every electrode insertion during the experiment we recorded the depths of cell bodies and were able to recon-

struct the boundaries of our regions of interest.

Electrophysiology

Themonkeys were seated in a dark room and each day, up to six microelectrodes (0.6–1.2 MU glass coated tungsten, Alpha Omega)

were lowered inside ametal guide (Gauge 25xxtw, outer diameter: 0.51mm, inner diameter: 0.41mm, Cadence) into the brain using a

head-tower and electrode-positioning-system (Alpha-Omega). The guide was lowered to penetrate and cross the dura and stopped

once in the superficial layer of the cortex. The electrodes were then moved independently further into either the dACC, Caudate, or

Putamen. Electrode signals were pre-amplified, 0.3 Hz–6 kHz band-pass filtered, and sampled at 44 kHz; and online spike sorting

was performed using a template-based algorithm (Alpha LabSNR, AlphaOmega).We allowed 15-30minutes for the tissue and signal

to stabilize before starting acquisition and behavioral protocol. At the end of the recording period, offline spike sorting was further

performed for all sessions to improve unit isolation (offline sorter, Plexon).
Neuron 109, 839–851.e1–e9, March 3, 2021 e2
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QUANTIFICATION AND STATISTICAL ANALYSIS

Behavior analysis
Performance

Each learning session results in a series of correct and incorrect answers, fytgt = 1:T˛f0;1gT , T being the number of trials. To measure

learning behavior and account for erratic tendencies we took the following steps:

1) To avoid the behavioral decline that may bias performance at the end of the sessions we disregarded up to the last 10% of the

session if it contained only wrong answers. On average we ended up ignoring �1% or 2-3 trials in each session.

2) We define performance at the end of the session by averaging correct and incorrect answers in the last quarter of the session,

Pend = CytDt˛½34T/T�. The confidence level for rejecting the null hypothesis of chance performance follows the regularized incom-

plete beta function, I1�p

�
T

4
� k;1 + k

�
, where

T

4
is the number of trials in the last quarter of the session and k is the number of

correct answers during that segment (Figure S1B).

3) Identically to Pend, we define Pstart as the mean performance during the first quarter of the session.

4) In Figure 2B, we define maximal performance as the best mean performance in 30 consecutive tri-

als, Pmax = max
t%T�29

CytDt˛½t/t +29�.

5) In Figure S1 we use pattern-specific performance. The order of pattern presentation, randomized batches containing all 2N

patterns, guaranteed that the sequences of pattern-specific presentations were perfectly-interleaved – allowing for the com-

parison of pattern-specific errors conditioned on prior presentations of the same pattern (Figure S1C) or other patterns (Fig-

ure S1D). Similarly, the comparisons of pattern-specific learning curves is temporally-aligned between rules (Figure S1E)

and with the general performance (Figures S1I–S1N).

Sessions of easy and hard rules

We label rules according to the monkeys’ ability or inability to recurrently achieve high performance in learning those rules. Thus,

given that a subset of rules is labeled ‘easy’ and another subset is labeled ‘hard’, we computed the amount of variance, within

the set of Pend’s that the labeling explains. The R2 value is: R2 = 1�
P

iðPi
end � miÞ2P

iðPi
end � mÞ2

where, m= CPendD is the mean end-performance

of all the sessions and mi are the mean end performances of sessions of either ‘easy’ or ‘hard’ rules (Figure 2E, Figure S1P-S).

Sessions of high and low performance

We also labeled individual sessions as ‘high’ or ‘low’ performance independent of the rules to make sure our results are robust (Fig-

ures S2F-G,S4A-D). High and low performances are defined as Pend values above or below the median and are calculated for each

monkey separately. This ensures no bias due to the differences between animals when contrasting sessions of high and low

performance.

Rule repetition effects

Each classification rule was used for 1-5 consecutive days and repeated after about a month. We compare the monkeys’ perfor-

mance at the end of a session (PendðnÞ with ‘n’ standing for the n’th session of the rule) to the mean performance in the first quarter

of the following session of the same rule, Pstartðn + 1Þ. The comparison is made by calculating the Pearson correlation between the

Pend’s and Pstart’s.

