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Abstract

Internal states such as arousal, attention, and motivation are known to modulate
brain-wide neural activity, but how these processes interact with learning is not well
understood. During learning, the brain must modify the neural activity it produces
to improve behavioral performance. How do internal states affect the evolution of
this learning process? Using a brain-computer interface (BCI) learning paradigm in
non-human primates, we identified large fluctuations in neural population activity in
motor cortex (M1) indicative of arousal-like internal state changes. These fluctuations
drove population activity along dimensions we term neural engagement axes. Neural
engagement increased abruptly at the start of learning, and then gradually retreated.
In a BCI, the causal relationship between neural activity and behavior is known.
This allowed us to understand how these changes impacted behavioral performance
for different task goals. We found that neural engagement interacted with learning,
helping to explain why animals learned some task goals more quickly than others.
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Introduction 1

As we move about the world, we experience fluctuations in internal states such as 2

arousal, motivation, and engagement. These states are governed by the modulation 3

of neural activity throughout the brain (Aston-Jones and Cohen, 2005; McGinley 4

et al., 2015; Allen et al., 2019; Stringer et al., 2019; Steinmetz et al., 2019). The 5

manner in which these modulations relate to the ongoing computations performed 6

by the cerebral cortex is not well understood. In predominantly sensory areas of 7

cortex, changes in an animal’s internal state are known to affect neural response 8

magnitude, signal-to-noise ratio, timing, and variability (Luck et al., 1997; Mitchell 9

et al., 2007; Cohen and Maunsell, 2009; Noudoost et al., 2010; McGinley et al., 2015; 10

Vinck et al., 2015). Depending on how these changes align with respect to neural 11

encoding of stimulus information or downstream readout, changes in an animal’s 12

internal state can impact perceptual processing and decision making (Averbeck et al., 13

2006; Moreno-Bote et al., 2014; Ruff and Cohen, 2019; Cowley et al., 2020). Changes 14

in internal state are also known to impact motor control and behavior, as the speed 15

and latency of both eye movements and arm reaches are known to be modulated by 16

signals such as motivation, intrinsic value, and reward expectation (Sugrue et al., 17

2004; Mazzoni et al., 2007; Xu-Wilson et al., 2009; Leathers and Olson, 2012; Dudman 18

and Krakauer, 2016; Sedaghat-Nejad et al., 2019; Shadmehr et al., 2019). These 19

studies and others illustrate the importance of understanding the influence of internal 20

states on sensory processing and behavior. 21

What has been less well studied is the impact of internal state changes on learning 22

(Figure 1A). When we learn to perform a task, such as shooting a basketball, the 23

firing activity of populations of neurons in the brain (Figure 1A, gray clouds) is 24

modified in a particular manner in order to drive improved behavior (Figure 1A, blue 25

and red clouds) (e.g., Li et al. (2001); Andalman and Fee (2009); Keller and Hahnloser 26

(2009); Ganguly and Carmena (2009); Gu et al. (2011); Koralek et al. (2012); Hwang 27

et al. (2013); Jeanne et al. (2013); Law et al. (2014); Sadtler et al. (2014); Poort 28

et al. (2015); Athalye et al. (2018); Golub et al. (2018); Vyas et al. (2018); Perich 29

et al. (2018); Oby et al. (2019)). We also know that while animals perform a task, 30

neural activity undergoes internal state fluctuations that are not directly related 31

to task performance (Figure 1A, orange arrows) (e.g., Arieli et al. (1996); Cohen 32

and Maunsell (2009); Churchland et al. (2010); Ecker et al. (2014); Schölvinck et al. 33

(2015); Lin et al. (2015); Rabinowitz et al. (2015); Ni et al. (2018); Stringer et al. 34

(2019); Cowley et al. (2020)). Depending on the task goals, changes in internal state 35

have the potential to make some learning-related neural changes easier to achieve 36

(Figure 1A, blue cloud), while other changes may be made more difficult (Figure 1A, 37

red cloud). When changes due to internal state are incongruous with learning, how do 38

neural populations modify their activity to drive improved behavior? One possibility 39

is that the internal state fluctuations that make learning more difficult might be 40

suppressed. Alternatively, the impact of internal state fluctuations on learning may 41

be unavoidable, which may result in some task goals being harder to achieve than 42

others. 43
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Answering this question is challenging because the causal relationship between 44

neural activity and behavior is not known in general. This makes it difficult to 45

understand which changes to neural activity would yield improved performance, as 46

well as how fluctuations in internal state would either interfere or augment that 47

performance. To address this difficulty we can leverage a brain-computer interface 48

(BCI) (Taylor et al., 2002; Carmena et al., 2003; Hochberg et al., 2006; Ganguly and 49

Carmena, 2009; Gilja et al., 2012; Hauschild et al., 2012; Sadtler et al., 2014), where 50

the causal relationship, or ‘mapping,’ between neural activity and behavior is known 51

exactly and determined by the experimenter. 52

We trained three rhesus monkeys to modulate the activity of ∼90 units in primary 53

motor cortex (M1) to move a computer cursor on a screen using a BCI (Sadtler 54

et al., 2014). In previous work, we compared the neural population activity before 55

versus after monkeys learned to use a new BCI mapping (Golub et al., 2018; Hennig 56

et al., 2018). Here we study how neural activity changed throughout learning, and 57

the degree to which these changes were influenced by fluctuations in the monkey’s 58

internal state. 59

We first identified the dimensions of the largest fluctuations in M1 population 60

activity. Surprisingly, abrupt changes in population activity along these dimensions 61

were triggered by changes in various aspects of the task, ranging from brief pauses in 62

the task to perturbations of the BCI mapping. Furthermore, trial-to-trial changes 63

in population activity along these dimensions were correlated with changes in the 64

monkey’s pupil size. These observations suggested that changes in population activity 65

along these dimensions could be related to the monkey’s arousal, engagement with 66

the task, or motivation throughout the experiment. For this reason, we term these 67

dimensions neural engagement axes. 68

To induce learning, we perturbed the mapping between neural activity and cursor 69

movements, requiring monkeys to modify the neural activity they produced in order 70

to restore proficient control of the cursor towards each target. This allowed us to 71

study how changes in activity along neural engagement axes interacted with learning. 72

