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Fully understanding the mechanisms of computation and plas-
ticity in neural circuits requires knowledge of how those neu-
rons are connected. Despite groundbreaking developments in 

direct circuit tracing1–5, obtaining connectivity data is still difficult 
and expensive. Hence, there is a strong interest in statistical meth-
ods to estimate connectivity6–9 from simultaneous circuit-wide neu-
ral recordings.

Activity correlations between neurons offer a crude estimate 
of their coupling, but it is widely acknowledged that such cor-
relations can arise either from a direct synaptic connection or 
from a common input. Statistically sophisticated inference tech-
niques, such as maximum entropy-based inverse Ising infer-
ence7, l1-regularized logistic regression10 and generalized linear 
models6,11,12, aim to ‘explain away’ correlations that arise from a 
common observed input. Successful explaining away prevents the 
inference of (nonexistent) direct connections based on correla-
tion and yields connectivity graphs that are sparser than the raw  
correlation graph (Fig. 1a).

Such methods, applied to recordings of low-level sensory cir-
cuits in the brain, produce greatly improved predictions of neural 
responses because they account not only for the influence of the 
stimulus but also for other cells in the network6,7,13,14. With the suc-
cess of these models in activity prediction, it is tempting to interpret 
the inferred connectivity as biological connections6,15,16, an infer-
ence step that remains untested.

There are two key requirements for these methods to succeed in 
explaining away, neither of which tends to hold in reality: all nodes 
must be observed, and the inference model used to link connectivity 
and activity must very closely approximate the real dynamical sys-
tem that generates the data. Thus, there is reason to suspect that the 
inferred connectivity might deviate substantially from structural 
connectivity, at least under some conditions. Problems of circuit 
inference because of unobserved neurons are relatively well recog-
nized14,17–23; therefore, we focused here on the problems of inference 
even in the fully observed setting, which arise from mismatches 
between the generative system and the inference model (model 

mis-specification; see Methods and Extended Data Fig. 1 for our 
results on model-matched inference).

We hypothesized that inference models that are slightly mis-
matched to the generative system cannot exactly capture (and thus 
explain away) all observed correlations derived from multi-hop 
interactions, and the residual unexplained correlations are then 
interpreted as excess direct connections. Thus, we expect inference 
to be poor when weakly connected, or unconnected neurons exhibit 
strong activity correlations. This is common in strongly recurrent 
networks that perform amplification or generate self-sustaining 
memory states through emergent phenomena such as pattern 
formation. We expect these networks to present a fundamental 
challenge in circuit inference. More generally, our findings imply 
that causal inference will likely be problematic in any system with 
strongly interacting variables.

To study the relationship between circuit inference and net-
work correlations, we constructed recurrent networks where we 
vary absolute recurrent weight strengths (to manipulate correlation 
strengths) while keeping the network architecture (connectivity and 
relative weights) and feed-forward drive fixed. Turning the abso-
lute recurrent weight dial moves the circuit across weak (‘sensory’), 
medium (‘amplifying sensory’) and strong (‘memory’) recurrent 
regimes, producing, in the last case, large-scale emergent activity 
patterns with strong correlations between unconnected neurons. 
To illustrate the patterns of explaining away errors, we first present 
results on a highly structured ring network. We demonstrate later 
that these results hold more generally. Finally, we show that pushing 
networks out of equilibrium through simple global perturbations 
might provide a solution to the inference problem even in the strong 
weight regime.

Results
A simple recurrent network and the sensory–memory continuum. 
We first considered a network of threshold-crossing spiking neu-
rons arranged on a one-dimensional ring. Neurons interact through 
rotation-invariant recurrent connections W with a local Mexican 
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hat profile (Fig. 1b–c and Methods). All neurons also receive a 
shared feed-forward excitatory drive and independent identically 
sampled noisy drives (Methods). Cells generate spikes, which drive 
the dynamics at future times.

The ratio of recurrent to feed-forward input is set by the scalar 
recurrent weight strength parameter r, which multiplies the recur-
rent weight matrix W, whereas the average network firing rate is 
maintained by adjusting the firing threshold (Extended Data Fig. 2).  
When r is small, the feed-forward noise dominates, and network 
activity is relatively uncorrelated; when r is large, the network exhib-
its a global pattern of periodically spaced activity bumps24 (Fig. 1d). 
The pattern undergoes noise-driven drift. Unconnected neurons in 
different co-active bumps exhibit strong correlations (Fig. 1d).

The structure of the noise correlation matrix changes with r 
(and depends on the time scale of binning; Extended Data Fig. 3). 
At small r, the matrix shows high variance with weak signatures of 

the true connectivity (Fig. 1e, first panel: variance appears as grains 
in the top plot and noisy superposition in the bottom). At inter-
mediate r, the influence of noise decreases, and correlations better 
reflect connectivity (Fig. 1e, second panel). As r increases, however, 
pattern formation sets in, and noise correlations instead reflect the 
correlations induced by the periodic activity pattern (Fig. 1e, last 
two panels).

Before proceeding further, note that ranges of the parameter r 
over which the correlation structure changes can be substantially 
related to different operating regimes of circuits in the brain. We 
do so by characterizing noise correlations, coherence and tempo-
ral stability of network activity states as a function of r. Increasing 
r strengthens noise correlations (see Methods and Fig. 1f). These 
values can be compared with the mean pairwise noise correlation 
magnitudes measured in various sensory and non-sensory brain 
areas, such as V125–27, V428,29, MT30–33 and hippocampus34 (Fig. 1e, 

0 0.025
0%

100%

0.01

0.1

1

Recurrent weight strength r

Pa
tte

rn
co

he
re

nc
e

Sensory regime

D
iffusivity (λ

2/s)

Memory regime

–0.0023

0

True circuit Activity correlations Good inference
a

b c

d

Nodes Weights

r = 0.0025 r = 0.025

e

g

0

0.6
0 0.025

f

V4

N
eu

ro
n 

no
.

Recurrent weight strength r

CA1,
CA3

V1
MT

–0.0023

0

1

100

100
Neuron #

N
eu

ro
n 

#

0.04

0

–0.04

Neuron #
1 100

1

100

100
Neuron #

0.08

0

–0.08

0.8

0

–0.8

0.4

0

–0.4

0

40

Ti
m

e 
(s

)
Ac

tiv
at

io
ns

 s

0

4

Neuron no.
1 100

∣rSC∣

rSC

Fig. 1 | Structure and dynamics of the generative network. a, Left: schematic three-neuron circuit with two connections. Center: all neurons are correlated. 
Right: circuit inference algorithms should ‘explain away’ correlations between the top neurons based on their common input, ruling out a direct connection. 
b, Neurons (black dots) in a ring network. Gray curve, Mexican hat-shaped weights from an example node (gray dot) to the rest; all other neurons have the 
same weight profile. c, The resulting weight matrix W (top) is circulant, comprising rotations of the same row (bottom). d, Scalar parameter r modulates 
the strength of all recurrent weights. Spike raster plots (top) and snapshots of synaptic activity (bottom) of the network at weak (red) and strong (blue) 
weights (small and large r). e, Absolute noise correlations between neurons (spikes binned at 10 ms; gray, histogram; black, means) increases with weight 
strength. Horizontal color bands indicate experimentally measured ranges of noise correlation in different brain circuits. f, Noise correlation matrix at 
several weight strengths. Below each matrix, superposition of the rows, rotated so they align. g, Coherence (left ordinate, black) and diffusivity (right 
ordinate, gray) of the network pattern as a function of r. Horizontal line marks a diffusivity of 0.25 λ2/s, where pattern phase information (memory) is 
typically lost after 0.5 s. The corresponding r value marks a working boundary between what we call ‘sensory’ (red) and ‘memory’ (blue) regimes  
of the network.
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colored bands). As seen, medium to medium-large values in our 
range of r produce noise correlations consistent with primary and 
non-primary sensory processing stages in cortex. Large values cor-
respond to noise correlations from CA1 and CA3, areas that are 
associated with memory. Medium-low and low values of r produce 
weaker correlations than found even in primary sensory areas such 
as V1. This comparison does not take into account the possibility of 
correlated noise inputs into primary sensory cortex; thus, we also 
use more qualitative measures—the coherence and diffusivity of 
activity states (see Methods)—to relate values of r to different oper-
ating regimes in the brain.