We examined two distinct cases:

1. Taking sessions only from consecutive days, we calculate the correlation, racross, of the across-days learning (Figure 2C).

2. Taking only sessions from the end of a consecutive sequence and the beginning of the following sequence, we calculate the

correlation, rrecall, of the monkeys’ ability to recall rules they encountered a month before (Figure 2D).

Testing for pattern-specific memorization

Wefirst consider amemorization scheme inwhich subjects perfectly learn a list of correct pattern-label pairs but donot generalize. The

acquisitionof suchmemorizedpatternscanbeanall-or-noneevent,whichmeans that after a certainpattern-label pairwasmemorized

it will dictate choice behavior. Alternatively, we consider a gradual probabilistic association strengthening process for the observed

patterns, which leaves room for errors. Our data rules out the case of all-or-none memorization: Figures S1C and S1D demonstrate

that our subjects frequently made mistakes on specific patterns even after they were labeled correctly in previous presentations.

We can also rule out memorization of the types mentioned above as the sole mechanism. Relying on memorization alone would

mean that all rules on patterns of three bits would be learned in the same rate. Figure S1R clearly shows that this is not the case, and

that rule identity plays a key role. Even finer memorization aspects, such as pattern-specific acquisition rates, can also be ruled out

from our data. Figure S1E shows that subjects learned the labeling of the same pattern under different rules at different rates. Finally,

pattern-response pairs can be influencing each other during learning. Figure S1D complements Figure S1C showing that the rule

identity impacts this influence as well.
e3 Neuron 109, 839–851.e1–e9, March 3, 2021
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To hone in the general rule-based behavior we add Figures S1I–S1N to show specific cases of pattern specific performance dete-

rioration accompanying general performance increase. The examples in Figures S1I–S1N. Specifically highlight learning sessions in

which a pattern-specific performance was high at the end of one session and decreased following a rule switch. Importantly, the rule

switch did not require changing the learned response to the specific pattern (as 4 out of 8 patterns did not change response category

in the rule switch). The pattern-specific performance deterioration during a general performance improvement is not expected in

learning by stimulus-response association and is a hallmark of rule-based behavior.

Behavior stability tests

Feature-based behavior stability. We want to summarize how consistent were the monkeys in a single number for each session

(Figure S1F). This is done with answers from the last 1/4 of each session. We define as a consistency measure the mean (across pat-

terns) distance of the logistic classifier (fitted to answers in the last 1/4 session) from the chance (0.5) answer.

Namely, if themonkeys adopt a feature based consistent policy at the last quarter of each session, thenwe can fit their sequence of

answers with:

Pðy = 1jx; a!;gÞ = 1

1+ exp
�
� g�P

mamfmðxÞ
� [Equation 1]

where x are the presented patterns, fmðxÞ are the features, and a!;g are fitted to maximize the likelihood of the answers.

Fitting a features-based classifier overcomes the sparsity of specific pattern presentations. Specifically, whereas each pattern re-

peats on average every 8 trials, features are defined in all trials. Calculating per pattern consistency also imposes the assumption that

the monkeys can tell all patterns apart from each other. The classifier’s way doesn’t make any assumption beyond a features based

behavior policy.

The consistency measure is thus the mean distance from 0.5. or,

Consistency =
1

8

X
x

jPðy = 1jx; a!;gÞ� 0:5j [Equation 2]

The chance level for a completely unbiased classifier is

P8

n=0

���n
8

� 0:5
���$� n

8

�
P8

n= 0

�
n
8

� = 0:1367

Across sessions stability. Next, we want to check if the monkeys were stable across sessions. Namely, regardless of performance,

how similar is the features-based behavior at the last quarter of different sessions. Or, how similar is the behavior when learning the

same rule in different sessions.

To avoid interference by behavioral confidence (the inconsistency that drives PðyjxÞ in Equation 1 close to 0.5 and can be impacted

by session–specific motivation) on the policy-related across-trial variability (The conceptual inconsistency that separates the logistic

classifiers fitted to different sessions) we threshold the classifiers, cðxÞ= ½PðyjxÞ > 0:5�, and for each rule compare all pairs of sessions.