We found that neural population activity did not take a direct path from the activity 73

produced prior to learning to the activity produced at the end of learning. In 74

particular, neural activity changed abruptly along the neural engagement axes at the 75

start of learning. This change occurred regardless of the relationship between neural 76

engagement axes and cursor movements, which led to an immediate improvement 77

in performance for some targets and impaired performance for others. Following 78

the abrupt change, neural activity retreated along neural engagement axes, which 79

interacted with learning. This led to monkeys learning some targets more quickly 80

than others, in a predictable manner based on how neural engagement interacted 81

with the demands of the learning task. These results indicate that changes in internal 82

states can influence how quickly different task goals are learned. 83
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Results 84

To understand how changes in internal state might interact with learning (Figure 85

1A), we trained three monkeys to perform an eight-target center-out task using a 86

brain-computer interface (BCI) (Figure 1B; see Methods). On each trial, monkeys 87

controlled a computer cursor by modulating neural activity recorded from primary 88

motor cortex (M1). The relationship between the recorded neural activity and cursor 89

velocity was specified by the BCI mapping. In each experimental session, monkeys 90

used two different BCI mappings (Figure 1C). During the first block of trials, monkeys 91

used an ‘intuitive’ BCI mapping, calibrated so as to provide the monkey with proficient 92

control of the cursor. After monkeys performed the task for a few hundred trials 93

using the intuitive mapping, we changed the mapping between neural activity and 94

cursor movement to a new BCI mapping that the monkey had not used before (a 95

‘within-manifold perturbation’; see Sadtler et al. (2014)). 96

Prior to each experiment, we applied factor analysis (FA) to identify the top ten 97

dimensions, or factors, capturing the most covariability of the neural population 98

activity. The BCI mappings presented during each experiment were chosen such that 99

the cursor velocity was determined by only these top ten factors. In order to ensure 100

that our results captured changes in neural activity describing substantial covariance 101

in the population, here we analyze neural activity only in these top ten factors. 102

Neural population activity in primary motor cortex modu- 103

lates with monkeys’ engagement 104

We first show that the neural population activity recorded during these experiments 105

reflected a correlate of the monkey’s internal state. We observed that, while monkeys 106

used the intuitive mapping, the neural activity produced for a given target showed 107

substantial trial-to-trial variability (Figure 2A, gray dots). We found the direction 108

of greatest variance of the neural activity for each target (Figure 2A, orange line). 109

Surprisingly, later in the session when the new BCI mapping was introduced, neural 110

activity on the first trial to a given target showed an abrupt change from the average 111

neural activity during Block 1, with this change occurring almost directly along the 112

axis identified earlier (Figure 2B, compare ‘1st trial of Block 2’ to ‘avg. during Block 113

1’). Interestingly, on subsequent trials, neural activity gradually retreated down this 114

same axis (Figure 2B, grayscale indicates trial index). 115

We next quantified how these trial-to-trial changes in neural activity progressed 116

throughout the experiment (Figure 2C). To do this, we identified the axis of greatest 117

variability during Block 1 for each target separately (e.g., the orange axis in Figure 118

2A-B), and projected the neural activity for each trial along the appropriate target- 119

specific axis. So that we could compare these values across trials to different targets, 120

we z-scored the projected values for each target separately (see Methods). This 121

yielded a trial-by-trial measure we will refer to here as neural engagement, for reasons 122

we discuss below. 123

Neural engagement abruptly increased and gradually decreased following various 124
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Figure 1. Studying how changes in neural activity during learning are impacted by
changes in internal state. A. Here we ask whether changes in internal state impact how neural
population activity is modified during learning. Before learning, neural activity resides in some
region (‘initial activity’) of population activity space, depicted here by the firing rates of three
neurons (n1, n2, n3). During learning, the neural activity needs to migrate to a different region of
population activity space to achieve a particular task goal (‘goal #1 activity’ and ‘goal #2 activity’).
Changes in the animal’s internal state can push the neural activity closer to (top orange arrow)
or further from (bottom orange arrow) the region appropriate for achieving a given task goal. B.
Monkeys performed an eight-target center-out task using a brain-computer interface (BCI). Neural
activity was recorded using a multi-electrode array implanted in M1. Spike counts (u) were taken
in 45 ms bins (green box). The BCI mapping converted the neural activity into a cursor velocity
(v) at each 45 ms time step, updating the position of a visual cursor on a screen. Monkeys were
rewarded for successfully guiding the cursor to hit the visually instructed target. C. Each experiment
consisted of two blocks of trials. In Block 1, a monkey completed 200-400 trials using an intuitive
BCI mapping. In Block 2, the monkey completed 500-900 trials with a new BCI mapping he had
not used before.
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experimental events, beyond just the introduction of the new BCI mapping (Figure 125

2C). For example, neural engagement was initially elevated on the very first trials of 126

the experiment, and then gradually decreased on later trials (Figure 2C, “start of 127

experiment”). Next, near the middle of Block 1, the experimenter would pause the 128

experiment for a few minutes to choose the BCI mapping that would be introduced 129

in the upcoming Block 2. Following these pauses (Figure 2C, “experiment paused”), 130

neural engagement increased, and then gradually subsided. Finally, a few minutes 131

later when the experimenter seamlessly introduced the new BCI mapping (without 132

pausing the experiment), neural engagement again abruptly increased (Figure 2C, 133

“new BCI mapping introduced”) and gradually subsided on subsequent trials. We 134

observed similar neural changes across multiple sessions from all three monkeys 135

(Figure S1), indicating that these changes were not specific to the particular BCI 136

mappings used during a given session. Rather, these changes in neural activity 137

appeared to reflect generalized changes in the monkey’s internal state throughout 138

the experiment, and could reflect changes in arousal (Vinck et al., 2015), engagement 139

with the task (Steinmetz et al., 2019), or motivation (Mazzoni et al., 2007). While 140

the specific source of these changes is as yet unknown (we discuss various possibilities 141

in Discussion), these changes have important consequences for learning. 142

Two additional aspects of neural engagement are consistent with it reflecting 143

variations in the monkey’s internal state. First, when averaged across all sessions, 144

neural engagement showed a consistent time course following each experimental event: 145

an immediate increase on a single trial, followed by gradual decay over subsequent 146

trials (Figure 2D). These changes in neural engagement appeared not only during 147

the period within each trial while the monkey was controlling the cursor (Figure 2D, 148

first three panels), but also during the beginning of each trial before the monkey had 149

seen the visual target (Figure 2D, last panel). Thus, neural engagement remained 150

elevated even when the monkey was not actively performing the task, consistent with 151

this signal reflecting a slowly-varying change in the monkey’s internal state. Second, 152

changes in an organism’s internal state are typically correlated with changes in its 153

pupil size (McGinley et al., 2015). In agreement with this, we found that fluctuations 154

of neural engagement were often strikingly positively correlated with changes in the 155

monkey’s pupil size (Figure 2E). Across sessions, the median Pearson’s correlation 156

between neural engagement and pupil size was ρ = 0.36 (bootstrapped 95% C.I. 157

[0.10, 0.60]) (Figure 2F), similar to levels observed in other work (Cowley et al., 2020). 158

