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In complex environments, there are costs to both ignorance and perception.

An organism needs to track fitness-relevant information about its world, but

the more information it tracks, the more resources it must devote to percep-

tion. As a first step towards a general understanding of this trade-off, we use

a tool from information theory, rate–distortion theory, to study large,

unstructured environments with fixed, randomly drawn penalties for stimuli

confusion (‘distortions’). We identify two distinct regimes for organisms in

these environments: a high-fidelity regime where perceptual costs grow

linearly with environmental complexity, and a low-fidelity regime where

perceptual costs are, remarkably, independent of the number of environ-

mental states. This suggests that in environments of rapidly increasing

complexity, well-adapted organisms will find themselves able to make,

just barely, the most subtle distinctions in their environment.
1. Introduction
To survive, organisms must extract useful information from their environment.

This is true over an individual’s lifetime, when neural spikes [1], signalling mol-

ecules [2,3] or epigenetic markers [4] encode transient features, as well as at the

population level and over generational timescales, where the genome can be

understood as hard-wiring facts about the environments under which it

evolved [5]. Processing infrastructure may be built dynamically in response

to environmental complexity [6–9], but organisms cannot track all potentially

useful information because the real world is too complicated and information

bottlenecks within an organism’s sensory system prevent the transmission of

every detail. In the face of such constraints, they can reduce resource demands

by tracking a smaller number of features [10–14].

Researchers have focused on how biological sensory systems might opti-

mize functionality given resource constraints, or, conversely, minimize the

resources required to accomplish a task. In neuroscience, the efficient coding

hypothesis [15] and minimal cortical wiring hypothesis [16] are two well-

known and highly influential examples. Much of this work has focused on

maximizing the ratio of transmitted information (usually, the mutual infor-

mation between stimulus and spike train) to the energy required for such a

code, e.g. [17–24].

Researchers often talk about the creation of more efficient codes that find

clever ways to pass information from sensors to later stages in the brain’s pro-

cessing system by adapting to changes in environmental statistics [25–27] and

selectively encoding meaningful features of the environment [28]. However,

there is much less understanding of what happens when an organism responds

to environmental complexity by discarding information, rather than finding

ways to encode it more efficiently.
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In this paper, we use an information-theoretic tool—

rate–distortion theory—to quantify the trade-off between

acquisition costs and perceptual distortion [29]. Rate–

distortion allows us to talk about the extent to which an

organism can save costs of transmitting a representation of

their environment by selectively discarding information.

When they do such a compression, evolved organisms are

expected to structure their perceptual systems to avoid

dangerous confusions (not mistaking tigers for bushes)

while strategically containing processing costs by allowing

for ambiguity (using a single representation for both tigers

and lions)—a form of lossy compression that avoids transmit-

ting unnecessary and less-useful information. Our use of this

paradigm connects directly to recent experimental work in

the cognitive sciences that uses rate–distortion theory to

study errors made in laboratory perception exercises [30].

Lions and bushes are informal examples from mamma-

lian perception, but similar concerns apply to, for example,

a cellular signalling system which might need to distinguish

temperature signals from signs of low pH, while tolerating

confusion of high temperature with low oxygenation. We

include both low-level percepts and the higher-level concepts

they create and that play a role in decision-making [31–33].

Transmission costs include error-correction and circuit

redundancy necessary in noisy systems [34], as well as costs

associated with more basic trade-offs associated with

volume and energy resources and that appear even when

internal noise is absent [16,35–37].

Our work applies both to the problem of how an organ-

ism gathers information from the environment (the problem

of sensory ecology), and how that information is transferred

within the organism’s cognitive apparatus from one unit to

another (as happens, for example, in communication between

internal encoder and decoder units in what [38] describes as

‘Marr’s motif’ [39]).