The thresholding guarantees that pairs of sessions will be considered similar if the average behavior policy was similar. Figure S1G

shows the mean (and SE in error bars) of the across session similarity score:

Srule =
1

Npairs

X
i < j

1

8

X
x

½ciðxÞ $ cjðxÞ + ð1� ciðxÞÞ $ ð1� cjðxÞÞ� [Equation 3]

where i; j are different sessions of the same rule andNpairs is the number of pairs of sessionswith the same rule. In this analysis we pool

all sessions of each rule including sessions that repeat the same rule in consecutive days or months apart.

Behavior similarity to the rules

To estimate how similar is the monkeys’ behavior to the rules they learn we repeat the calculation in Equation 3 but replace one of

the classifiers ðcjÞ and subtract 0.5 to shift the mean expected overlap to 0. The, above chance level, results are presented in

Figure S1H.

Testing for performance-based strategy

Animal behavior could potentially obey a local performance-based strategy called win/stay, lose/switch. This strategy is

observed in animal studies and suggests that animals will repeat a choice that led to reward and switch a choice that didn’t.

To test if the monkeys significantly relied on such a strategy, we simulated answer sequences following this strategy for all the

learning sessions in our experiments. We than compared the true answers, given by the monkeys, to the simulated sequences.

Any above-chance (50%) agreement would indicate that the monkey might be using this strategy. However, we find that the

agreement with the win-stay, lose-switch strategy is below chance for nearly all sessions. Figure S1O shows distributions

of per-session agreement for simulations initiated in the left or right choice (the only free parameter). 93.5% of sessions

had below-chance agreement and the median agreement was significantly lower than chance (Wilcoxon signed rank test.

p < 1e-15)
Neuron 109, 839–851.e1–e9, March 3, 2021 e4
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Neural activity analysis
Single-neuron responses

We expect the learning-relevant neural activity to be influenced by both trial-by-trial variations, such as changing behavior and stim-

ulus identity, and by slower processes, namely learning. Studying the learning related dynamics, we are interested in the single unit

neural activity that correlates to such inherently variable computational primitives. Namely, we seek a measure of the spiking activity

that communicates the variations across trials. Accordingly, for every neuron we examine the spikes in the 500ms following the stim-

ulus onset and bin them into 5x100ms segments to obtain sensitivity to temporal effects in addition to the spike count. The result is a

5-vector of spike counts from each trial, V
!ðt = 1.TÞ˛R53N. In this representation, the component of largest across-trials variance

is v�
!

= arg max
k v!k = 1; v!˛R5

VarðV!$ v!Þ. We then project each 5-dimensional vector on this principal component and get a single number

from each trial, rðtÞ= ðV!ðtÞ � CV
!
DÞ$v�!. This number scores the spiking patterns of the neuron with respect to its most prominent fluc-

tuations or change. Importantly, several unrelated processes may contribute to the across-trials variability and in choosing the pro-

jection, rðtÞ, as the representation of stimulus neural response, we tune to the largest source of variability, regardless of its nature

(Figures S3A–S3C).

Pattern-specific neurons

Wedevised a criterion for exemplar preference based on a neuron’s firing rate in the 500mSec after the pattern presentation.We build

a table of all responses of the neuron to each of the patterns. Next, we compare the sets of responses to each pair of patterns using a

rank-sum test for equal medians and treat the distribution of responses as different using a threshold at p < 0.05. A neuron is pattern-

specific if the distribution of responses to only one pattern is different from all the others (Figure S2A)

Feature-based representations

For a pattern, x!, we chose a basis of features that are polynomials of the variables x1; x2; x3 that take the values ± 1. Features,

fijkðxÞ= xi1x
j
2x

k
3 differ in the polynomial degrees ði; j; k = 0;1Þ and satisfy, when averaging across all patterns, CfD= 0; Cf2D= 1.

Lemma 1: Classification rules factor in this basis.