Changes in activity along the neural engagement axes accounted for a substantial 159

amount of the covariance of the population activity. When considering population 160

activity during Block 1 across trials to all eight targets—and thus also including the 161

across-target variance in neural activity due to the monkey aiming towards different 162

targets—changes in neural engagement explained ∼30% of the total trial-to-trial 163

variance of the factor activity (Figure 2G, “Total variance”). Within trials to the 164

same target, changes along the neural engagement axis explained ∼60% of the trial- 165

to-trial variance (Figure 2G, “Variance per target”). These results indicate that the 166

trial-to-trial changes in population activity along the neural engagement axes were 167

substantial. 168
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Figure 2. Neural activity increased along a task engagement axis following 
task onset in both BCI and arm control experiments.
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Figure 2. Neural activity increased abruptly along a neural engagement axis following
experimental events. A. Neural activity in the top three factor dimensions of highest covariance
(z1, z2, z3) for trials to the same target from Block 1 of session J20120528. Each gray point is the
average neural activity during a single trial. Orange axis depicts the direction of maximum variance
of all gray points. The axis was defined in the 10-dimensional factor space, although only the top
three dimensions are depicted here. B. Same as A, but for the first 20 trials to the same target during
Block 2 (color indicates trial index). Orange axis from A shown for reference. Neural engagement
for each trial is the projection of neural activity onto the axis identified during Block 1 for trials
to the same target. C. Neural engagement over time from session J20120528, with annotations
indicating timing of various events controlled by the experimenter. Position along horizontal axis
indicates clock time (see legend), with trial indices marked for reference. Horizontal dashed line at
zero indicates average neural engagement during Block 1 (see Methods). D. First three subpanels:
Neural engagement averaged across sessions from all monkeys during cursor control relative to the
start of the experiment, the longest pause during Block 1, and the start of Block 2. Last subpanel:
Neural engagement during the interval of each trial before the monkey had seen the target (see
Methods), averaged across all three experimental events. Shading indicates mean ± SE across
sessions. E. Neural engagement during Block 2 from example session shown in C, alongside monkey’s
average pupil size during the same trials. F. Pearson’s correlation between neural engagement and
pupil size during Block 2 for all sessions (dots), with session from E indicated in black. White circle
and black lines depict the bootstrapped median and 95% C.I. of the correlations across sessions,
respectively. G. Percentage of shared covariance of neural population activity explained by neural
engagement axes, when including trials to all targets in a session (‘Total variance’), or only trials
to a single target (‘Variance per target’). White circle depicts median; error bar depicts median
± 25th percentile of correlations across sessions. H. In a different set of experiments, a monkey
performed a center-out task by moving its hand to control the cursor’s position (see Methods). I.
Neural engagement averaged across sessions from hand control experiments, both relative to the
beginning of the experiment (left), and relative to the introduction of a visuomotor rotation (right).
Same conventions as D.

To assess whether similar changes in neural engagement were present during arm 170

movements (as opposed to BCI control), we analyzed data from a fourth monkey 171

performing an eight-target center-out task by controlling a computer cursor with his 172

hand (Figure 2H; see Methods). As with the BCI experiments, we identified a set of 173

neural engagement axes in the population activity after applying factor analysis. We 174

found that neural engagement was elevated both at the beginning of each experiment, 175

and following the introduction of a visuomotor rotation (Figure 2I), with a time 176

course that was strikingly similar to that of BCI control (Figure 2D). Taken together, 177

we found that neural population activity in M1 during both BCI control and hand 178

control showed large, trial-to-trial variations with a consistent time course relative to 179

experimental events. In the following, we focus on BCI control, where we know the 180

causal relationship between neural activity and behavior. This enables us to directly 181

assess how changes in neural engagement relate to behavior (i.e., cursor movements). 182

Studying the impact of changes in neural engagement on be- 183

havior using a BCI paradigm 184

Having established the presence of large fluctuations in neural engagement in M1, we 185

next wanted to understand how these fluctuations might impact learning. Specifically, 186
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we sought to understand how the monkey’s ability to learn to move the cursor in a 187

given direction with the new BCI mapping might be impacted by the relationship 188

between the neural engagement axes and the new mapping. 189

First, we explain how a BCI paradigm allows us to quantify the interaction between 190

neural engagement and behavior (i.e., cursor velocities). Consider a schematic of the 191

neural activity produced by the monkey during Block 1 (Figure 3A, left subpanel). For 192

trials to a given target (e.g., the 180◦ target), we can summarize the monkey’s average 193

neural activity as a point in neural space (z, gray sphere), where here we depict 194

the neural activity in the three factor dimensions of highest variance. The average 195

cursor velocity under the intuitive BCI mapping (v, gray circle, top right subpanel) 196

is given by projecting the neural activity onto the intuitive BCI mapping (v = M1z). 197

During Block 1, the monkey’s average cursor velocities were near the target direction 198

(Figure 3A, gray dashed line in top right subpanel), indicating the monkey’s ability 199

to produce cursor movements that moved the cursor towards the target on average. 200

We can also characterize the effect of an increase in neural engagement on cursor 201

velocities by projecting the neural engagement axis (Figure 3A, orange arrow in left 202

subpanel) onto the intuitive BCI mapping (Figure 3A, orange arrow in top right 203

subpanel). In this case, increased neural engagement would result in a faster cursor 204

speed towards the target. 205

Next, consider the first trial of Block 2, when the monkey first encounters the new 206

BCI mapping. If the monkey were to continue to produce the same average neural 207

activity that he did during Block 1 (Figure 3A, left subpanel), this would no longer 208

result in cursor movements straight to the target (Figure 3A, bottom right subpanel). 209