In §2, we briefly review rate–distortion theory and how it

provides a model of the trade-offs between perception and

accuracy for biological organisms. In §3, we show that this

general formalism predicts the existence of two distinct

regimes in which an organism can operate. In what we

refer to as the ‘high-fidelity’ regime, where an organism

places a premium on accurate representations, the resources

an organism requires to achieve that accuracy grow in

tandem with environmental complexity, potentially without

bound. This is true even when the organism accepts a certain

level of error. However, if the organism is able to tolerate a

critical level of error in its representations, this picture

changes drastically. In this ‘low-fidelity’ regime, the resources

required to achieve a given perceptual accuracy are fixed even

when the environment grows in complexity. In §4, we discuss

the application of these results to the understanding of

perceptual systems in the wild.
2. Theoretical framework
There are both fitness costs and fitness benefits to accurate

sensory perception ([40] and references therein). It is costly

to set-up the neural architectures that promote increased per-

ceptual ability, for example, and it is also costly to use them.

On the other hand, increased perceptual ability can increase

fitness, by (for example) allowing the organism to avoid

predators, or more efficiently gather scarce resources.
Well-adapted organisms will necessarily balance these

costs and benefits, but it is not obvious how this is to be

quantified. An organism that has more efficient coding mech-

anisms will be able to perceive more information in the

environment than one that does not.

We tackle this problem in a simplified set-up previously

studied in [41]. As in [42], model organisms have (i) an adap-

tive representation system, which we refer to as a ‘sensory

codebook’, and that specifies how an environmental state

affects, probabilistically, the internal state of the organism

and (ii) two constants: a rate, r, at which the perceptual appar-

atus gains information from the environment, and a gain, b,

which quantifies the costs of doing so.

While an organism can save energy and effort by devot-

ing only limited resources to perception, it incurs costs from

doing so. This is quantified using the distortion measure
d(x, ~x), which specifies the cost incurred by an organism

confusing an environmental state x for another state, ~x.

Distortion and rate together dictate an organism’s fitness.

We can think (for example) of the average distortion as corre-

lated with the energy that the organism failed to take from

the environment, while rate correlates with the energy that

the organism expended in making the measurements necess-

ary to make that penalty low. Seen in this way, the organism

has two competing goals, wanting to minimize both the costs

of gathering information (by throwing out some of it), and

the costs of acting on the information that, because it is

incomplete, may occasionally be misleading.

If we consider a sensory apparatus of the brain, and fix a

particular coding system, then rate r serves as a proxy for

neuron number, so that the energy expenditure of this organ-

ism’s brain is b21r, where b21 is the average rate of energy

use for a single neuron [43].

In our simple model here, this enables us to make the

assumption that the total cost to the organism is given by

this critical quantity, D þ b21r, and that the fitness of an

organism, in an evolutionary sense, is a monotonically

decreasing function f of the organism’s total cost. (In general,

our results are robust to the further generalization of the fit-

ness cost to a sum of monotonically increasing functions of

both D and r; for simplicity in this paper, we consider the

linear case.)

At each generation, the organism chooses its rate and gain

prior to any environmental exposure [44]. The environment

size N is chosen separately, and a new distortion measure d
is drawn from an ensemble of N � N matrices with prob-

ability p(d ). We use r(d ) to denote the probability density

function from which entries are drawn at the risk of con-

fusion. An organism with parameters r and b has fitness

f (D þ b21r) in that generation.

So far, we have defined (i) the costs of perception, through

a rate r at which the organism gains information from the

environment, (ii) the costs of acting in the presence of incom-

plete information, specified by the distortion matrix d, and

(iii) a parameter b which specifies the particular way an

organism balances the two costs against each other: an organ-

ism with a larger b finds it easier to process information.

Now, we show how both r and d can be related to a per-

ceptual process. It is simpler to define d first. We say that the

organism’s sensory codebook maps each one of the N
environmental states, x, to one of N sensory percepts. Further

downstream in the organism’s processing of this stimuli, it

must then decode this sensory percept into an estimate of
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the true state of the environment. When the estimated

environmental states are not equivalent to the true input,

the organism incurs an average per-symbol cost that we

assume to be given by (1=n)
PN

i¼1 d(xi, ~xi), where d(x, ~x) is

the distortion measure defined above, n is the number of

observations, and xi the ith observation. We assume that

there is no cost to perfectly representing an environmental

state, d(x, x) ¼ 0, i.e. that the distortion measure is normal.