Coherence measures the fidelity of the activity pattern over time 
(regardless of where the pattern is centered). As r is increased, the 
network moves from a regime with zero pattern coherence to one 
with maximal coherence (Fig. 1g). The pattern drifts (Fig. 1d) in 
a non-restorative random walk (Ornstein–Uhlenbeck process), 
quantified by a diffusion coefficient (see Methods). As weights 
strengthen, the pattern becomes less diffusive (Fig. 1g). When dif-
fusivity is low, the initial pattern phase is not rapidly lost and can 
be used as a memory state35. In Fig. 1g, the horizontal line marks 
the diffusivity value at which the expected root mean square spread 
of the pattern phase after 0.5 s equals half the pattern wavelength; 
thus, the starting phase is completely forgotten on this time scale. 
The weight strength at this point is r = 0.0125. Because both coher-
ence and diffusivity of the pattern change sharply around this 
value, we take it as the working boundary between the ‘sensory’ 
and the ‘memory’ regimes of this network. The sensory regime 
close to the memory boundary is strongly amplifying and exhibits  
slow dynamics.

Inference at different recurrent weight strengths. We can now 
measure the quality of circuit inference along the sensory–memory 
continuum defined above. At each r, we generate 108 total spikes 
from the network (see Methods). We fit the data with a generalized 
linear model (GLM) because of its good performance in circuit 
activity prediction, at least at the sensory periphery6. The inputs to 
neurons in this model are the weighted sums of spikes from other 
neurons filtered by a temporal kernel, which are then exponenti-
ated to produce Poisson spiking rates; parameters are estimated 
via maximum likelihood (see Methods). We extract the inferred 
weights Ŵ

I
 from this model and define the normalized l2-distance 

between the ground truth and optimally rescaled inferred weights 
to be the inference error (see Methods). Across weight strengths, 
inference is performed on the same number of total spikes; thus, 
differences in inference quality cannot be attributed to differences 
in data volume.

When the recurrent weights are weak, they have a small effect on 
neural activity relative to the ongoing noise; thus, the signal-to-noise 
ratio (SNR) is low, and the inferred connectivity exhibits uncorre-
lated errors (variance) (Fig. 2a, first panel), similar to the noise cor-
relation matrix. As the weights become stronger, the SNR improves 
and the inference error decreases, but only up to a point (Fig. 
2a, second panel). As the weights become stronger still, inferred 
weights begin to exhibit a new kind of error, visible as side bumps 
in the weight profile or as paradiagonal stripes in the weight matrix 
(last two panels of Fig. 2a).

Consistent with these results, the distribution of individual 
weight errors is Gaussian at small r. With increasing r, the width of 
the Gaussian initially shrinks to reflect improving SNR, and then 
the distribution becomes increasingly non-Gaussian (Methods and 
Extended Data Fig. 4).

Thus, we see that the errors at high r are systematic (biased) 
overestimates of the existence and magnitudes of connections. 
They result from a partial failure to explain away strong corre-
lations, induced by the emergence of the global activity pattern. 
The GLM estimate is a better approximation to the true weight 

matrix than is the raw noise correlation matrix, but it still exhibits 
a similar qualitative pattern of errors (compare the bottom two 
rows of Fig. 2a).

The total inference error Δ can be cast as the magnitude of a 
vector composed of two orthogonal components: the variance error 
with magnitude Δv, and the bias error with magnitude Δb—thus, 
Δ2 ¼ Δ2

v þ Δ2
b

I
 (Methods). The relative contribution of these two 

components is then simply visualized as the orientation of the total 
error vector relative to the variance and bias components (Fig. 2b). 
For small r, the variance error dominates, and the total error vec-
tor is near the variance axis. With increasing r, the error vector 
rotates from the variance toward the bias axis (Fig. 2b). Meanwhile, 
its magnitude first drops, then rises, and is smallest at intermedi-
ate weights when variance and bias contributions are both relatively 
low (Fig. 2c).

The point of best inference is far to the left of the sensory–
memory boundary, in the very low weight regime (Fig. 2c). When 
the inference model is not exactly matched to the data-generating 
model, as is typical, this point is not an invariant that reflects a 
critical point of the network dynamics or of the inference process. 
Rather, it depends on the data volume used for inference, as we 
show next.

Variance, but not bias errors, decline with data volume. Data vol-
ume is the total number of spikes used for circuit inference. We hold 
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fraction of bias θb, against weight strength.
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the average firing rate in the generative model fixed as r is varied, 
so that data volume is proportional to data collection time. Variance 
and bias errors scale differently with data volume (Fig. 3a). Variance 
errors decrease inversely with data, as expected: Δ2

v � 1=D
I

 (Fig. 3a, 
inset at top right; error is well fit by a line of slope −1 on a log–log 
plot; see Extended Data Fig. 5a with fits and confidence intervals). 
By contrast, bias errors persist because they arise from correlated 

neural activities that are not averaged away with the addition of data 
(Fig. 3a, green areas, and Fig. 3b–e).

Because increasing data volumes erode variance but not bias 
errors, which dominate at weak and strong weights, respectively, it 
follows that, with increasing data volume, the total error will con-
tinue dropping at weak weights but remain relatively stable at strong 
weights. Thus, the curve of total error versus r will change shape 
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with data volume, dropping progressively lower on the left, and 
the best weight strength for inference will shift progressively left-
ward (Fig. 3f). In the limit of infinite amounts of data, the weakest 
weights are optimal for inference (Fig. 3f, green).

By contrast, in the empirically implausible case where the gen-
erative and inference models exactly match, which we illustrate 
with inverse Ising inference applied to data generated from an Ising 
model, there are no bias errors, and errors decay according to a fixed 
power law at all weights. There is an intrinsic critical point for best 
inference (see Methods section on matched inference), independent 
of data volume. The critical point occurs at intermediate weight 
strength and corresponds to maximal magnetic susceptibility in the 
Ising network36, which, in turn, is directly related to the maximiza-
tion of Fisher information (FI).

Infeasible data volume for accurate inference in memory net-
works. To estimate the data volume required for circuit inference 
as a function of recurrent weight strength, we fix the desired infer-
ence error to a value Δ* (marked by the horizontal line in Fig. 3f) 
and slice the surface of Fig. 3b within 1% of this level. The required 
data volume grows as r decreases, diverging at r → 0 because the 
influence of recurrent weights on activity, and thus SNR in activity 
about weights, vanishes in that limit (Fig. 3g). At the opposite end, 
the required volume diverges again, at a finite value of the recur-
rent weight strength. We fit the curve with a sum of two power laws 
(Fig. 3g, black curve), fitting all five parameters simultaneously. The 
first power law has a form awr�nw

I
, diverging at r = 0 (red dashed 

curve) and with a fitted exponent nw ≈ 2. The second has the form 
asðr � rmaxÞ�ns

I
, diverging at a fitted value of rmax ¼ 0:0157

I
, with a 

fitted exponent ns ≈ 1.4 (blue dashed curve).
We can understand this divergence in required data volume at 

finite strong weight by plotting this fitted rmax
I

 on Fig. 3f: it corre-
sponds to the point at which the infinite data inference error (green 
curve) exceeds the criterion error Δ* (due to larger data-intractable 
bias errors at stronger weights). Thus, a network with stronger 
weights than rmax

I
 cannot be inferred to the desired accuracy with 

any volume of data.

Results generalize across inference methods. To probe the gen-
erality of our result on inference errors, we first applied alternative 
inference methods to the same spike data.

We estimate weights with the Ising model (that is, find the 
maximum entropy model that fits the data means and covariances 
under the assumption of binary responses; see Methods for bina-
rization procedures). Exact inference under an Ising model with 
general all-to-all weights is NP-hard37, which has led to the devel-
opment of approximate algorithms that involve different simplic-
ity–accuracy tradeoffs. We used the minimum probability flow 
(MPF) algorithm38, which provides good solutions at intermediate 
computational complexity and guarantees convergence to the cor-
rect (maximum likelihood) Ising parameters in the asymptotic data 
limit (Fig. 4a). We alternatively used mean-field approximations to 
the Ising model, including the naive mean field and the Thouless–
Anderson–Palmer (TAP)39 and Sessak and Monasson (SM)40,41 
approximations (see Methods): although less accurate, they are sim-
ple and fast (Fig. 4a). The naive mean-field connectivity estimate 
is simply the negative inverse of the activity covariance matrix, so 
we call it the ‘raw correlations’-based estimate. This estimate using 
binarized spike data is our low benchmark (expected lower bound) 
for the quality of binary data-based inference methods, such as Ising 
inference (Fig. 4a), whereas a raw correlations-based estimate using 
spike count data is the low benchmark for count-based methods 
such as the GLM and logistic regression, described next.