Thus, the monkey must learn how to modify the average neural activity he produces 210

in order to produce faster cursor speeds in the target direction. Importantly, the 211

new BCI mapping also changes the manner in which neural engagement relates to 212

cursor velocity. For this target, increasing neural engagement will move the cursor 213

velocities even further from the target direction (Figure 3A, bottom right subpanel, 214

orange arrow). In this manner, changes in neural engagement will interact with the 215

monkey’s attempts to move the cursor towards the target. 216

We can gain a more holistic picture of the interaction between neural engagement 217

and cursor velocities by visualizing the neural activity produced for all eight targets 218

together (Figure 3B), shown here for an example session. We observed that, when 219

visualized in factor space (Figure 3B, left subpanel), the neural engagement axes 220

identified for different targets often appeared quite similar. In fact, across all targets 221

and sessions, neural engagement axes were almost always consistent with the firing 222

rates of all neural units changing in the same direction (Figure S2). Because of this, 223

along with the manner in which we identified the sign of each neural engagement 224

axis (see Methods), increases in neural engagement corresponded to increased firing 225

rates in nearly all units. However, while the neural engagement axes for different 226

targets were similar in terms of how they related to single unit firing rates, these axes 227

also showed behaviorally relevant differences. For example, under the intuitive BCI 228

mapping, increases in neural engagement sometimes led to faster speeds towards each 229

target (Figure 3B, top right subpanel). A similar feature was also present during 230
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Figure 3. Predicting the impact of neural engagement on behavior during a BCI
learning task. A. Left: Schematic of the average neural activity (z) recorded for trials to the same
target during Block 1, along with the direction in which this activity is expected to move following
an increase in neural engagement (orange arrow). Top right: Using the intuitive BCI mapping
(M1), we can inspect the intuitive cursor velocity (v, gray circle) corresponding to z, as well as
how this velocity will change if neural engagement increases (orange arrow). In this case, increased
neural engagement will result in faster cursor movements towards the target (gray dotted line). Zero
velocity is indicated by the black cross. Bottom right: We can repeat the same procedure using the
new BCI mapping (M2) with the same neural activity z and neural engagement axis. B. For an
example session, the average neural activity (gray circles with colored outlines) and engagement
axes (orange arrows) for all eight targets. Gray lines indicate interpolations between the neural
engagement axes for each target. Dashed colored lines in the two right subpanels indicate the eight
target directions. Extent of box is ± 120 mm/s.
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arm movements: After identifying the linear mapping of neural population activity 231

most predictive of ensuing hand velocities, increases in neural engagement typically 232

predicted faster hand speeds towards each target (Figure S3). These target-specific 233

relationships between neural engagement axes and velocity indicate that changes in 234

neural engagement impacted neural population activity differently depending on the 235

direction in which the monkey was intending to move. 236

We now focus on the velocities under the new BCI mapping, as this indicates the 237

initial cursor velocities the monkey would expect to produce during Block 2, were 238

he to continue producing the same activity he did during Block 1. As discussed 239

above, neural engagement can have different effects on cursor velocities depending 240

on the direction in which the monkey is trying to move the cursor. In particular, 241

increased neural engagement may lead to increased speeds towards some targets (e.g., 242

Figure 3B, purple target in bottom right subpanel) and decreased speeds towards 243

other targets (e.g., Figure 3B, pink target in bottom right subpanel). Additionally, 244

increased neural engagement can affect not just the speed but also the direction of 245

the velocity, leading to either decreased or increased angular error relative to the 246

target direction (e.g., red and yellow targets, respectively). Overall, we observed that 247

the new BCI mappings induced a variety of different relationships between neural 248

engagement and cursor velocity, both across sessions and within targets of the same 249

session (Figure S4). Thus, these experiments provided us with the means to assess 250

how the different relationships between neural engagement and cursor velocity might 251

impact the manner in which these different targets were learned. 252

Neural engagement increased initially regardless of its impact 253

on performance 254

To study the impact of changes in neural engagement on learning, we first characterized 255

the level of neural engagement on the very first trial to each target using the new BCI 256

mapping. As shown earlier, monkeys’ initial reaction to the introduction of the new 257

mapping was, on average, to increase neural activity along the neural engagement 258

axis (Figure 2D, third panel). However, as we have also shown, there are a variety 259

of ways in which the neural engagement axes affected velocities under the second 260

mapping (Figure 3C). This raises the possibility that neural engagement might have 261

increased more for some targets than for others, depending on whether increasing 262

neural engagement was expected to increase (Figure 4A) or decrease (Figure 4B) the 263

speed of the cursor towards the target under the new mapping. 264

We anticipated that neural engagement would increase more for targets where 265

doing so resulted in faster cursor speeds towards the target. To assess whether this 266

was the case, we used the average activity from Block 1 to estimate the average 267

expected velocity under the new mapping (Figure 4A-B, filled circles), as well as 268

the expected impact on that velocity if neural engagement increased (Figure 4A-B, 269

orange axes). We then classified each target as belonging to one of two groups, based 270

on whether an increase in neural engagement was expected to increase (‘T1’, Figure 271

4A) or decrease (‘T2’, Figure 4B) the speed of the cursor towards the target direction. 272
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Figure 4. Neural engagement increased on the first trial of a learning task regardless of
its impact on task performance. A.-B. Schematics depicting how increased neural engagement
can lead to either faster (A) or slower (B) cursor speeds towards the target direction under the new
BCI mapping. Same conventions as bottom right panel of Figure 3A. C. Distribution of the increase
in neural engagement on the first trial to each target during Block 2, as a function of whether
performance under the new mapping was expected to be improved (blue) or impaired (red) by an
increase in neural engagement (as in A-B). Triangles depict the median of each distribution.

We next assessed the levels of neural engagement on the first trial to each target 273

in Block 2. Surprisingly, across targets from all sessions, the distribution of neural 274

engagement on the first trial using the new mapping did not differ as a function of 275

how performance for that target was impacted (Figure 4C) (p = 0.883, two-sample 276

Kolmogorov-Smirnov test). This indicates that initially, neural activity increased 277

along the neural engagement axes even when doing so negatively impacted task 278

performance. As a result, the initial increase in neural engagement made T2 targets 279

more difficult than they would have been otherwise (relative to the average neural 280

activity produced during Block 1), while T1 targets were made easier. 281

Gradual changes in neural engagement led to distinct types 282

of learning 283

We saw that changes in neural engagement on the first trials using the new BCI 284

mapping occurred regardless of the impact on performance. We wondered whether, 285

given repeated practice with the new mapping over subsequent trials, changes in 286

neural engagement might interact with learning-driven changes for each type of target. 287

We visualized how cursor velocities under the second mapping changed throughout 288

learning, as a function of whether the initial increase in neural engagement increased 289

(T1) or decreased (T2) the speed of the cursor towards the target (Figure 5A-B). 290