Proof 1: Any classification rule can be described by a function, yð x!Þ, assigning the label y˛f1;�1g to every pattern x!. Define

g=
1

8

X
s
!yð s!Þ and cI˛fi; j; kg; aI =

1
8

P
s
!yð s!ÞfIð s!Þ and construct:
fð x!Þ = g+
X
I

aIfIð x!Þ [Equation 4]

It is straightforward to show that
P
I

fIð s!ÞfIð x!Þ=
�
7 if x!= s!
�1 otherwise

and therefore fð x!Þ= yð x!Þ.
Also, note that for the 8 rules we used g= 0 and, by construction, a! is a unique definition of the rule as a vector in features’ space

(i.e., the ‘rule vector’).

Lemma 2: Different features in this base have zero covariance.

Proof 2: Let f1 and f2 be features in this set and without losing generality assume that they differ in the polynomial degree of x1 s.t.

f2 doesn’t contain x1. f1 and f2 can still have overlapping cues like the case of f1 = x1x2x3 and f2 = x2x3.
Cov f1; f2ð Þ=
X

x1 ;x2 ;x3 = ±1

f1$f2 =
X

x1 = ±1

x1
X

x2 ;x3 = ±1

f1
x1
$f2 = 0

where f1
x1
denotes the function f1 without its x1 component

Lemma 3: Correlation projections factor in this basis.

Proof 3: The corollary of Lemma 2 is that any combination of basis functions, f =
P

I˛fi;j;kg
aIfI such that

P
I

a2I = 1 will have CfD= 0 and

Cf2D= 1 (because CfI $fJD= 0;cIsJ). Which leads to VarðfÞ= 1.

For the scalar neural response r, the correlation C f ; rð Þ= Cðf�CfDÞ r�CrDð ÞDffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var fð ÞVar rð Þ

p =
P
I

aI
CðfI�CfIDÞ r�CrDð ÞDffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var fIð ÞVar rð Þ
p =

P
I

aIC fI; rð Þ because VarðfIÞ= 1 and

fI = 0 cI.

If we describe the correlations to basis features as a vector (the ‘neural vector’),

C
!

= C f1; rð Þ;C f2; rð Þ; ::ð Þ [Equation 5]

then Cðf ; rÞ is the projection C
!
$ a!.
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Corollary 1:

If we measure a neuron’s correlations to the features separately, then the unit vector, â , that maximizes
P
I

aICðfI; rÞ will give us the

feature f =
P

I˛fi;j;kg
aIfI that maximizes Cðf ; rÞ and can be thought of as the neuron’s preferred feature.

Corollary 2:

If â is a vector holding the coefficient for a rule that we chose in advance, f =
P

I˛fi;j;kg
aIfI (e.g., the one being learned), then the pro-

jection of the neural correlations, C
!
, on a!, C

!
$ a!=

P
I

aIC fI; rð Þ is indeed the neuron’s rule-correlationCðf ; rÞ (Figure 4B, Figure S3C,D).
Dynamics of representations

To study the dynamics of task related neural correlates we divided each session to partially overlapping windows (40 trials segments

with 4 trials jumps). For each neuron, calculating the correlation between its spiking patterns, rðtÞ, following stimulus onset, and the

stimulus features, f
!ð x!Þ, (as well as to the correct category and the monkey’s future answer) yields a set of correlation coefficients,

CCiðtÞ= corrðrðt˛wtÞ;fið x!ðt˛wtÞÞÞ, for each regression window wt. These rolling regression coefficients were used to calculate the

following measures:

Comparing representation between conditions

To judge whether neurons show rule selectivity during a certain segment of the session (Figure 3D) we test the fraction of regression

windows within that segment, that exhibit significant rule correlation (Pearson, p < 0.05). This test is done comparatively between

sessions of different conditions, and we set a criterion of 10% to declare a neuron as showing rule selectivity during the segment.

If there are more than 5 neurons meeting each condition (2 conditions, e.g., easy and hard rules) we use the binomial comparison

z statistic, z=
bp1 � bp2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibpð1� bpÞ$� 1

n1
+ 1

n2

�r with bp1; bp2 the measured success rate in two populations of sizes n1;n2 and bp =
n1 bp1 + n2 bp2

n1 + n2
.