Over time, the average cost per input symbol tends to an

average distortion D,

D ¼
X
x,~x

pðx,~xÞdðx,~xÞ,

where p(~xjx) describes the probability that an environmental

state x (drawn from the set X ) is represented by the percept

symbol ~x (which, for simplicity, we can also assume to be

also drawn from the set X ).

Having defined d, we then define r as the mutual infor-

mation, I[X; ~X] between the environment and the perceptual

state. Mutual information captures the r of information trans-

mission, by quantifying the drop in uncertainty about the

environment from before the percept arrives to after it has

been received

I[X; ~X] ¼ H[X]�H[X j ~X], ð2:1Þ

where H[X ] is the entropy (uncertainty) of the environment,

and H[X j ~X] is the conditional entropy, given knowledge of

the perceptual state ~x.

When perception is perfect, each x is mapped to a unique

~x and the second term is zero: on receiving the downstream

perceptual data, the organism has zero uncertainty. This

means that the information about the environment has been

completely transmitted to the organism. However, in the

real world, constraints on the rate of information trans-

mission will mean that only some of the information is

passed along, and this means that only an approximate map-

ping is possible. In this case, the information transmitted is

lower than what is in the environment, the second term in

equation (2.1) will be greater than zero, and, as a consequence

the associated codebooks will be noisy. They will occasion-

ally map an environmental state x to the wrong percept (~x0,
say, instead of ~x ), and D will be non-zero.

We have shown how to relate both r and d to the percep-

tual process, via a codebook p. Some codebooks, of course,

are better than others, and rate–distortion focuses on those

codebooks that do best given a particular hard constraint

on D (or, equivalently, a hard constraint on r). The rate–

distortion function R(D) defines an asymptotically achievable

lower bound on the rate required to achieve a given average

level of distortion

R(D) ¼ min
p(~x j x):[d]�D

I[X; ~X]: ð2:2Þ

One can interchangeably speak of the distortion–rate

function, the inverse of the R(D) function

D(R) ¼ min
p(~x j x):I[X; ~X]�R

E[d]: ð2:3Þ

The p(~x j x) which achieve the minima provide a guide as to

the kinds of confusions one would expect to see in optimal

or near-optimal sensory codebooks [45].

There are intuitive reasons that one might see the rate as a

natural resource cost. The most obvious, perhaps, is that, once

one fixes an encoding system, the required number of sensory
relay neurons required is also lower-bounded by the rate–

distortion function. This bound is weakened if the neurons

are not encoding sensory information combinatorially,

as may happen in a compressed-sensing situation further

downstream of the perceptual apparatus [38]. In the extreme

case, where every distinct state is given a separate neuron

then Neff ¼ 2R(D), the (effective) number of states stored

by an organism’s codebook at a single time step, might be

the more relevant processing cost. Increased neuron

number leads to an increase in both preset and operational

costs. In either case, there is evidence that an increase

in neuron number yields a corresponding increase in the

accuracy of the organism’s internal representation of the

environment [44]. Alternatively, the rate of heat dissipation

needed to store and erase sensory information is at least

kBT log (2)I[X; ~X] � kBT log (2)R(D) [46,47], where T is the

ambient temperature and kB is Boltzmann’s constant. This

can be viewed as a (possibly weak) lower bound on the

operational cost of memory.

Rate–distortion theory is a departure from other norma-

tive efforts in that while the mutual information between

stimulus and response quantifies the rate, representational

accuracy is quantified by a distortion measure. Transmission

rate can either be directly connected to energy or material

usage, or understood more generally as a costly thing to

evolve [42]. Conversely, the cost of inaccuracy has been

neglected. In the past, investigators have assumed that

the organism intrinsically cared about information flow

[48–50], perhaps implicitly appealing to its operational

definitions via the rate–distortion theorem [29], and either

showed that empirical codebooks were similar to infor-

mation-theoretic optimal codebooks [48,49] or inferred an

effective distortion measure [30,50].