For both types of targets, neural activity on the first trial jumped out abruptly 291

along the neural engagement axis (Figure 5A-B, white circles have moved along 292

the orange arrows relative to the gray circles). Then, over tens of trials, velocities 293

gradually aligned with the target direction, leading to increased speeds towards 294

the target (Figure 5A-B, projection of the blue and red traces increases along the 295

target direction). Were these behaviorally beneficial changes to velocity driven by 296

target-specific changes in neural engagement? We measured the levels of neural 297
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engagement for each target during Block 2 after accounting for any changes due to 298

learning by neural reassociation (Golub et al., 2018) (see Methods). In agreement with 299

what we observed earlier (Figure 2D, third panel), we found that neural engagement 300

gradually decreased throughout Block 2 (Figure 5C). Importantly, this decrease in 301

neural engagement was likely beneficial to T2 targets, the ones initially impaired 302

by the increase in neural engagement. In fact, neural engagement decreased more 303

for T2 targets (Figure 5C, red trace) than for T1 targets (Figure 5C, blue trace). 304

This suggests that, as learning proceeded, changes along the neural engagement axis 305

were driven by two components, one target-invariant (neural engagement decreased 306

throughout learning for both target types), and one target-specific (neural engagement 307

decreased by different amounts depending on the target type). As we will show next, 308

these differential changes to neural engagement during learning impacted how quickly 309

performance improved for the two types of targets. 310

To quantify the amount of learning for each target, we measured cursor speeds 311

towards the target relative to the speeds monkeys would experience if they continued 312

to use the neural activity they produced prior to the introduction of the new BCI 313

mapping (Figure 5D; see Methods). On the first trial of Block 2, the cursor speed 314

towards the target increased for T1 targets (Figure 5D, blue trace, trial 1), and 315

decreased for T2 targets (Figure 5D, red trace, trial 1). This is in agreement with 316

monkeys immediately increasing neural engagement at the start of Block 2, regardless 317

of its impact on performance (Figure 4C). As Block 2 continued, performance for 318

both target types gradually improved (Figure 5D, blue and red traces, trials 1-75), 319

indicating learning. 320

Interestingly, monkeys attained their best performance levels more quickly for T1 321

targets than for T2 targets (Figure 5E; p < 0.001, two-sided Wilcoxon rank-sum test). 322

This was not due to a difference in learning rate, as the learning rates for the two 323

target types were not statistically different (p = 0.202, two-sided Wilcoxon rank-sum 324

test; see Methods). Additionally, performance levels at the end of Block 2 for the two 325

target types were not statistically different (p = 0.957, two-sided Wilcoxon rank-sum 326

test). These results suggest that, although both types of targets were eventually 327

able to achieve similar levels of performance, the initial increase in activity along the 328

neural engagement axes gave performance for T1 targets a “head start,” allowing 329

monkeys to attain their best performance more quickly for T1 targets than for T2 330

targets. This explanation is at apparent odds with the fact that neural engagement 331

decreased throughout learning for both targets (Figure 5C), which should have led to 332

slower cursor speeds for the T1 targets. In the next section we explore how the initial 333

performance improvements for T1 targets were maintained even as neural engagement 334

decreased throughout learning. 335

Neural engagement changed differently in neural dimensions 336

aligned with the new BCI mapping 337

We have seen how throughout learning, performance for both types of targets gradually 338

improved, regardless of the impact of neural engagement on cursor speeds (Figure 339
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Figure 5. Neural engagement changes occurred alongside task-relevant changes, leading to distinct 
types of learning.
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Figure 5. Neural engagement helped to explain why some targets were learned more
quickly than others. A. Average cursor velocities under the new mapping across trials during
Block 2, for an example target (180◦, J20120528) where an increase in neural engagement initially
improved performance relative to the average activity produced during Block 1 (gray circle). Same
conventions as Figure 4A. The blue line depicts how the average velocity evolved throughout Block
2, starting with the first trial to that target (white circle) and ending with the average during the
last trials (blue circle). Velocities gradually moved towards the target direction, both decreasing
angular error and increasing the speed in the target direction, indicating learning. B. Same as A,
but for a different example target (315◦, J20120601) where an increase in neural engagement was
initially expected to impair performance under the new mapping. C. Changes along the neural
engagement axis during Block 2, averaged across targets (mean ± SE), where targets were split
by whether increased neural engagement was expected to initially improve (‘T1’, blue) or impair
(‘T2’, red) performance under the new mapping. Trial index is relative to the start of Block 2 for
each target. D. Changes in cursor speed towards the target under the new mapping during Block 2,
relative to the expected speed under the new mapping based on the average neural activity produced
during Block 1. Same conventions as C. E. Distribution of the number of trials at which each target
attained its maximum performance (see Methods), for all T1 and T2 targets. Medians of the two
distributions (blue and red triangles) were significantly different (p < 0.001, two-sided Wilcoxon
rank-sum test). 15/41
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5D). This is in apparent contradiction with the fact that neural engagement decreased 340

throughout learning, even for the targets where decreased neural engagement should 341

have resulted in decreased cursor speeds (i.e., compare the blue traces in Figure 5C 342

and Figure 5D). Crucially, our measurement of neural engagement does not account 343

for which changes in neural engagement affect cursor movements, and which changes 344

do not affect cursor movements. We therefore decomposed each neural engagement 345

axis into two components (Figure 6A; see Methods), where the first component was 346

output-null to the new BCI mapping (i.e., changes in this direction would not impact 347

cursor velocities under the new mapping), and the other component was output-potent 348

(Kaufman et al., 2014; Stavisky et al., 2017b; Hennig et al., 2018). This resulted 349

in measures of output-null and output-potent neural engagement, which allowed us 350

to look specifically at whether neural engagement changed differently depending 351

on whether or not it impacted cursor movements. Changes along the output-null 352

component of the neural engagement axis had no impact on cursor velocities (Figure 353

6B), and followed the same pattern as the total neural engagement (Figure 5C). By 354

contrast, changes along the output-potent component of the neural engagement axis 355

moved in the directions necessary to yield performance improvements for each target 356

type (Figure 6C). In particular, neural population activity for T1 targets remained 357

elevated along the output-potent component of the neural engagement axis, where 358

performance was initially improved by the increase in neural engagement (Figure 6C, 359

blue trace). This indicates that the net decrease in total neural engagement throughout 360

learning was not entirely agnostic to task performance, as neural activity remained 361

elevated specifically in the neural dimensions that were relevant to controlling the 362

cursor. 363

Taken together, these results explain how learning proceeded differently depending 364

on the impact of neural engagement on cursor movements (Figure 6D), resulting in 365

monkeys reaching their best performance levels more quickly for some targets than 366

for others. On the first trial of Block 2, neural activity increased along the neural 367

engagement axis, regardless of its impact on performance (Figure 6D, white circle). 368