Comparing rule versus answer representations

The correlations of a neuron’s activity to the rule (the correct label in each trial) and to the animal’s answers have a mutual

component (the spiking pattern). The rule and answer variables are also interrelated via the performance level. To compare

neuron’s correlations to the answer and rule and account for these dependencies we use Williams’s t-statistic for correlated

correlations, t =
ðC12 � C13Þ$½ðn� 3Þ$ð1+C23Þ=2D3�12ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+

ðn� 3Þ$ðC12 +C13Þ2$ð1� C23Þ2
8ðn� 1ÞD3

s , where C12 is the category correlation, C13 is the answer correlation, and C23

is the correlation between answers and categories. n is the number of trials and D3 is the determinant of the sample correlations ma-

trix. The statistic is compared to the t – distribution with n� 3 degrees of freedom (Figure 3F).

Categorical properties of neural responses

To check if neurons correlated to the category or the animals’ answers show categorical response properties we follow the method

described in Onken et al. (2019). Briefly, we use two task variables, the correct category and the animals’ action in each trial to define

four task condition. For each neuron and each regression window we calculate the mean response in each of the conditions yielding

a 4-vector. These vectors are normalized to unit length and assigned with cluster identity using the spherical k-means algorithm.

Figure S6 presents vectors both as 3d plots using their 3 leading principal components and also as 2d plots using t-SNE (van der

Maaten and Hinton, 2008).

Relating neural correlates to performance

To relate any regression measure and performance within a group of neurons we take the following steps:

1. For every 40-trials-long regression window we calculate the mean performance.

2. Given a performance level, we collect all the regression windows with performance within 0.15 of that level and calculate the

mean and standard error of the measures of interest (Figure 3E).

Angle-to-rule and vector-magnitude

Given a basis of visual features there is a unique spanning of the classification rule in each session. For each regression window we

define the angle-to-rule as the angle between the vector of correlation coefficients to visual features (the neural-vector) and the vector

that represents the rule (the rule-vector). Similarly, we define the features’ correlation magnitude as the norm (L2) of the correlation

coefficients vector.

When presenting the learning related dependence of these geometrical variables over time, we smooth the curves with a running

window with length of 10 percent of regression windows in a session (Figures 4, 5A, 5B, 5D, 5E, insets, andS3 and S4)

Correlation to rule and answer

In Figures S4M–S4O and S4R, we present similar analyses of representation dynamics (as in Figures 5A, 5B, 5D, and 5E) but instead

of the geometric measures we show correlations to the categories determined by the rule and correlations with themonkeys physical

answers (their right or left choices in each trial)
Neuron 109, 839–851.e1–e9, March 3, 2021 e6
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Session-length standardization

Several calculations require the comparison or grouping of segments from relative session fractions and/or location. To enable this,

we standardized the regression measures from each session to a fixed length of 100 bins. This means that all rolling regressions were

stretched to the same length, because none of the original analyses exceeded 100 regression windows.

Changing angle-to-rule or vector-magnitude

To quantify neurons that decreased angle-to-rule or increased the vector-magnitude (Figures 5A, 5B, 5D, and 5E), we compare

regression windows in the first 15%-segment of the sessions to regression windows in the last 15%-segment of each session

with a 1-tailed t test. In Figures 5A, 5B, 5D, and 5E, the fractions of cells that passed the test are compared with a 2-tailed binomial

z test.

Figures S4A–S4D replicates these contrasts when dividing sessions into high and low performance.

Fractional change in angle and magnitude

We calculate the fractional difference of neural-vector’s angle-to-rule and magnitude from the average baseline values in the initial

15% of regression windows (Figure 5). The resulting traces are smoothed with a 10% window and significant difference between

sessions of easy and hard rules is determined with bootstrapping – shuffling the easy/hard label 10,000 times and checking if the

correct labeling surpasses the required confidence level (95%).