In some cases [49,51,52], the distortion measure was

chosen to be a predictive informational distortion, in which

sensory percepts are penalized by their inability to predict

future environmental states. Here, we have introduced non-

intrinsic environmental structure via a distortion measure

d(x,~x) that dictates the nature of the representations that the

system uses.

To calculate the rate–distortion function R(D), we find the

codebook pb(~x j x) which minimizes the objective function

Lb ¼ b
X
x,~x

p(x)p(~x j x)d(x, ~x)þ I[X; ~X], ð2:4Þ

by iterating the nonlinear equation

p(~x j x) ¼ p(~x)e�bd(x,~x)

Zb(x)
, ð2:5Þ

where Zb(x) ¼
P

~x p(~x)e�bd(x,~x) as described in [53] for 500

iterations at each b, or 1000 iterations at each b if needed.

Because fitness is convex in the choice of the codebook, find-

ing the optimal point corresponds to an unsupervised

classification of sensory signals based on gradient descent.

It is thus a natural task for an organism’s neural system

[54–57], and also corresponds to the simplest models of

selection in evolutionary time [58]. From this optimal code-

book, we find the corresponding expected distortion Db

and rate Rb as

Rb ¼
P

x,~x pðxÞpð~xjxÞ log pð~x j xÞ
pð~xÞ , ¼ �bDb �

P
x pðxÞ log ZbðxÞ

ð2:6Þ
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and

Db ¼
X
x,~x

p(x)p(~x j x)d(x,~x), ð2:7Þ

respectively. Expected distortion is at most Dmax ¼ limb!0 Db.

By varying b from 0 to 1, we parametrically trace out the

rate–distortion function R(D). In our simulations, we choose

b’s such that the corresponding Db’s evenly tile the interval

between 0 and D1010 � Dmax. Code to perform these calcu-

lations, including the construction of the codebook that

minimizes the Lagrangian in equation (2.4) given a distortion

matrix, is available in [59].

In this article, we assume that the distribution over N
possible inputs p(x) is uniform, so p(x) ¼ 1/N for all x. We

view H[X ] ¼ log N as a proxy for environmental complexity.

In §3, we focus on the case where off-diagonal entries of

d(x, ~x) are drawn independently from some distribution r(d )

with support on [dmin, 1), and set d(x, x) ¼ 0.

Every environment has a ‘minimal confound’, defined as

the minimal distortion that can arise from a miscoding of the

true environmental input; mathematically, it is defined as

dmin :¼ min
x=~x

d(x, ~x): ð2:8Þ

In this paper, we study exponential and lognormal distri-

butions, shifted so that dmin is equal to 0, 1 or 20. These

provide minimal models of unstructured environments

with many degrees of freedom in which some mistakes are

more costly than others. The relationship between an organ-

ism’s toleration of (average) distortion, and the minimal

confound level, will turn out to be the dividing line between

the low- and high-fidelity regimes.

3. Results
Evolutionary processes select organisms for higher fitness;

the fitness of an organism can be thought of as its reproduc-

tive rate relative to average. A higher than average fitness

will, given sufficiently faithful reproduction, translate into

exponential gains for that organism and its descendants.

Rather than considering absolute differences we can then

focus on rank order—what changes cause the fitness to rise

or fall relative to baseline.

Recall that in our simple set-up, an organism’s fitness is

some monotonically decreasing function f of the organism’s

total energetic cost, D(r) þ b21r, which has three parameters:

b is the inverse of the average rate of energy use of a single

neuron, referred to as ‘gain’; r is the organism’s genetically

determined maximal allowable rate; and D(r) is the environ-

ment-dependent distortion–rate function at rate r. Here, we

have assumed that the sensory codebook has minimized

distortion for its given rate, and so set distortion to be the

distortion–rate function evaluated at r.

Even simple organisms, like single-cell bacteria, exist in

environments in which N is very large, e.g. as in [48]. Practi-

cally speaking, then, we are often in the regime in which our

resources are dwarfed by the environmental complexity.