We next perform inference using logistic regression10,42, in which 
the response of each neuron is regressed onto the activity of the rest. 
The response variable must be binary, but the predictor values need 

not be; thus, we binarize only the spike data of the response neuron. 
To try to reduce explaining-away errors by favoring a sparser matrix, 
we apply an l1 penalty on the inferred coefficients10, tuning the 
regularization parameter at each r to optimize inference accuracy 
(see Methods). The l1 penalty barely improves inference (Extended 
Data Fig. 6): it truncates the flanks of peaks in the inferred weight 
matrix without removing side peaks. Nevertheless, logistic regres-
sion achieves slightly better performance than the GLM (Fig. 4a and 
Extended Data Fig. 6).

Finally, we consider whether gating the inferred connectiv-
ity matrices by the existence of short-latency peaks in spike train 
cross-correlations improves inference (see Methods). If there is a 
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positive or negative peak in the cross-correlogram (CCG) of a pair 
of neurons within a lag τ, we posit a connection and use the weight 
estimate from the GLM inference; otherwise, connections are set 
to zero. The CCGs in this symmetric network exhibit only broad 
symmetric peaks, which are not ideal for connectivity inference 
(Extended Data Fig. 7). The resulting matrix is sparser but also con-
tains false negatives; overall, CCG gating leads to larger errors in 
this circuit. We later use asymmetric CCG features in a sparse asym-
metric network with better success.

All these inference methods, regardless of statistical sophis-
tication, perform equally well—and no better than the cor-
responding (binary or non-binary) raw activity correlation 
matrix—when the recurrent weights are small, and the limiting 
factor is noise. The primary difference between methods in this 

regime is the (expected) better performance of models that use 
count rather than binary spike data. Across weights, all methods 
replicate the qualitative U-shaped curve of inference error versus 
r and produce data impervious bias errors (Fig. 4b). Thus, when  
there is inevitably some mismatch between the inference model 
and real system dynamics, inference methods will tend to overesti-
mate connectivity.

Results generalize to different networks. To test whether our results  
generalize to other neural network models, we first switch the neu-
ral dynamics (to a linear–nonlinear Poisson model; see Methods) 
while keeping network architecture fixed. We apply GLM inference 
with an exponential nonlinearity, as before, and obtain the same 
qualitative inference results (Extended Data Fig. 8).
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GLM, l1-regularized logistic regression and absolute noise correlations, for the 4,950 neuron pairs (box plot shows median, first to third quartile and range) 
versus weight strength. h, Inference error versus data volume for strong weights. Error band is s.e.m. over up to five different data subsets. i–l, Corresponding 
plots for a random, fully connected, asymmetric balanced recurrent network. i, Chaotic trajectory of first two principal components of neural fields for  
strong weights, when there is no noisy feed-forward drive. j–l, Inference results on this network when it is driven with feed-forward noise. j, Inferred versus 
true weights at strong weights (blue) and at weaker weights where inference is best (red). k, Inference error and absolute noise correlations of the 4,950 
neuron pairs (box plot shows median, first to third quartile and range) versus weight strength. Blue indicates chaotic regime. l, Inference error versus data 
volume at the weak, optimal weight.
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Second, we change the circuit itself: instead of a structured, 
locally connected, low-dimensional ring, we consider a net-
work that lies on the opposite extreme of symmetric recurrent 
architectures, with random all-to-all connectivity as in Hopfield 
networks (Methods). At weak weights, this network exhibits 
high-dimensional, statistically stationary network-wide firing (due 
to injected noise). At strong weights, initially high-dimensional 
activity states collapse to a stable pattern of activity, with a sparse 
set of firing neurons (Fig. 5a).

At each weight strength, we collect 108 spikes from the network 
and perform circuit inference with a GLM. Inference in the strong 
weight network (Fig. 5b, blue scatter) substantially overestimates 
overall weight strengths compared to in the weak weight condi-
tion (Fig. 5b, red). Inference error increases as a function of weight 
strength (Fig. 5c, black), with an abrupt transition near the weight 

strength that supports stable pattern formation (the pattern forma-
tion transition can be detected independently by the sudden growth 
in the noise correlation magnitudes; Fig. 5c, gray).

We inspect how the onset of pattern formation affects infer-
ence. Using only the sparse patterned state, inferred connectivity 
is extremely poor, with strong excitatory coupling between the 
sparsely active set and strong inhibitory coupling between them 
and all the rest. Instead, we initialize the network in an unpatterned 
state, collect data over time as the network settles into a patterned 
state and perform inference repeatedly on the accumulating data. 
At first, while the network activity is high dimensional, inference 
improves with increasing data volume (Fig. 5d, blue curve to the left 
of the dashed line). Inference actually improves more rapidly in the 
pre-pattern-onset strong weight network than in the unpatterned 
weak weight network (red curve). This observation leads us to a 
proposal that we explore later, that far-out-of-equilibrium activity 
might ameliorate inference bias. Once patterning sets in, however, 
including post-pattern-onset data degrades inference relative to the 
smaller subset of pre-pattern-onset data.

Third, we construct a recurrent network with non-symmetric 
sparse random connections (10% connection probability) and 
non-symmetric random weights (see Methods). To maintain sta-
bility with non-saturating neurons as the weight strengths are 
increased, and retain the same statistical distribution of weights as 
the ring network, recurrent connections are inhibitory (excitatory 
weights are used next). At strong weights, this network also exhibits 
patterned stable states (Fig. 5e). The GLM infers a broad distribu-
tion of weights, both positive and negative, for both connected and 
unconnected neuron pairs (Fig. 5f, large scatter of yellow dots away 
from black line and vertical yellow streak near the zero weight point, 
respectively).

In this circuit, augmenting GLM inference with CCG analysis 
produces a more pruned connectivity (Fig. 5f, green dots; note the 
reduced spread at the zero weight point) but also introduces false 
negatives (horizontal streak of green dots in Fig. 5f and Extended 
Data Fig. 7). This method outperforms GLM alone (Fig. 5g). On the 
whole, however, our earlier qualitative findings persist: inference 
error is higher in networks with stronger weights and even with 
increasing data volumes, asymptotes toward a sizeable non-zero 
level due to a persistent estimation bias from a failure to explain 
away (Fig. 5h). Despite the fact that connectivity in the network 
is sparse, l1-regularized logistic regression provides at most mar-
ginal gains that do not approach the improvements from CCG 
analysis, outperforming it only at high noise (weak weights and 
little data) (Fig. 5g,h). This is arguably because the l1 penalty sup-
presses weights based blindly on their magnitude, whereas the CCG 
method exploits insight into neuronal interactions.

It is unclear if CCG pruning will be fruitful in real circuits, even 
if they are sparse and non-symmetric. Here, CCG peaks are narrow 
and sharp (see Methods and Extended Data Fig. 7) because each 
neuron receives only ~10 inputs. (In a larger network, eg, of 104−105 
neurons, the combined sparseness of activity and connectivity 
would have to be as small as 10−3−10−4 to obtain only ~10 simul-
taneously active inputs to each neuron, or the inputs would have 
to be highly correlated, to avoid loss of information about precise 
temporal relationships between pairs of neurons.)

Fourth, we consider asymmetric balanced networks with mixed 
excitatory and inhibitory connections (using rate-based, saturating 
neurons and non-noisy inputs; see Methods) that exhibit chaotic 
rather than fixed point dynamics at sufficiently strong weights43 (rRFB 
> 1 + ϵ for ϵ → 0 with network size; below these weight strengths, 
the dynamics admit a single stable fixed point at 0) (Fig. 5i).

Circuit inference in this network (by logistic regression on the 
rates) is ineffective at all weights, with poor inference performance 
even in the chaotic regime (see Extended Data Fig. 9; to stimulate 
activity when below the chaotic regime, we provide a brief input 
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pulse to all neurons at the start of the simulation). Although 
chaotic dynamics appear noisy, they are nevertheless quite low 
dimensional; the deterministic balanced network is thus plagued 
by even worse inference problems than the pattern-forming net-
works explored above when they are noise driven. We therefore 
add high-dimensional noise to the network in the form of a fluc-
tuating feed-forward drive, as before; Fig. 5j–l shows the results on 
this noise-driven network. Inference improves in the weak weight 
regime, where the noise input dominates; it also improves with 
increasing data volumes, but the improvement saturates. The strong 
weight regime remains dominated by the recurrent drive, and infer-
ence performance is poor.