Interpreting neural-vector magnitude as confidence

Confidence in a binary decision is defined by the decision boundary. A decision boundary can be defined using a sigmoid expression

y =
1

1+ expð�arÞ where y is the choice probability, r is the mean-subtracted activity of a neuron, and a is a scalar. In stochastic

behavior, the trial by trial decisions can be modeled as a flip of a biased coin with probabilities y and 1-y to press either one response

button or the other. In a low confidence state these decision probabilities are close to 0.5. Decisions in a high confidence state are

reliable and these probabilities are close to 0 or 1.

If the neural activity depends on just one feature, fI, from our basis then we can express it as r = afI + x using a scalar coefficient ‘a’

and a zero-mean error x (r,fI,x change from trial to trial).

The correlation between the neural activity and the feature will take the form:

Corrðr; fIÞ = affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 + < x2 >

p
This correlation coefficient will approach 1 (�1) as ‘a’ approachesN(-N). Thismeans that the strength of the correlation has amonot-

onous relation to the ‘steepness’ of the sigmoid y(r). This relation is depicted for example Figure S3E.

In general, if the neural activity is spanned by a mixture of our entire basis of features as r =
P
m

amfm + x and b=
P
n

bnfn is a direction in

our features space

���b!�� =P
n

b2
n = 1

�
then we getCorrðr;bÞ= a

!
$b
!ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

j a!j2 + < x2 >

q where ‘ a
!
’ and ‘b

!
’ are vectors. This correlation is maxi-

mized if ‘b
!
’ is in the direction of ‘ a

!
’ and boils down to the same scalar expression as above (replacing the scalar ‘a’ with the magni-

tude | a
!
|). This means that the decision boundary is defined by the direction of ‘ a

!
’ and its steepness is defined by the magnitude

of ‘ a
!
’.

Relating change in reaction time and change in vector magnitudes

The behavioral reaction time is defined as the time interval from the moment the animals release the trial onset button to the moment

they press one of the answer buttons. This measure cleans the initial processing time required to release the trial onset button after

the stimulus onset. The remaining motion time is used here as a potential indication of the animals’ confidence.

Our task did not train the animals to respond quickly and the reaction times distribute broadly. We used the median in each

regression window to avoid outlier trials and define the change in reaction time as the difference between the mean at the first

and last quarters of the session.

We then compute the correlation across neurons between the change in reaction time and the fractional change in vector magni-

tudes (Figure S4J-L using the same parameters as Figures 5C and 5F) separately for the sessions with high and low performance as

defined above. We use Fisher’s transformation, br =1

2
log

	
1+ r

1� r



and the z-test for:

z =
brhigh � br low

s

where s=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n1 � 3
+

1

n2 � 3

r
, to rule out the hypothesis of equal correlation coefficients.
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Graded relation between neural correlates and learning behavior

In the section ‘Changing angle-to-rule or vector-magnitude’ above we described contrasts between neurons recorded in groups of

sessions (easy versus hard rules in Figures 5A, 5B, 5D, and 5E and high versus low performance in Figures S4A–S4D). In addition

to these categorical contrasts, we use Pearson correlations across neurons to estimate the graded relation between performance

measures and neural correlates. We correlate behavior measures (Pend; Pend � Pstart defined above and normalized for eachmonkey

separately) with the neurons’ angle-to-rule and vector magnitude (Figures 5C and 5F). The neural correlates are averages in regres-

sion windows in baseline and segment durations similar to Figures S4A—S4D.

Optimal lags between time series

Given two time series, e.g., the angle-to-rule of a dACC neuron and the simultaneously-recorded vector-magnitude of a Putamen

neuron, we find the shift that maximizes their Pearson correlation. Only pairs with significant correlation in the optimal lag contribute

(as in Figures 6E, 6G, and 6H).