Naively, we might conclude that in this limit, internal rep-

resentations of the environment must be quite inaccurate,

i.e. E[d] must become increasingly large. As it turns out,

this intuition is half-right. Our results suggest that an organ-

ism will only operate and continue to operate at high levels of

perceptual accuracy when its gain b grows in tandem with

environmental complexity.
The minimal confound dmin defines the boundary

between two distinct regimes. In the low-fidelity regime,

when D . dmin, as environmental complexity grows larger

and larger, the resources required to achieve a given distor-

tion D asymptote to a finite constant. In the high-fidelity

regime, when D � dmin, the resources required to achieve

that error rate grow without bound.

These results are quite general, but we will begin with con-

crete examples. We first consider the scenario in which N2 2 N
distortions are drawn randomly from some distribution r(d ).

We consider the scaling of the expected rate–distortion func-

tion over the distribution of random distortion matrices with

the environmental complexity, log N. As argued previously

[41], in the large N limit, the rate–distortion function of any

given environment becomes arbitrarily close to this expecta-

tion value with high probability. This previously described

result is apparent in simulation results in figure 1, but so is

the above-mentioned presence of two regimes: when r(d) is a

mean-shifted exponential, rate R(D) appears to grow with

environmental complexity log N only for distortions D below

the minimal confound dmin ¼ 1.

Simulation results for the mean-shifted exponential and

lognormal distributions r(d ) shown in figures 2 and 3

reveal how quickly rate increases with environmental com-

plexity. In the low-fidelity regime, the rate averaged over

the distortion matrix distribution, E[R(D)], asymptotes to a

finite constant as environmental complexity log N tends to

infinity, as shown in figure 2. In the high-fidelity regime,

rate R(D) scales linearly with environmental complexity log

N, as shown in figure 3. The rate at which expected resources

scales with environmental complexity increases as the desired

distortion D decreases, appearing to slow to 0 as D
approaches dmin.

In the low-fidelity regime, the suggestive results of the

simulations can be confirmed by a simple analytic argument.

For each of the N environmental states, and expected distor-

tion D, there will be, on average, NP(d , D) states that are

allowable ambiguities—i.e. the organism can take as syno-

nyms for that percept. While this is not the most efficient

coding, it provides an upper bound to the optimal rate of

R(D) � log2

1

P(d < D)
: ð3:1Þ

For the exponential, this upper bound means that ambiguities

accumulate sufficiently fast that the organism will need at

most 6.6 bits (for D equal to 1%) or 10 bits (for D equal to

0.1%) even when the set of environmental states becomes

arbitrarily large.

That the bound relies on the conditional distribution func-

tion means that our results are robust to heavy-tailed

distributions. What matters is the existence of harmless syno-

nyms; for the states we end up being forbidden to confuse,

penalties can be arbitrarily large. We can see this in figure 2,

where we consider a lognormal distribution with mean and

variance chosen so that P(d , 0.1%) is identical to the exponen-

tial case. The existence of large penalties in the lognormal case

does not affect the asymptotic behaviour.

These simulation results show not only the validity of the

bound, but that actual behaviour has a rapid asymptote; in

both the exponential and lognormal cases, the scaling of

R(D) is slower than logarithmic in N.

This bound is not tight; as can be seen in figure 2, far

better compressions are possible, and the system asymptotes
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at much lower values. Even so, this bound in equation (3.1)

implies that the limit of the expected rate–distortion

functions in the low-fidelity regime as environmental

complexity increases exists.

More generally, in structured environments, R(D) is

bounded from above so that R(D) � (1=N)
P

x log2 (N=ND(x)),

where ND(x) is the number of synonyms for x with distortion

penalty less than D. As long as ND is asymptotically pro-

portional to N, this upper bound implies asymptotic

insensitivity to the number of states of the environment.

This remarkable result has, at first, a counterintuitive feel.

As environmental richness rises, it seems that the organism

should have to track increasing numbers of states. However,

the compression efficiency depends on the difference between

environmental uncertainty before and after the signal is

received, and these two differences, in the asymptotic limit,

scale identically with N.