Fifth, we studied a sparse version of this balanced network 
(10% connection probability) over a range of weight strengths rRSB. 
Similarly to the fully connected balanced network, activity decays 
to a single fixed point at zero for sufficiently weak weights (rRSB ≾ 
3.2). At sufficiently strong weights (rRSB ≿ 11), the networks tend 
to exhibit limit cycle dynamics or chaotic dynamics. As with the 
non-sparse balanced network, inference is ineffective unless the 
network is driven with noise, and then it improves to similar lev-
els as the non-sparse balanced network (see Extended Data Fig. 
9). The cross-correlations of some connected pairs change most 
steeply around zero, reflected in short lag peaks in their time 
derivatives. Gating the connectivity matrix with this information 
reduces many false positives but also introduces false negatives; the 
resulting inference performance is not improved overall (Extended 
Data Fig. 9).

In sum, the problem of overestimation of connectivity in strongly 
recurrent networks generalizes across inference methods and across 
different circuits that exhibit disparate varieties of low-dimensional 
dynamics.

The circuit-to-activity map is inherently less invertible in strong 
weight networks. Given how general inference bias is at strong 
weights, the fault might lie less in the inference methods than in 
an inherent reduction of connectivity information in activity 
data at strong weights. Can the true activity of a circuit be distin-
guished from activity generated from a version of the circuit with 
the mis-inferred weights? If the two produce similar activity states, 
no inference method based only on activity could tell them apart  
in principle.

We consider two separate generative models: the true circuit 
W (our ring network with local Mexican hat matrix) and a related 
circuit W0

I
 (the Mexican hat plus-side peaks matrix obtained from 

minimum probability flow-based Ising inference on the ring net-
work in the strong weight regime) (Fig. 6a). The empirical activ-
ity state distributions of neural subsets (binary ten-neuron spike 
words; see Methods) in the weak weight regime are flat and iden-
tical for both models, as the states are driven by noise and not 
the weights (Fig. 6b). At intermediate weights, the distributions 
separate and then converge again at strong weights (Fig. 6b, cen-
ter and right). With increasing r, the entropies of the distributions 
decrease monotonically from the maximum possible value of 10 bits  
(Fig. 6c). The Kullback–Leibler (KL) divergence (relative entropy), 
measuring the distinguishability between the distributions, is small 
at weak weights, peaks at intermediate weights and declines again at 
strong weights (Fig. 6d).

The FI measures the amount of information contained in the 
data to tell apart the circuit from similar ones. We can compute this 
by defining a family of intermediate circuits that linearly interpolate 
between W and W0

I
 (see Methods). Similar to the KL divergence, 

the FI starts low at weak weights, peaks at intermediate weights 
and nearly vanishes at strong weights (Fig. 6d). Finally, we compute 
the closely related log likelihood ratio of the true versus alterna-
tive circuit model, given the activity from the true circuit (Fig. 6d;  
see Methods).

Figure 6e shows a schematic mapping from the circuit to the 
state space that summarizes these results: with increasing r, as 
activity becomes more correlated and patterned, the entropy of 
states and thus the occupied state space shrinks for both models. 
Simultaneously, even though each model occupies a smaller region 
of state space, the states also become more distinct from each other, 
as they better reflect the respective weights and because the extra 
synapses in W0

I
 induce an earlier pattern onset; thus, they have less 
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overlap. At strong weights, patterning catches up in W and begins 
to saturate in both, so their state spaces continue to shrink toward a 
common point, and their overlap grows again.

Thus, the amount of information intrinsically available in activ-
ity about circuitry increases and then decreases again with increas-
ing r, precisely mirroring the U-shaped inference error curves we 
have seen across inference methods.

Strong weights exacerbate inference errors due to unobserved 
neurons. To decouple known problems of inference in partially 
observed circuits14,17–23 from the problems of inference in strongly 
recurrent circuits, we so far considered the fully observed setting. 
We now examine the combined effects of strong recurrence and 
partial observation on inference.

In the ring circuit, we use the activity data of a subset of neurons 
to infer connectivity within that sub-circuit. We repeat this process 
over multiple different subsets of the same size, and, to help visual-
ization, ‘merge’ this patchwork of inferred sub-circuits together to 
obtain a complete N × N circuit (for each neuron pair i, j in the full 
circuit, we average the inferred weights ŵij

I
 from all sub-circuits that 

contained that pair).
Unsurprisingly, inference with partial observation results in 

worse performance at both weak and strong weights. Bias errors 
(side bands) emerge even at weak weights (Fig. 7a), because it 
is impossible to explain away the correlation between a pair of 
observed neurons if the correlation is being driven by an unob-
served common input (eg, Fig. 1a).

The average inference error grows linearly as the observed frac-
tion shrinks, but the growth is slow at weak weights (Fig. 7b, red 
and violet curves). As weights become stronger, degradation is more 
rapid (Fig. 7b–d). The speedup is specifically due to increasing bias 
errors (Fig. 7e)22. At the weakest weights, the quality of inference in 
a 50% observed circuit nearly matches that in the fully observed cir-
cuit (Fig. 7f, left), but, at strong weights, the gap between the two is 
large and does not decline with data volume (Fig. 7f, right). In sum, 
strong weights combined with partial observation produces potent 
data-impervious bias errors in inference. The flipside of our find-
ing is that, with weak weights (and/or with large high-dimensional 
noise), the effects of partial observation can be minimized, and it 
should be possible to perform accurate inference even with many 
missing nodes.

Inference on far-out-of-equilibrium activity can mitigate bias 
errors. We have seen that, if network activity is high dimensional—
that is, it traverses many relatively uncorrelated activity states—it 
leads to good inference even when recurrent weights are strong. 
How can one harness this observation in practice?

One way to reduce bias errors in strong weight networks is thus 
to inject high-dimensional noise into the neural circuit. This is a 
conceptually simple strategy but might be practically difficult to 
implement. Another strategy is to globally weaken the recurrent 
weights through a neuromodulator or other pharmacological agent 
capable of multiplicatively and equally affecting the strengths of all 
synapses without regard to their chemical and physical makeup.

Alternatively, given that the problem of biased inference arises 
from low-dimensional correlated activity states, these can be dis-
rupted by globally pushing the system far from equilibrium by a 
simple suppressive input, which effectively reduces recurrent syn-
aptic driven within the network. To this end, in the ring network, 
we briefly turn off the excitatory feed-forward input to push the 
network into a low-activity state (in experiments, a similar effect 
could be achieved by suppressing excitatory drive within or to 
the circuit or by driving inhibitory inputs to or within the cir-
cuit). After this low-dimensional perturbation, we collect data for 
approximately the synaptic time scale τ while the network recovers 
toward its equilibrium pattern and then reapply the perturbation  

and again collect data as the network relaxes, and so on. The 
network does not fully recover before the next pulse, so that all 
samples are out of equilibrium (Fig. 8a). We continue this until 
we collect enough out-of-equilibrium samples. When we perform 
inference on the out-of-equilibrium data with the same total data 
volume as before, inference performance is superior, and bias 
errors are abolished (Fig. 8b).

Discussion
We have shown that activity-based connectivity estimates of 
strongly recurrent circuits can be incorrect in substantial and sys-
temically biased ways in strongly recurrent circuits. Our definition 
of strong weights encompasses not only circuits that can hold states 
without external inputs, as required for memory, but also sensory 
circuits that moderately or strongly amplify their inputs.

The inference errors we identified in neural microcircuits might 
arise more generally, including when estimating inter-area connec-
tivity from functional magnetic resonance imaging data. Our find-
ings augment the refrain ‘correlations are not causation’ with the 
result that strong correlations obfuscate causation. Our results point 
to the need to be especially wary when assigning causal roles to vari-
ables based on statistical models applied to data, whenever variables 
are highly correlated with each other.

Despite some of our pessimistic results, the challenge of dis-
covering the connectivity of recurrent neural networks is difficult 
but not unsurmountable. Rapid advances in connectomics2–5 offer 
the promise of obtaining connectivity matrices of many complete 
circuits. However, the costs and technical challenges remain great, 
and even after obtaining a connectivity matrix, determining the link 
between structure and function requires another inference step, or 
model, of how activity emerges from connectivity.