Relating neural-vector to next-day behavior

To examine if the learning-related change in the neural-vectors indicate a real shift in the monkeys’ preferred policy (Figure 7), we

tested if the neurons’ preferred feature combination (i.e., their neural-vector) predicts the monkeys’ behavior early in the following

day. For each neuron we calculated the neural-vector in the last 20% of the sessions’ regression windows. We then calculated

the projection of these neural-vectors on the subsequent day’s rule and used the maximal value as the predictor of the next day’s

performance. In Figure 7A we calculate the Pearson correlations between these neural projections and the mean performance in

the early fraction of the next day’s session across the neural population. In Figure 7B we repeat the same calculation but only

take cases in which the rule was changed between the current and next day.

Behavior decoding from neural ensemble activity states

The analysis of neural ensemble responses are descriptions of neural computations that are conceptually-different from the frame-

work developed in this manuscript:

(1) The space of feature correlations has different dimensionality and units from the space of ensemble activity patterns. In the

former, axes are correlation coefficients and the dimension equals the number of features. In the latter, axes are the activity

of individual neurons and the dimension equals the number of neurons.

(2) The correlation coefficients in our framework are calculated across trials in rolling regression windows, not in individual trials,

whereas population activity vectors can be measured per-trial.

(3) Conceptually, our approach first extracts the task-correlated dynamics of single neurons whereas ensemble patterns are

insensitive to the task and require further assumptions to ‘decode’ behavior.

To relate these frameworks, we consider an ensemble of neurons jointly-recorded in a sequence of learning steps, t, during one

regression window, W. Each neuron, indexed by i = 1::N, has the response riðtÞ in trial t. For simplicity we consider the responses

to be centered and linearly-dependent on the visual features s.t. riðtÞ=
P
m

ai
mfmðxðtÞÞ+ xiðtÞ, where x(t) is the pattern shown in trial t

and xi is a zero-mean Gaussian random variable with variance s2i .

Fisher’s linear discriminant is a commonly-used population level code to describe policy-based behavior. In the linear discrim-

inant formalism, the per-trial vectors of neural responses, f r
!ðtÞgt˛W˛RN, are treated as points in the space of ensemble activity

patterns (with dimension = number of neurons) and used to decode a binary behavior condition (the correct category or the

animals’ choice). This is done by finding a direction, b
!
˛RN, defining the optimal plane separating ensemble activity in one

condition from the other. In this framework b
!

is identical to the set of coefficients that maximize CC

�PN
i = 1

bi ri;
P
s
asfsðxÞ

�
, the

correlation coefficient (across trials) between the projection of the neural ensemble on the direction b
!

and the behavior condi-

tion,
P
s
asfsðxÞ+ constant.

Calculating this correlation coefficient and using the properties of our basis of features we get:

CC =

PN
i = 1bið a!i

$baÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i;j = 1bibjð a!i

$ a!j
+ sijÞ

q [Equation 6]

This expression is composed from interpretable and illuminating parts.

The term ð a!i
$baÞ is the projection of the i’th neuron’s preferred visual feature on the direction defined by the behavior condition in

feature space ðbaÞ. As already shown in our methods section this is equivalent to the correlation of the i’th neuron with the behavior

condition.

The term in the denominator is independent of the behavior condition and separates to terms identifiable as ‘signal correlation’

ð a!i
$ a!jÞ and terms identified as ‘noise correlation’ ðsij = < xixj > Þ between pairs of neurons.

An assumption of conditional independence between neurons is implied in most analyses of ensemble activity frameworks (like

many forms of dimensionality reduction) and amounts to setting sij = 0cisj. Under this assumption, the conclusion from Equation 6
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is that the coefficients b
!

will optimize the behavior decoding if they give large weights to neurons that increase their correlation to the

behavior condition.

To verify this intuition, we fit one logistic classifier (equation below) to the correct category and another to the behavior, the

actual answer provided by the animals, in each rolling regression window. For each neuron we calculate the Pearson correlations

between the dynamics of its b coefficient and the dynamics of its correlation to the category (or answer) and summarize the results

in Figure S7D.

A logistic classifier models the probability of behavior state ‘y = 1’ given the vector of neural activity r
!
:

Probðy = 1j r!Þ = 1

1+ exp
�� b

!
$ r!+g

�
Fitting is done by maximizing the likelihood in each regression window separately.
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