The existence of asymptotic bounds on memory can also

be understood by an example from software engineering. As

the web grows in size, a search tool such as Google needs to

track an increasing number of pages (environmental com-

plexity rises). If the growth of the web is uniform, and the

tool is well built, however, the number of keywords a user

needs to put into the search query does not change over

time. For any particular query—‘information theory neuro-

science’, say—the results returned will vary, as more and

more relevant pages are created (ambiguity rises), but the

user will be similarly satisfied with the results (error costs

remain low).1

As we approach dmin, the upper bound given by log2(1/

P(d , D)) becomes increasingly weak, diverging when

D ¼ dmin. As we approach this threshold, we enter the
high-fidelity regime of D < dmin, where organisms attempt

to distinguish difference at a fine-grained level. In this

regime, rate increases without bound as environmental

complexity increases.

The apparent linear scaling of R(D) with log N in the

high-fidelity regime shown in figure 3 is confirmed by

another simple analytic argument. As in the previous case,

we can upper-bound coding costs by construction of a sub-

optimal codebook; we can also lower-bound coding costs

by finding the optimal codebook for a strictly less-stringent

environment. Here, the sub-optimal codebook allocates a

total probability C equally to all off-diagonal elements. The

rate of this codebook is log2 N 2 Hb(C ) 2 C log2(N 2 1),

while its expected distortion is C �d, where

�d :¼
X

x

X
~x=x

d(x,~x)

N(N � 1)
ð3:2Þ

is the mean off-diagonal distortion. This yields an upper

bound on the true rate–distortion function

R(D) � log2 N �D
�d

log2 (N � 1)�Hb
D
�d

� �
: ð3:3Þ

A less-stringent environment is one in which all distortions are

dmin, and as d(x, ~x) � dmin, this environment has strictly lower

resource costs for the same distortion. The rate–distortion

function of this environment was given in [60]

log2 N � D
dmin

log2 (N � 1)�Hb
D

dmin

� �
� R(D): ð3:4Þ

Together, these place upper and lower bounds on the true

rate–distortion function in the high-fidelity regime. In the

large N limit, these bounds simplify to

1� D
dmin

� �
log2 N � R(D) � 1� D

kdl

� �
log2 N, ð3:5Þ
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plus small O(1) corrections. In short, the rate scales as O(logN )

in the high-fidelity regime, D < dmin, as expected.

These scaling results hold even when off-diagonal entries

are partially correlated, as long as correlation scales grow

more slowly than environment size so that ND / N. As a

step towards introducing more structure into these environ-

ments, we consider drawing distortion matrices as follows.

First, an initial N � N distortion matrix is constructed by

drawing d(x, ~x) i.i.d. from a mean-shifted exponential,

rðdÞ ¼ 0 d < 1
e�ðd�1Þ d � 1

�
. Next, each entry d(x, ~x) is replaced

by (d(x, ~x)þ d(x, ~x0))=2, where ~x0 = x is randomly chosen.

This final distortion matrix has pairwise-correlated entries.

Aforementioned scaling results hold, both using the analytic

arguments above and simulation results in figure 4.

Finally, the gain b will at least need to scale as log N in

order to retain D below dmin, as shown in figure 5. A non-

coding codebook will have an expected distortion of roughly

kdl and a rate of 0; a codebook in the high-fidelity regime will

have some expected distortion D < dmin and a rate of Clog2 N
for some constant C bounded by 1�D=dmin � C � 1�D=kdl.
The high-fidelity codebook outperforms the non-coding

codebook when bkdl � bD þ C log2 N or when b � (C/

(kdl 2 D))log2 N.

On evolutionary timescales, we expect metabolic efficiency

to increase. This is seen in the long-term evolution experiments

on Escherichia coli as it adapts to new environments [61,62],

more generally, it is seen in the macroevolutionary record as

the metabolic rate per gram decreases with body size while

(in general) body size tends to increase [63].

In the framework described here, the effect of increasing

metabolic efficiency is to increase b and thereby to allow

the organism to achieve smaller D. When N is large and

rising on timescales faster than those on which evolution

increases b, we expect organisms to stall out at D ¼ dmin.
This is because whenever they go below this error rate,

increases in environmental complexity N erase the gains.