More immediately accessible and interpretable are experiments 
that rely on perturbation of the system. Clearly, if each neuron could 
be perturbed, one at a time, and its effects monitored in all other 
available neurons, that would provide detailed causal connectivity 
information even in partially observed circuits. Alternatively, track-
ing the effects of targeted high-resolution and high-dimensional 
(‘holographic’) perturbations can also disentangle correlation 
from causation, but this approach requires inducing specific 
high-dimensional perturbation patterns and then associating 
them with their downstream effects to back out connectivity44–47. 
Alternatively, low-dimensional global perturbations have been 
shown to suffice in discriminating between a few specific candidate 
models in some highly structured neural circuits48–50.

Our approach of far-out-of-equilibrium sampling is complemen-
tary to these strategies and combines their strengths. It allows for 
statistical inference of connectivity in arbitrary circuits without the 
construction of high-resolution or high-dimensional perturbation  
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strategies and requires no tracking of the relationships between 
perturbation and effect. It requires only that the system be out of 
equilibrium while acquiring data. Thus, a simple, low-dimensional 
perturbation strategy, such as transient global silencing in the cir-
cuit, can be sufficient for more accurate circuit inference. Indeed, our 
results suggest that, with enough out-of-equilibrium data, perform-
ing even simple correlational inference could provide much better 
estimates of the true connectivity in strongly recurrent networks 
than using sophisticated inference algorithms on equilibrium data.

We have examined low-dimensional and locally connected ver-
sus high-dimensional and globally connected networks. We thus 
expect that intermediate cases, such as small-world networks with 
a mixture of dense local and sparse long-distance connectivity, will 
exhibit similar behavior, a potential direction for future investiga-
tion. The present study can be extended in many ways. On the gen-
erative side, it will be interesting to study more varied neural circuit 
architectures and richer temporal dynamics (such as neural and 
synaptic adaption).

On the inference side, when the inference model exactly 
matches the generative model, when all neurons are observed 
and when the mapping from circuits to activity is injective, one 
can exactly estimate connectivity from activity (eg, Ising-on-Ising 
inference for certain architectures; Fig. 1). Although it is impos-
sible for any inference model to truly match actual neural cir-
cuit dynamics, improvements in this match can shrink the gap 
between effective and structural connectivity. Finally, it will be 
important to broadly characterize inference improvements from 
far-out-of-equilibrium sampling.
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Methods
Generative network models. Here, we outline the network models that were used 
to generate the data.

Ring circuit. n = 100 neurons are arranged on a ring. The outgoing synaptic weights 
wij from each neuron to all of the others around the ring have a local Mexican hat 
(difference of Gaussians) shape:

wij ¼ e�d2ij=2σ
2
1 � ae�d2ij=2σ

2
2 ; ð1Þ

where dij is the distance (in neurons) between neurons i and j, σ1 = 6.98 and σ2 = 
7 (in units of neuron index). An excitatory bump at the Mexican hat center would 
require a second neural nonlinearity (saturation) to stabilize activity. Instead, in a 
small variation on typical Mexican hat architecture, the local excitation is replaced 
by a weak inhibition, by setting a = 1.0005 > 1. As a result, all recurrent weights 
are inhibitory; this permits both pattern formation (with a uniform feed-forward 
excitatory drive) and dynamical stability without need of a second (saturating) 
neural nonlinearity, similar to ref. 24.

Neural dynamics. Dynamics are updated in discrete time, with a time step Δt of 
size 0.1 ms. The summed input to each neuron at time step t is given by:

gðtÞ ¼ rWsðtÞ þ bðtÞ; ð2Þ

where s(t) is the N × 1 vector of synaptic activations and W is the N × N matrix 
of recurrent connectivity defined above. The feed-forward inputs are b(t) = b(1 
+ ξ(t)), where b = 0.001 is a uniform excitatory drive and ξ(t) is a multiplicative 
private Gaussian white noise per neuron, with zero mean and s.d. σξ = 0.3, resulting 
in a Poisson-like variance proportional to the mean activation. This noise is 
only injected into each neuron with probability = .07 in each time step of the 
discrete-time equations, because, with more noise, the dynamics loses coherence. 
The relative influence of recurrent weights is scaled by the scalar weight strength 
parameter r.

If the input gi(t) to neuron i at time step t exceeds a threshold Θ, the neuron 
emits a spike. The binary vector of spikes from the network at t is σ(t). The synaptic 
activation from neurons that just spiked is incremented by 1 and otherwise decays 
exponentially with time constant τ = 10 ms according to the following equation:

sðt þ ΔtÞ ¼ sðtÞ 1� Δt
τ

� �
þ σðtÞ: ð3Þ

Generating spike data. To move from the weakly to the strongly coupled regime, 
we increase the weight strength r. The threshold Θ is adjusted at each r to hold the 
average inter-spike interval (ISI) of the network roughly fixed (within 16.0 ± 0.1 
ms) (Extended Data Fig. 2). For each parameter setting, we initialize the network 
with random activations s and wait for it to equlibriate and then collect a total of 
108 spikes from the network.

Linear–nonlinear Poisson model. A linear–nonlinear Poisson (LNP) network was 
used to generate data from the ring circuit W, for inference with a GLM (Extended 
Data Fig. 8). Its neural inputs are the same as the original generative model (see 
Methods):

gðtÞ ¼ rLNPW:sðtÞ þ b; ð4Þ

except that the external input is uniform and constant (b = 0.001) without 
an additive noise component. The summed neural input is passed through a 
point-wise rectifying nonlinearity to obtain neural firing rates λ(t). These firing 
rates determine the rate of an inhomogeneous Poisson process that generates ni(t) 
spikes in neuron i (iid per neuron) in time step t with probability:

λiðtÞ ¼ λ0 giðtÞ � ΘLNP
� �

þ; niðtÞ  Pois λiðtÞð Þ: ð5Þ

As before, the outgoing synaptic activations s follow:

_sðtÞ þ sðtÞ
τ

¼ σðtÞ; σiðtÞ ¼
X

spikes

δðt � tspikei Þ: ð6Þ

To maintain an average network ISI of 16.0 ± 0.1 ms at each weight strength 
rLNP, λ0 was fixed at 32, and the threshold ΘLNP was adjusted for each weight 
strength (Extended Data Fig. 2).

Generalized linear model. To perform model-matched inference using GLMs, we 
need a generative GLM with the same exponential inverse link used for inference. 
This generative GLM is the same as the inference GLM (Methods), except for a 
slight parametric difference in the inverse link function:

λiðtÞ ¼
1
α
e10

4giðtÞ: ð7Þ

The prefactor α was adjusted at each weight strength rGLM to maintain the 
average network ISI at 16.0 ± 0.1 ms (Extended Data Fig. 2).

Ising model. To use an Ising model as a generative model, we set the Ising coupling 
matrix to J = rIsing W, where W is the ring circuit, and rIsing was varied from 10 
to 80 to be in the physical regime containing the inference optimum. The biases 
(external fields) of the Ising model are taken to be uniform: hi = 1. Ising states were 
generated using a Gibbs sampling algorithm that updates the spins in a random 
sequence in each pass.

Random, fully connected, symmetric circuit. An all-to-all symmetric circuit of 100 
neurons is constructed by drawing lower-triangular recurrent weights uniformly 
randomly from the same range as the Mexican hat weight profile of the ring 
circuit and reflecting these across the diagonal to generate a symmetric matrix 
(self-connections permitted). We generate spike data using the same neural 
dynamics as for the ring network (see Extended Data Fig. 2). Unlike in the ring 
network, we could not find a threshold to generate an ISI of 16 ms across weights; 
instead, we tuned the threshold to maintain an average ISI of 34.0 ± 0.1 ms across 
weak and moderate weight strengths. At strong weights, activity in the network 
abruptly switches to stable sparse patterns with much lower average ISI. At each 
weight strength, we collected an equal number of spikes for inference.

Random, sparse, asymmetric circuit. Recurrent weights are drawn uniformly 
randomly from the same range as that of the ring circuit for a network of 100 
neurons, and then 90% of all weights are randomly selected and set to zero. We 
generate spikes from this network using the same neural dynamics as in the ring 
network, over a range of weight strengths rRSA (setting the firing threshold to 
maintain an average ISI of 16.0 ± 0.1 ms at each weight; see Extended Data Fig. 2).