This led to immediate performance improvements for T1 targets and decrements for 369

T2 targets (Figure 5D, trial 1). As the trials continued, neural activity gradually 370

decreased along the neural engagement axis for both types of targets (Figure 6D, blue 371

and red arrows). For T2 targets, this decrease in neural engagement was beneficial 372

to performance, yielding progressively faster cursor speeds towards the target. For 373

these targets, neural activity decreased similarly along the components of the neural 374

engagement axis that were output-potent and output-null to cursor velocities under 375

the new BCI mapping (Figure 6D, red arrow). By contrast, for T1 targets, neural 376

activity decreased along the output-null components of the neural engagement axis, 377

but maintained the initial increase in the output-potent components (Figure 6D, blue 378

arrow). This allowed the immediate performance improvements from the increase 379

in neural engagement on trial 1 to be maintained, even as total neural engagement 380

decreased. This resulted in monkeys improving their performance more quickly for 381

T1 targets than for T2 targets. 382

These results indicate that during learning, neural population activity did not 383
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Figure 6. Neural engagement changed differently in output-potent versus output-null
dimensions of the new BCI mapping. A. Schematic of decomposing a neural engagement axis
(EA, orange arrow) into output-null and output-potent components. Given the new BCI mapping,
this axis can be decomposed into output-null and output-potent axes, such that only changes in
neural activity along the output-potent axis will affect cursor velocities under the new mapping.
B-C. Changes in neural activity along the output-null (B) and output-potent (C) neural engagement
axes during learning. Changes in output-null neural engagement do not affect cursor movements,
while changes in output-potent neural engagement do. Same conventions as Figure 5C. D. Schematic
summarizing how neural activity changed during learning for both target types. Circles depict
average activity levels before the introduction of the new mapping (gray), on the first trial of Block
2 (white circle), and at the end of learning (red and blue circles) depending on whether neural
engagement was predicted to initially improve (blue) or impair (red) performance under the new
mapping.
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change gradually from the activity observed before learning (Figure 6, ‘avg. in 384

Block 1’) to the activity at the end of learning (Figure 6, ‘end of Block 2’). Rather, 385

neural population activity underwent an abrupt change at the start of learning, 386

improving performance for some targets and impairing performance for others. While 387

the performance levels at the end of learning were similar for both types of targets 388

(Figure 5D), the manner in which neural population activity changed to achieve this 389

performance was quite different (Figure 6D). These findings help to explain why some 390

targets were learned more quickly than others. 391

Discussion 392

We have shown that large, trial-to-trial fluctuations in M1 population activity along 393

neural engagement axes exhibited hallmarks of an arousal- or motivation-like process. 394

While monkeys learned a new BCI mapping, neural activity increased abruptly 395

along neural engagement axes on the first trial of learning, regardless of its effect 396

on behavioral performance. This indicates that changes in neural activity during 397

learning need not be a gradual transition between the activity produced prior to 398

learning and the activity produced at the end of learning. On subsequent trials during 399

learning, neural activity retreated along neural engagement axes, which interacted 400

with learning. This led monkeys to learn some targets more quickly than others, 401

based on how neural engagement axes related to behavior. Thus, changes in internal 402

states can interact with the learning process and influence how quickly different task 403

goals are learned. 404

In this study, we found that trial-to-trial changes in neural engagement were 405

positively correlated with changes in the monkey’s pupil size, a common psychophysical 406

index for an animal’s internal state (Beatty, 1982; McGinley et al., 2015; Joshi et al., 407

2016). The term ‘internal state’ is used broadly, but typically refers to any neural 408

signal that does not directly reflect, but may interact with, sensory encoding or 409

behavior generation (McGinley et al., 2015). This includes internal states related to 410

computation (e.g., internal models (Shadmehr and Holcomb, 1997), reward prediction 411

(Schultz et al., 1997), working memory (Courtney et al., 1997)), but also those 412

reflective of more autonomic processes (e.g., arousal (Vinck et al., 2015), motivation 413

(Mazzoni et al., 2007), task engagement (Steinmetz et al., 2019)). We have termed 414

the internal state identified in the present work ‘neural engagement’ because its 415

stereotyped time course was suggestive of changes in the monkey’s engagement with 416

the task throughout the experiment (e.g., increases in neural engagement following 417

pauses in the experiment and the introduction of a new BCI mapping). This is 418

reminiscent of, but potentially distinct from, the concept of ‘task engagement’ (Otazu 419

et al., 2009; Steinmetz et al., 2019), referring in this case to the difference between 420

an animal actively versus passively experiencing a stimulus. While our current study 421

design does not allow us to identify the exact source of changes in neural engagement, 422

in the following paragraphs we consider multiple possibilities and how they might 423

explain (or fail to explain) the results in the present work. 424
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Is it intended speed? Neural engagement may be related to, but is likely distinct 425

from, the monkey’s intended movement speed. Neurons in M1 have long been known 426

to reflect movement speed (Georgopoulos et al., 1986; Schwartz and Moran, 1999). 427

We observed that during arm movements, increased neural engagement predicted 428

increased hand speed towards the target (Figure S3). This raises the possibility 429

that neural engagement may simply reflect the monkey’s intended movement speed. 430

However, during BCI learning, we observed a gradual decrease in neural engagement 431

during repeated trials to the same target, despite the fact that performance for many 432

targets would have been improved by maintaining this increased neural engagement 433

(Figure 5C). Therefore, if neural engagement simply reflected intended movement 434

speed, it would be necessary to explain why monkeys would intend to move slower 435

when doing so would reduce their reward rate. One possible explanation might be 436

that the monkey’s intended movement speed is modulated by an internal state such 437

as motivation or reward expectation. In fact, studies of “movement vigor,” measured 438

behaviorally as the reaction time and/or peak movement speed during eye or reaching 439

movements (Mazzoni et al., 2007; Xu-Wilson et al., 2009; Dudman and Krakauer, 440

2016; Yttri and Dudman, 2018; Sedaghat-Nejad et al., 2019; Shadmehr et al., 2019), 441

have found that the vigor (or speed) with which we execute a movement is not 442

constant over time, but varies depending on context. Movement vigor is therefore 443

thought to reflect a cost-benefit analysis, such that vigor increases when there is a 444

higher subjective utility (e.g., expected reward) for doing so (Shadmehr et al., 2019). 445