Even when they are poised around dmin, increasing b will

still give an individual an evolutionary advantage; the

effect of a changing environment is to force organisms to

compete on efficiency, rather than richness of internal rep-

resentations. These results imply that when organisms

compete in an environment of rising complexity, we expect

to find their perceptual apparatus poised around D � dmin.

We refer to this as poised perception. Figure 5 shows visually

how this driving force to dmin occurs when b rises more

slowly than log(N ).

It is useful to relate this poised perception result to the

underlying rate–distortion paradigm. Rate–distortion itself

can be understood as saying ‘given a particular error toler-

ance we want to meet, how low can the transmission

rate be’. In that sense, the theory can be understood as

talking about achieving a ‘just adequate’ level of processing

given constraints.

Our finding on poised perception adds a second level of

‘just adequacy’. It says that an organism’s error tolerance
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will be driven, by evolutionary forces, to a point just

adequate for distinguishing minimal confounds. At that

point, the organism then devotes perceptual resources ‘just

adequate’ to achieving that ‘just adequate’ level of error.
4. Discussion
There are costs and benefits to improved sensory perception.

Better tracking of the environment help organisms to acquire

new resources. However, the increases in perceptual accuracy

needed to achieve this tracking usually require increases in

the required size or energy consumption of sensory appar-

atus. Our work here establishes lower bounds on these

trade-offs in terms of the rate–distortion function, which

describe the minimal rate required to achieve a given minimal

level of perceptual inaccuracy.

We argued that these functions showed surprising regu-

larities in large environments, even though the optimal

rate-limited sensory codebooks were highly environment-

dependent. Marzen & DeDeo [41] focused on the insensitiv-

ity of the rate–distortion function to particular choices of

the distortion measure; here, we focus on the scaling of the

rate–distortion function with environmental complexity.

Every ensemble of environments has a ‘minimal con-

found’ dmin, the minimal price that one pays for confusing

one environmental state with another. In a low-fidelity

regime, when an organism’s average distortion is larger

than dmin, increasing environmental complexity does not

increase perceptual load. As the number of environmental

states increases, innocuous synonyms accumulate. They do

so sufficiently fast that an organism can continue to represent

the fitness-relevant features within constant memory.

It is only in a high-fidelity regime, when an organism

attempts to achieve average distortions below dmin, that
perceptual load becomes sensitive to complexity. High-

fidelity representations of the world do not scale, and an

organism that attempts to break this threshold will find

that, when the number of environmental states increases, it

will be driven back to the low-fidelity regime, unless its

perceptual apparatus rapidly increases in size.

Together, these results suggest that well-adapted organ-

isms will evolve to a point of ‘poised perception’, where

they can barely distinguish objects that are maximally similar.

It is worth considering how this analysis generalizes to

the case of a continuum of environmental states. In this

case, we have some (usually continuous function) d(x, ~x). To

see how this alters the analysis, let us take (as a simple

choice) d to be mean squared error, (x� ~x)2. If we assume,

again for specificity, that the signal itself is Gaussian with

variance s2, then an analytic calculation shows that R(D) is

equal to to 1=2 logs2=D when D is less than s2 (and zero

otherwise). In this case, as long as we track some information

about the environment, we are (as expected) never in the

‘low-fidelity’ regime; an increase in environmental complex-

ity (here corresponding to an increase in the range of

values the environment can take on, i.e. an increase in s2)

always leads to an increase in R(D) for fixed D. It is only

upon introducing discrete structure in the distortion matrix

(e.g. the need to determine both stimulus amplitude,

and stimulus type) that the separation between high- and

low-fidelity regimes returns.

We have focused on the effect of increasing perceptual

abilities due to changes in metabolic efficiency over evol-

utionary time. However, it is well-known that individuals

can increase their perceptual abilities through training in

ontogenetic time, as is seen, for example, in video-game

players [64–67]. We expect, therefore, the emergence of

poised perception on much more rapid timescales. Sims

[30] has already demonstrated the utility of rate–distortion

theory for the study of perceptual performance under labora-

tory conditions, and this suggests the possibility of testing the

emergence of this phenomenon under a combination of both

training (to increase b) and stimulus complexity N.