Random, fully connected, balanced circuit. We adapt a fully connected balanced 
network with asymmetric random weights43. The circuit comprises n = 100 
neurons with weights wij  Nðμ ¼ 0; σ ¼ 1=

ffiffiffiffi
N

p
Þ

I
. The governing dynamics of the 

neural fields (related to the membrane potentials) are given by:

τ _hiðtÞ ¼ �hiðtÞ þ
X

j

rRFB wij tanhðhjðtÞÞ þ biðtÞ; ð8Þ

with τ = 10 ms. As the weight strength rRFB is increased, this network transitions 
from fixed-point dynamics to limit cycles to chaos.

In the noisy version of this network, the feed-forward drive bi(t) = ξi(t), 
independent Gaussian white noise with zero mean and unit s.d. to each neuron.

Characterizing the dynamical regime of the ring network. Noise correlations. The 
spatially periodic activity pattern of the ring network drifts around the ring over 
time; this effectively induces a signal correlation between neurons, which we wish 
to exclude. Therefore, we silence the feed-forward input b to one of the neurons, 
which forces a dip in activity there, pinning the periodic pattern in place. We then 
generate spikes from the network, bin them at 10 ms and calculate the correlation 
coefficient between the spike count trains of neurons, excluding the suppressed 
neuron.

Activity pattern coherence. The degree of coherence of the activity pattern of the 
ring network is reflected in the periodicity of the pattern, which is captured by 
activity correlations regardless of the pattern phase. We compute the correlation 
coefficient matrix for all neuron pairs (with the diagonal zeroed out). Periodicity 
in the pattern is reflected as a periodicity in the rows of this matrix. The average 
autocorrelation of the rows is the mean pattern autocorrelation. We compute the 
average of this mean autocorrelation function at three shifts—at N/4, N/2 and 
3N/4—which are multiples of the four-bump pattern period. This measure is 
close to zero when there is weak or no pattern coherence and approaches 1 for a 
coherent, four-period pattern.

Diffusivity of activity pattern phase. A measure of the temporal stability of the 
pattern is the rate at which it random walks around the ring. We compute the 
location of the pattern as the time-varying phase ϕ(t) of the Fourier component 
of the neural input vector g(t) at the spatial frequency of the activity pattern (four 
cycles around the ring). The slope of the linear fit of hðϕðt þ τÞ � ϕðtÞÞ2it

I
 against 

τ then gives the diffusion coefficient of the random walk. We did not compute 
diffusivity for weights below r = 0.0125, because g was too noisy to extract a 
periodic pattern.

Circuit inference. Generalized linear model. Here, we outline the GLM used for 
many of our inference results. The model assumes neural inputs ĝðtÞ

I
 at time t of 

the form:

ĝðtÞ ¼ Ŵ ða ? σ̂ÞðtÞð Þ þ b̂ ð9Þ

where the spike trains σ̂ are convolved with a decaying temporal kernel a ¼ âe�t=τ̂

I
, 

truncated at T = 200 time steps, with τ̂ ¼ τ
I

 (the decay time constant in the kernel 
is set to the biophysical synaptic time constant in the generative neural network 
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model). The filtered spike trains are weighted by effective weights Ŵ
I

 and summed 
together with an additive term b̂ and then passed through a nonlinearity (inverse 
link function) ϕ. The resulting rate drives a Poisson spike generation process:

λ̂ðtÞ ¼ ϕ½ĝðtÞ; σ̂ðtÞ  Pois λ̂ðtÞΔ̂t
� �

: ð10Þ

We used ϕ( ⋅ ) = exp( ⋅), the canonical inverse link function for the Poisson 
distribution. Δ̂t

I
 is the temporal discretization used for inference. We chose Δ̂t ¼ Δt

I—that is, the time discretization for the inference model matched the discretization 
for the generation model. These choices are conservative, in that they ensure the 
best possible match between the generative and inference models, aside from 
the mismatch in the inverse link function relative to the neural nonlinearity and 
the lack of an additive Gaussian noise in the input to each neuron. This model is 
like a dynamical GLM51 but with parameters (Ŵ;

I
b̂) tied across time. When T in 

the kernel function is much larger than the exponential decay time constant, the 
nonlinearity ϕ is the same as the neural nonlinearity in the generative model; and, 
if the additive term b̂ included an injected Gaussian noise term with statistics as 
in the generative model, this inference model would exactly match the generative 
model.

The parameters Ŵ
I

, b̂ and â are inferred by simultaneous gradient descent on 
the log-likelihood of the model given the data.

CCG gating. Short latency peaks in the CCG of neuron pairs are often used 
to infer the existence of a direct synaptic connection. For the symmetric ring 
network, we compute the (Pearson’s) cross-correlation of the spikes of neuron 
pairs and check if it peaks (positively or negatively) within a lag of τ, to posit 
a connection. For the weight estimate, we may use the value of the peak 
cross-correlation itself, or the weight inferred by some other inference method 
(eg, GLM) (Extended Data Fig. 7).

For our random, sparse and non-symmetric network, the CCG provides 
better discriminatory information. Broad symmetric peaks in the CCG can now 
be explained away to multiple indirect connections, whereas directly connected 
neurons will show sharp asymmetric short-lag features. Normally, one looks for a 
peak shifted by a few milliseconds as an indication of a direct connection. But the 
inhibitory connections of this network produce, instead, a sharp asymmetric dip at 
zero and then recovery (Extended Data Fig. 7). We detect these by computing the 
time derivatives (discrete difference) of the CCG at each shift, expressing them as 
z-scores and detecting any discontinuity at zero greater than a threshold z-score of 
3. Once a connection is posited using this criterion, the weight estimate from an 
inference method, such as GLM, can be used.

Ising inference model. In the limit of infinite data generated from a matched 
Ising model, Boltzmann machines perform exact inference, but they are slow. 
At the other end of the speed–accuracy tradeoff for inverse Ising inference 
are mean-field methods, which generate fast approximations on the coupling 
inference problem.

Inverse Ising inference performs best when the spike data are binned at an 
appropriate time scale. The Ising model additionally accommodates only binary 
data, thus too-large bins result in information loss. We binarize spike counts 
(spike/no spike) in bins of various widths. We then apply the MPF38 algorithm 
to solve the inverse Ising inference problem and determine inference error as a 
function of bin width. We select the bin width that yields minimum inference 
error for all comparisons (Extended Data Fig. 3b). We do the same for logistic 
regression.

Bin width optimization requires knowledge of the ground truth weight matrix. 
Thus, it is a supervised approach that provides an upper bound on inference 
quality when applied without knowledge of the true connectivity matrix. We find, 
however, that the optimal bin width is approximately τ, the biophysical time scale 
of single-neuron integration in the generative model network. This is reasonable 
because τ is the time scale over which a neuron integrates its inputs before 
responding with a spike and thus is the relevant window for revealing connectivity 
(Extended Data Fig. 3a). This suggests that, in general, when bin width cannot be 
directly optimized by comparison with the ground truth weight matrix, setting it to 
equal the neural integration time constant is a good choice.

With stronger weights, activity peaks become higher and narrower, resulting 
in a less equal distribution of spikes across bins, so more spikes must be discarded 
(Extended Data Fig. 3c). To implement inverse Ising inference on a total of 108 
spikes, the actual number of spikes collected from the network before binarization 
was greater.

Mean-field Ising models. Mean-field Ising models are a fast way to infer weights 
from binarized spikes, but their simplifying assumptions produce different degrees 
of approximate solutions52. The following are expressions for the weights with 
the naive mean field, which we also call ‘raw correlations’ (C is the spike train 
covariance matrix, and mi is the average state of the ith node):

JNMF
ij ¼ �ðC�1Þij; ð11Þ

the TAP model39:

JTAPij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 8mimjðC�1Þij

q
� 1

4mimj
; ð12Þ

and the SM model40,41:

JSMij ¼ 1
4 ln

½ð1þmiÞð1þmjÞþCij ½ð1�miÞð1�mjÞþCij 
½ð1þmiÞð1�mjÞ�Cij ½ð1�miÞð1þmjÞ�Cij  � ðC�1Þij �

Cij

ð1�m2
i Þð1�m2

j Þ�ðCijÞ2
:

ð13Þ

l1-regularized logistic regression. When performing logistic regression, we first 
mean-subtract all the spike channels. Then, we binarize the spike counts of the 
dependent channel but leave the predictor channels unbinarized. The matrix of 
regression coefficients of each node against all others is taken to be the inferred 
weight matrix. At each weight strength, we find the regularization strength λ 
for the l1-norm of the inferred coefficients, which minimizes the inference error 
(Extended Data Fig. 6). This is not possible without knowledge of the ground truth, 
but we use it to provide an upper bound of performance.