Consistent with this prediction, neural engagement was higher at the start of the 446

experiment, and following pauses in the experiment (Figure 2D); in both cases, the 447

resumption of the experiment indicates to the monkey a higher expectation of reward, 448

because completing trials resulted in a reward. However, we also saw an increase in 449

neural engagement following the introduction of the new BCI mapping, a time when 450

the monkey’s reward expectation should be lower, given that the new BCI mapping 451

will immediately decrease his reward rate. Thus, increases in neural engagement do 452

not always reflect increased reward expectation, suggesting that neural engagement 453

may not simply reflect movement vigor. 454

Is it a feedback response? Previous work has established that M1 population 455

activity reflects sensory feedback following a perturbation, for both mechanical 456

(Pruszynski et al., 2011, 2014; Omrani et al., 2014, 2016) and purely visual (Stavisky 457

et al., 2017b) perturbations. At first glance, these results may appear similar to our 458

observation of an immediate increase in neural engagement following the introduction 459

of a new BCI mapping. However, our results differ in two key ways. First, while we 460

did find a fast increase in neural engagement (within a single trial), neural engagement 461

then decreased gradually over subsequent trials (Figure 2D). It is not known from 462

these previous studies whether the magnitude of the sensory feedback signal should 463

decay over subsequent trials (nor would we expect this to be the case). Second, neural 464

engagement followed a similar time course during the portion of each trial before cursor 465

feedback was available (Figure 2D, last subpanel), indicating that this signal was not 466

directly reflecting visual feedback. Thus, neural engagement does not simply reflect 467

sensory feedback. More recent work has indicated the presence of another fast, within- 468
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trial response to an unexpected mechanical perturbation (Crevecoeur et al., 2019). In 469

this study, humans performed reaches with a manipulandum, where an unexpected 470

force was applied to subjects’ arms on randomly selected trials. The experimenters 471

observed that, after a perturbed trial, reaches on subsequent unperturbed trials 472

showed increased hand speeds towards the target, and co-contraction of the arm 473

muscles, consistent with a theory of robust control (Başar and Bernhard, 2008). While 474

it is possible that such a theory may explain the quick increase in neural engagement 475

following events that were unpredictable to the subject (Figure 2D), this theory also 476

predicts that movement speeds and co-contraction should increase on subsequent 477

trials using the new BCI mapping (if the new mapping is akin to a force perturbation) 478

(Crevecoeur et al., 2019), in contrast to the subsequent decrease in neural engagement 479

that we observed in the present study. 480

Is it arousal? Recent work identified a slowly varying correlate of internal state in 481

the neural population activity of prefrontal cortex and visual area V4 while monkeys 482

performed a perceptual decision-making task (Cowley et al., 2020). The authors 483

present evidence that this “slow drift” in population activity reflected an arousal or 484

impulsivity signal, which biased animals’ decisions. The authors propose that this 485

signal may arise from the release of a neuromodulator such as norepinephrine (NE), 486

distributed by the locus coeruleus (LC) (Aston-Jones and Cohen, 2005; McGinley 487

et al., 2015). We speculate that the neural engagement signal identified in the present 488

work may have a similar origin. This would also be consistent with recent work in 489

rodents reporting brain-wide modulation associated with behavioral variables such as 490

facial expression (Stringer et al., 2019) and licking (Stringer et al., 2019; Allen et al., 491

2019) that can indicate changes in arousal. What might be the role of an arousal 492

signal, if any, in M1? It has been proposed that the LC signals uncertainty in the 493

environment (Yu and Dayan, 2003; Sales et al., 2019), and that the release of NE 494

modulates a trade-off between explorative-exploitative behaviors (Aston-Jones and 495

Cohen, 2005). From this perspective, the increases in neural engagement that we 496

observe following pauses in the experiment and at the start of learning may be due 497

to the phasic release of NE by the LC. If these changes indeed serve a function, such 498

as indicating a change in the environment or driving exploration, our results suggest 499

that this response is relatively coarse or stereotyped across task goals, because the 500

increase in neural engagement persisted even when it caused detriments to behavior. 501

Our results add to a growing list of work finding population-level signatures of 502

internal state fluctuations (Cohen and Maunsell, 2010; Ecker et al., 2014; Rabinowitz 503

et al., 2015; Lin et al., 2015; Williamson et al., 2016; Huang et al., 2019; Stringer 504

et al., 2019; Allen et al., 2019; Cowley et al., 2020). While these changes need not 505

adversely impact stimulus encoding (Averbeck et al., 2006; Moreno-Bote et al., 2014) 506

or downstream readout (Hennig et al., 2018; Perich et al., 2018; Semedo et al., 2019), 507

empirically these changes can be correlated with measurable deficits in behavior (Ruff 508

and Cohen, 2019; Cowley et al., 2020). In our work, knowing the causal relationship 509

between neural population activity and behavior (i.e., via the BCI) allowed us to 510

directly assess how changes in neural activity impacted behavioral performance. 511

We leveraged this knowledge to establish that M1 population activity underwent 512
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large-variance changes during learning even when these changes were detrimental 513

to behavioral performance. Thus, internal state fluctuations can impact not only 514

concurrent behavior, but also future behavior due to their interaction with learning. 515
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Methods 516

Experimental details 517

Experimental methods are described in detail in Sadtler et al. (2014) and Golub et al. 518

(2018). Briefly, we recorded from the proximal arm region of primary motor cortex 519

(M1) in three male rhesus macaques using implanted 96 electrode arrays (Blackrock 520

Microsystems). All animal care and handling procedures conformed to the NIH 521

Guidelines for the Care And Use of Laboratory Animals and were approved by the 522

University of Pittsburgh’s Institutional Animal Care and Use Committee. Data from 523

monkeys J and L were first presented in Sadtler et al. (2014), while data from monkey 524

N were first presented in Golub et al. (2018). We recorded from 85 to 94 neural units 525

in each session. The activity of each neural unit is defined as the number of threshold 526

crossings recorded by an electrode in non-overlapping 45 ms bins. The average firing 527

rate of the neural units across sessions was 46 ± 7, 38 ± 8, and 56 ± 13 spikes/s 528

(mean ± s.d.) for monkeys J, L, and N, respectively. 529

During each experimental session, a monkey performed an eight-target center-out 530

task by modulating his recorded neural activity to control the velocity of a computer 531

cursor on a screen. Each session involved two different BCI mappings. The first 532

‘intuitive’ mapping was chosen to provide the monkey with proficient control of the 533

cursor. The animal used the intuitive mapping for 321 ± 96 trials (mean ± s.d.), 534

after which the mapping was switched abruptly to a second, new BCI mapping that 535

the monkey had never controlled before. This new mapping was chosen so as to be 536

initially difficult for the monkey to use, and the monkey was given 698 ± 227 trials 537