In other words, when we attempt to make distinctions

within a sub-category of increasing size, we will be barely

competent at making the least important distinctions. Infor-

mally, we can just about distinguish our least-important

friends when our circles expand. Such ideas might be tested

in a laboratory-based study that trains subjects on a set

of increasingly difficult distinction tasks with varying

rewards. The results here predict that, as they improve their

decision-making abilities, individuals will develop represen-

tations that are barely able to make distinctions between the

least-important cases. It is also possible to consider the simu-

lation of artificial environments, in an evolutionary robotics

or artificial life paradigm [68], to determine the parameter

ranges (selection pressure, growth rate of complexity) under

which these bounds are achieved.

In many cases, the threats and benefits posed by an

environment have a hierarchical structure: there are many

threats that are roughly equally bad, and there are many

forms of prey, say, that are roughly equally good. Such a hier-

archical structure means that we do not expect organisms to

have a single system for representing their environment. The

results here then apply to sub-domains of the perceptual pro-

blem. In the case of predator–prey, for example, we expect

optimal codebooks will look block-diagonal, with a clear
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predator–prey distinction, and then sub-distinctions for the

two categories (eagle versus leopard; inedible versus edible

plants).

Similar implications apply in the cognitive and social

sciences, where the semantics may play a role in organizing

a perceptual hierarchy. A small number of coarse-grained

distinctions are often found in human social cognition,

where we expect a block-diagonal structure over a small,

fixed number of categories (kin versus non-kin, in-group

versus out-group [69]). Within each of the large distinctions,

our representational systems are then tasked with making

fine-grained distinctions over sets of varying size.

For the large distinction, N is fixed, but environmental

complexity can increase within each category. As new

forms of predators or prey arise, the arguments here suggest

that organisms will be poised at the thresholds within each

subsystem. When, for example, prey may be toxic, predators

will evolve to distinguish toxic from non-toxic prey, but tend

not to distinguish between near-synonyms within either the

toxic or non-toxic categories.

One example of the role played by poised perception in

the wild is the evolution of Batesian mimicry—where a

non-toxic prey species imitates a toxic one—when such mimi-

cry is driven by the perceptual abilities of predators [70].

Our arguments here suggest that predator perception evolves

in such a way that Batesian mimics will have a phenotypic

range similar to that found between two toxic species.

A harmless Batesian mimic can then emerge if it can approxi-

mate, in appearance, a toxic species by roughly the same

amount as that species resembles a second species, also

toxic. This also suggests that a diversity of equally toxic

species will lead to less-accurate mimicry. This is not because

a mimic will attempt to model different species simul-

taneously (the multimodal hypothesis [71]), rather that

predators who attempt to make finer-grained distinctions

within the toxic-species space will find themselves driven

back to dmin when the total number of species increases.

This work is only a first step towards a better understand-

ing of trade-offs between accuracy and perceptual cost in

biological systems. Most notably, by reference to a look-up

table, or codebook, we neglect the costs of processing the

information. The challenges of post-processing, or storing,

the output of a perceptual module may argue for adding

additional constraints to equation (2.4); see, e.g. [72], where

constraints on memory of the input suggest the use of
deterministic codebooks, and the more general discussion

of the varieties of computation costs in [14].
5. Conclusion
In any environment, there will be some levels of perceptual

accuracy that are nearly impossible for any physical being

to achieve. Outside of those effectively forbidden regions,

the required size of the sensory apparatus may well depend

only on very coarse environmental statistics [41]. Well-

adapted organisms are then likely to take advantage of

such regularities, allocating resources to gain the information

they need to survive.

When they do this, they will encounter not only the

constraints expected from the material conditions they experi-

ence in both ontogenetic and evolutionary time, but also

constraints that arise from the fact that they are, in part,

simply information processors in a stochastic but regular

world. Our findings suggest that the challenges of perception

dramatically increase when organisms attempt to enter a

high-fidelity regime. Organisms that are ‘too good’ at per-

ception will find that their abilities rapidly erode when

environmental complexity increases, driving them to transition

point back into a lower-fidelity regime.
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