Inference with matched models. To contrast the real-world scenario in which the 
inference model is not exactly matched with the generative model, we consider the 
theoretically idealized case in which they are identical. We use the ring circuit and 
the Ising model for both generation and inference (Ising-on-Ising inference) and 
also the same GLM (GLM-on-GLM inference).

Comparing the Ising-on-Ising inference error curve with the pattern coherence 
curve (the Ising model does not have a notion of time, so diffusivity cannot be 
computed) reveals that optimal inference is now just inside the memory regime 
(Fig. 1). Unlike with mismatched models, and as theoretically expected, there is 
no bias error here; all inference errors are variance errors, which decay with data 
volume as Δ2 ~ 1/D at all weights, as seen in the uniform drop in the log–log 
axes of Fig. 1a, secondary axis (see Extended Data Fig. 5 for power law fits). 
Consequently, the optimal inference point remains stationary with increasing data, 
reflecting an intrinsic critical point of the system.

These findings are qualitatively reproduced with GLM-on-GLM inference 
(see Methods). Like Ising-on-Ising inference, inference error is almost entirely 
due to variance at all weights. Optimal inference is again just inside the  
memory regime at the point of pattern onset, and the point of optimal  
inference remains stationary, because increasing data volume erodes variance 
error everywhere.

Unfortunately, when one is inferring neural connectivity from experimental 
recordings, there will always be a gap between the dynamical system generating 
the data and the inference model: the full biological dynamics that generate the 
observed activity are unknown and far more complex than theoretical models 
describe. Thus, data-immune bias errors become inevitable, at least when recurrent 
interactions are moderate or strong.

Measuring inference error. The true and inferred weights are the elements of W 
and Ŵ

I
. Because the inference model is generally different from the generative 

model, Ŵ
I

 might have some arbitrary overall scale factor with respect to W, which 
we wish to ignore. So the first step is to scale Ŵ

I
 to match the scale of W, which we 

do in the following way.
When W is circulant, as in the ring circuit, each row is a rotation of a single 

weight-shape vector ω. The rows of Ŵ
I

 are then noisy rotations of each other. Let 
ω̂i
I

 represent row i in Ŵ
I

 (re-aligned; that is, appropriately unrotated). Then, the 
average weight-shape estimate ω ¼ 1

N

P
iω̂i

I
. We re-scale Ŵ

I
 to minimize the l1 

deviation between ω and the true shape ω. The averaging and the l1 measure make 
this scaling tolerant to noise.

After Ŵ
I

 has been scaled, the inference error is the l2 distance between the 
vectors of ground truth and inferred weights, expressed as a fraction of the vector 
magnitude of the ground truth weights:

Δ ¼ k W� Ŵ k
k W k : ð14Þ

In the case where the weights are not translation invariant (eg, in the random 
circuits), we resort to the less noise-tolerant choice of scaling the vector of weights 
in Ŵ

I
 to have the least l2 distance from the weights in W. The inference error is then 

the sine of the angle between the ground truth and inferred weight vectors in the 
space of weight parameters.

Variance and bias errors. For circulant W, let us denote the N − 1 elements 
(ignoring the self-coupling term) of the shape vectors ω; ω̂i

I
 by ωα; ω̂α

i
I

. The square 
of the inference error (Equation 14) can thus be expressed as:

Δ2 ¼
P

α;i ω
α � ω̂α

i

� 2

k Wk2
: ð15Þ

This can be rewritten in terms of ωα ¼ 1
N

P
iω̂

α
i

I
, the elements of the average 

estimated weight shape ω:
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Δ2 ¼
P

α;i ωα � ωαð Þ þ ωα � ω̂α
i

�  2

k Wk2
ð16Þ

¼ ðN � 1ÞPα ωα � ωαð Þ2

k Wk2
þ ðN � 1Þ

P
αvari ω̂

α
i

� 

k Wk2
ð17Þ

¼ k W�Wk2

k Wk2
þ k Ŵ�Wk2

k Wk2
 Δ2

b þ Δ2
v : ð18Þ

where vari ω̂α
i

� 
¼ 1

N�1

P
i ω̂

α
i � ωα

� 2
I

 is the variance of the estimates of ωα and 
W
I

 is a circulant matrix consisting of rotations of the mean estimate ω. We call 
Δv ¼ kŴ�Wk

kWk
I

 the variance error, as it is the error due to the variance among the 
different noisy estimates ωi. We call Δb ¼ kW�Wk

kWk
I

 the bias error, as it is the error due 
to deviation of the mean estimate ω from the true weights ω.

Geometrically, Δv and Δb are the lengths, measured in units of ∥W∥, of two 
orthogonal vector steps going from the true to the inferred weights in the space of 
weight parameters. Their orthogonality can be seen through:

ðW�WÞ:ðŴ�WÞ ¼
X

α;i

ðωα � ωαÞðω̂α
i � ωαÞ ð19Þ

¼
X

α

ðωα � ωαÞ
X

i

ðω̂α
i � ωαÞ

" #
¼

X

α

ðωα � ωαÞðN � 1Þðωα � ωαÞ ¼ 0: ð20Þ

Hence, the total inference error is the magnitude of a vector given by the sum 
of the perpendicular vector components of variance and bias.

The relative contribution of bias to the inference error can thus be measured 
by the angle between the vectors associated with the total inference error and the 
variance error, as a fraction of 90°:

θb ¼
tan�1 Δb

Δv

90
: ð21Þ

If the true matrix is non-circulant, these variance and bias errors cannot be 
computed for a single inferred weight matrix. In that case, it is possible to break 
the data into batches, compute separate inferred matrices for each batch and 
then compute the variance errors across batches instead of across rows of a single 
inferred matrix.

Negentropy of inference errors. Once we scale-match Ŵ
I

 with W, the elements 
of W� Ŵ

I
 are the errors in individual inferred weights. Negentropy is a way to 

characterize how much the distribution of these errors differs from Gaussian 
(which would result from purely random errors). If the error distribution has 
variance σ2, and pi denotes the relative frequencies in the distribution histogram 
binned with bin size b, the negentropy is:

log ð2πeσ2Þ þ
X

i

pilog
pi
b
: ð22Þ

This is the difference between the differential entropy of a normal distribution 
with the same variance compared to a continuous version of the discrete entropy of 
the error distribution.

Discriminating circuits using activity data. Constructing the alternative circuit. To 
examine the inherent indistinguishability of models at strong weights, we construct 
an alternative network weight matrix W0

I
 based on the connectivity inferred by 

inverse Ising inference on the original ring model in the strong weight regime. 
We compute a mean weight-shape vector ω from the inferred weight matrix by 
averaging the rows (after appropriately unrotating). Next, we set the positive parts 
of the shape vector to zero (to ensure stability with threshold-linear neurons) and 
re-scale to match the minimum with that of the original, ground truth weight 
matrix. Finally, we create a circulant matrix from this weight shape.

As with the original circuit, firing thresholds Θ for this circuit are tuned at each 
weight strength to set the average network ISI at 16.0 ± 0.1 ms (Extended Data Fig. 
2). We can now generate spike data from this circuit using the original dynamics.

Selecting a well-sampled subspace of neural activity. Even with binary spike data, 
there are 2N possible instantaneous spike words (vector of spike counts at one 
time), or states, of an N-neuron network, prohibitively big for large N ( ≈ 1030 for 
N = 100). The number of states obtained from 6 h of data binned at 10 ms is of the 
order of 106, a miniscule fraction of all states, and statistics to characterize the data 
distribution, such as entropy, will be biased53,54.

To address this problem, we consider, instead, the distribution of binary 
spike words of segments of n adjacent neurons from our ring network (neurons 1 
through n, 2 through n + 1, etc, pooled together). Ideally, n should be as large as 
possible while making sure that the states are well enough sampled to accurately 

estimate the desired statistical measures. This value is dictated by the particular 
statistical measure, as explained in the following sections.

Information theoretic measures of neural activity distribution. Entropy. A 
distribution can be considered well sampled for entropy estimation if the entropies 
computed with increasing fractions of the data converge as we approach the total 
data volume. Our data volumes permitted convergence in the entropy estimates for 
spike words of length up to n = 22 in the ring network (see Extended Data Fig. 10). 
As described in the following sections, we were constrained to smaller n for other 
measures.

Relative entropy. The dissimilarity between the data distributions pW and pW0

I
, 

considering the former as the ‘true’ distribution, is measured by their relative 
entropy (KL divergence):

DKLðpW; pW0 Þ ¼
X

σ 2 suppðpWÞ
pWðσÞlog pWðσÞ

pW0 ðσÞ ð23Þ

where σ runs over the n-neuron spike vectors that constitute the support of pW.

Fisher information. FI can be used to quantify the amount of information 
contained in data about the generative model. It is measured by the sensitivity of 
the data distribution to changes in the model parameters.

It is not feasible to compute the FI about each circuit parameter—that is, 
the N

2

� �
¼ 4; 950

I
 weights in W. Instead, consider a single-parameter family of 

models that passes through the true circuit W and the circuit with non-local, 
correlation-based weights W0

I
:

WðθÞ ¼ ð1� θÞWþ θW0: ð24Þ

with θ ∈ [0, 1]. The FI I(θ = 0) about the true model W = W(θ = 0) can be written 
in terms of the KL divergence between the data distribution pW ( = p0) that it 
produces and the distribution pdθ that a neighboring model W(dθ) produces55:

DKLðp0; pdθÞ 
1
2
dθ2

X

σ2suppðp0Þ
p0ðσÞ

dlog pθðσÞ
dθ


θ¼0

 2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl} Iðθ ¼ 0Þ

; ð25Þ

where σ again constitute n-length binary spike vectors.
We approximate this measure by constructing the circuit Wðθ ¼ 1

3Þ
I

 as a 
neighboring model in the family. At each weight strength, we adjust its firing 
threshold to maintain an average network ISI of 16.0 ± 0.1 ms as before, generate 
spike data, binarize counts and compute the KL divergence with respect to the data 
distribution generated by W. The FI is then approximated by:

I  18DKLðpW; pWðθ¼1
3ÞÞ: ð26Þ

Likelihood ratio of circuit models. The log-likelihood that the observed data 
distribution pW was produced by the circuit W0

I
 is:

log pðW0 jpWÞ ¼
X

σ 2 suppðpWÞ
s pWðσÞlog p0ðσÞ ð27Þ

where s is the total number of samples in pW.
We can collect a second sample ~pW

I
 from the local circuit to account for 

sample-to-sample variability and then calculate the log-likelihood ratio of W 
versus W0

I
, given data generated from W:

log
pðWjpWÞ
pðW0 jpWÞ ¼

X

σ 2 suppðpWÞ
s pWðσÞlog

~pWðσÞ
pW0 ðσÞ ð28Þ

For the relative entropy, FI and likelihood ratio to be defined, the distributions 
must be sampled well enough that each spike state σ that occurs in pW occurs in 
~pW
I

, pW0

I
 and pWðθ¼1

3Þ
I

. With the total volume of spike data that we collected from 
the network, the largest value of n for which this was possible is 10; at this n, the 
number of state samples in the data exceeded the total number of possible states by 
a factor of more than 100.

Inferring a partially observed network. For each of a range of sub-population 
sizes n, we randomly select multiple n-neuron sub-populations from the 
100-neuron ring network. We use the spike data from each such sub-population to 
infer its corresponding n × n connectivity submatrix.

Each n-neuron sub-network covers a fraction n2�n
N2�N
I

 of the full weight matrix 
(ignoring diagonal terms); thus, randomly selecting

snðpÞ ¼ d log ð1� pÞ
log ð1� n2�n

N2�NÞ
e ð29Þ
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sub-networks ensures with probability p that all synapses of the full network have 
been sampled at least once. For each sub-population size n, we collect enough 
samples to have p = 0.99.

For more information on the methods, refer to the Life Sciences Reporting 
Summary associated with this paper.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data and code availability
The data and code that support the findings of this study are available from the 
corresponding author upon reasonable request.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Inference with matched models. a, Using an Ising model for both generation and inference. Top: superposed inferred weights from 
each node to the rest (line marks zero). Bottom: pattern coherence, and inference error with different data volumes, against weight strength. b, Squared 
total, variance and bias errors against data volume at weak and strong weights. c, Using a generalized linear model with an exponential nonlinearity for 
both generation and inference (see Methods). Top: pattern coherence, and inference error with different data volumes, against weight strength. Bottom: 
Superposed inferred weights from each node to the rest.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Tuning firing thresholds of different generative networks to control the average network inter-spike-interval as recurrent weight 
strength is varied. a, Firing thresholds to hold the average ISI of the ring network with local and non-local synapses, and the local ring network with 
rectifying LNP dynamics, at 16.0 ± 0.1 ms, and that of the random, fully-connected, symmetric network at 34.0 ± 0.1 ms. b, Firing rate coefficients α (see 
eq. (7)) to hold the average ISI of the ring network with GLM dynamics (logarithmic link function) at 16.0 ± 0.1 ms. c, Firing thresholds to hold the average 
ISI of the sparse, non-symmetric random network at 16.0 ± 0.1 ms.

Nature Neuroscience | www.nature.com/natureneuroscience

http://www.nature.com/natureneuroscience


Articles NaTUrE NEUroSciEncE

0 0.025
0%

50%

100%

dedracsid
sekips

a

b

recurrent weight strength  r

.rroc
esion

dennib-s
m01

c

r = 0.0025 0.0075 0.0150 0.0250

.rroc
esion

dennibnu

02010
bin size (ms)

0

1

Extended Data Fig. 3 | See next page for caption.

Nature Neuroscience | www.nature.com/natureneuroscience

http://www.nature.com/natureneuroscience


ArticlesNaTUrE NEUroSciEncE

Extended Data Fig. 3 | Binning affects noise correlations and inference. a, Noise correlations between neuron pairs (top: full matrix, bottom: superposed 
rows) for binned vs unbinned spikes from the ring network. The optimal bin-width groups causally related spikes together, and noise correlations at an 
intermediate r then reflect underlying weights. b, Inference error using inverse Ising with MPF on spike data binned at different widths. c, Fraction of spikes 
discarded when binarizing binned spike data for Inverse Ising inference.
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Extended Data Fig. 4 | Distribution of inference errors of individual weights in the ring circuit, at different recurrent weight strengths. a, Histograms 
of the inference errors (relative to the length of the ground-truth weight vector). At weak weights, errors are random and normally distributed. As the 
weight increases, errors first shrink as noise weakens and SNR grows, then they become increasingly non-normal due to bias. b, Negentropy of the error 
distribution (see Methods) against weight strength.
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Extended Data Fig. 5 | Power-law decay of variance error of inferring the ring circuit, with increasing data volume. a, The fitted exponents α of Δ2
v � Dα

I
 

when using a generalized linear model for inference. Error-bands are 95% confidence intervals using 20 data points. The theoretical exponent is -1. b, 
The exponent α of the decay of total inference error Δ2 ~ Dα when using the Ising model for both data generation and inference. Error-bands are 95% 
confidence intervals using 20 data points. Here inference error is almost entirely due to variance, thus decays as the power law.
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Extended Data Fig. 6 | Circuit inference using logistic regression is not improved by l1 regularization. a, Example ring network weight profiles inferred 
using logistic regression with zero, optimal and excessive regularization penalties. When weights are weak, regularization reduces some noise and 
marginally improves inference. At high weights, regularization suppresses both the spurious off-diagonal stripes and the true coupling shape, so is not 
helpful. b, Inference error vs weight strength using logistic regression with and without l1 regularization. c, Optimal l1 penalties (that produce the lowest 
inference errors) at each weight. Regularization improves inference in the strong and weak weight regimes, but barely.
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Extended Data Fig. 8 | Results of inference using a GLM on data generated by a linear-nonlinear-Poisson model with a rectifying linear response (see 
Methods). a, Pattern coherence against weight strength for the generative LNP network. b, Inferred weight matrices (top) and superposition of rows 
(bottom, line marks zero), at several weight strengths. c, Inference error and bias fraction against weight strength. Optimal inference is at the point of 
pattern onset.
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Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | Entropy of spiking activity states of neural circuits. a, Entropy of the distributions of 22-neuron spike sub-states from the true 
local ring circuit W and the non-local circuit W0

I
. b, Entropies of the spike sub-states of the two circuits computed with different data fractions across 

weight strengths. At all weights, the computed entropies converge as the data approaches the total volume. c: Example slice of plot b at the weakest 
weights, where entropy convergence takes the longest.
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