(mean ± s.d.) to learn the new mapping. Both BCI mappings were chosen so that 538

they were controlled exclusively by the neural activity within the monkey’s intrinsic 539

manifold (defined below). 540

At the beginning of each trial, a cursor appeared in the center of the workspace, 541

followed by the appearance of one of eight possible peripheral targets (chosen pseudo- 542

randomly among θ ∈ {0◦, 45◦, 90◦, 135◦, 180◦, 225◦, 270◦, 315◦}). For the first 300 ms 543

of the trial, the velocity of the cursor was fixed at zero. After this, the velocity of the 544

cursor was controlled by the animal through the BCI mapping. If the animal acquired 545

the peripheral target with the cursor within 7.5 s, he received a water reward, and 546

the next trial began 200 ms after target acquisition. Otherwise, the trial ended, and 547

the animal was given a 1.5 s time-out before the start of the next trial. 548

During each experiment we monitored the monkey’s pupil diameter (arbitrary 549

units) using an infrared eye tracking system (EyeLink 1000; SR Research, Ottawa, 550

Ontario). The eye tracker was first turned on while monkeys used the intuitive 551

mapping, but this time varied from session to session. Pupil diameter was always 552

measured while monkeys controlled the new BCI mapping. 553
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Selecting the BCI mappings 554

Each session began with the monkey performing a block of calibration trials, as 555

described in Sadtler et al. (2014). The calibration procedure for monkey J involved 556

either passive observation of cursor movement, or closed-loop BCI cursor control 557

using the previous day’s BCI mapping. For monkeys L and N, we used a closed-loop 558

calibration procedure that gradually stepped from passive observation to closed-loop 559

control. We first z-scored the spike counts recorded during these calibration trials, 560

where z-scoring was performed separately for each neural unit. We then applied factor 561

analysis (FA) to the z-scored spike counts to identify the 10D linear subspace (i.e., 562

the ‘intrinsic manifold’) that captured dominant patterns of co-modulation across 563

neural units (Santhanam et al., 2009; Churchland et al., 2010; Harvey et al., 2012; 564

Williamson et al., 2016; Athalye et al., 2017; Huang et al., 2019). The factor activity, 565

zt ∈ R10×1, was then estimated as the posterior expectation given the z-scored spike 566

counts, ut ∈ Rq×1, where q is the number of neural units: 567

zt = L>(LL> + Ψ)−1(ut − d) (1)

Above, L, Ψ and d are FA parameters estimated using the expectation-maximization 568

algorithm, where L is termed the loading matrix, and Ψ is constrained to be a diagonal 569

matrix. The factor activity, zt, can be interpreted as a weighted combination of the 570

activity of different neural units. We refer to zt as a “population activity pattern.” 571

As discussed above, each experiment consisted of animals using two different BCI 572

mappings. Each BCI mapping translated the resulting moment-by-moment factor 573

activity (zt) into a 2D cursor velocity (vt) using a Kalman filter: 574

vt = Avt−1 +Mzt + c (2)

For the ‘intuitive’ BCI mapping, A ∈ R2×2, M = M1 ∈ R2×10, and c ∈ R2×1
575

were computed from the Kalman filter parameters, estimated using the calibration 576

trials. For the second, ‘new’ BCI mapping, we changed the relationship between 577

population activity and cursor movement by randomly permuting the elements of zt 578

before applying Equation 2. This permutation procedure can be formulated so that 579

Equation 2 still applies to the second BCI mapping, but for a new matrix M2 ∈ R2×10
580

used in place of M1 (Sadtler et al., 2014). 581

We orthonormalized zt so that it had units of spike counts per time bin (Yu 582

et al., 2009). This was done by finding an orthonormal basis for the columns of 583

the matrix L above. We can do this by applying the singular value decomposition, 584

yielding L = USV >, where U ∈ Rq×10 and V ∈ R10×10 have orthonormal columns 585

and S ∈ R10×10 is diagonal. Then, we can write Lzt = U(SV >zt) = U z̃t. Because U 586

has orthonormal columns, z̃t = SV >zt has the same units (spike counts per time bin) 587

as ut. For notational simplicity, we refer to z̃t as zt throughout. 588

Note that the data analyzed in this study were part of a larger study involving 589

learning two different types of BCI mapping changes: within-manifold perturbations 590
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(WMP), described above, and outside-manifold perturbations (OMP) (Sadtler et al., 591

2014). We found that animals learned WMPs better than OMPs, and so we only 592

analyzed WMP sessions in this study. In total, we analyzed data from 46 WMP 593

sessions; this consisted of 25 sessions from monkey J, 10 sessions from monkey L, and 594

11 sessions from monkey N. 595

Hand control experiments 596

Data were collected from a fourth monkey for three sessions. During these experiments, 597

the monkey performed an eight-target center-out task by moving his hand to control 598

a computer cursor. An infrared marker was taped to the back of the monkey’s hand 599

and tracked optically using an Optotrak 3020 system. The marker position was used 600

to update the position of the cursor in real-time on a stereoscopic computer monitor. 601

During these experiments we recorded from the proximal arm region of primary motor 602

cortex (M1) using an implanted 96 electrode array (Blackrock Microsystems). 603

Similar to the BCI control experiments, the targets shown on each trial were chosen 604

pseudo-randomly. At the beginning of each trial, a target (sphere; radius: 6 mm) 605

was presented in the center of the reaching workspace. The animal was trained to 606

move the cursor (sphere; radius: 6 mm) to this start target and hold for 0-100 ms. A 607

peripheral target (sphere; radius: 6 mm) was presented at the end of this hold period. 608

Water reward was delivered if the target was acquired within 1.5 s and the cursor was 609

held on the target for a random hold period drawn uniformly from 150-550 ms. The 610

next trial was initiated 200 ms after the trial ended, regardless of success or failure. 611

The data analyzed includes 160 trials of baseline center-out trials, where the marker 612

position was directly mapped to the cursor position, followed by 320 trials where a 613

visuomotor rotation was applied to all reaches (40◦ CW, 40◦ CCW, and 30◦ CW for 614

the three sessions, respectively). 615

To match the analysis procedure used in the BCI experiments, we took spike counts 616

in non-overlapping 50 ms bins, and z-scored the spike counts using the mean and 617

standard deviation of each neural unit during baseline reaches. We then applied factor 618

analysis to the z-scored spike counts recorded during all baseline reaches to identify a 619

12D linear subspace, where 12 was the number of dimensions that maximized the 620

cross-validated log likelihood. We then orthonormalized the resulting 12D factor 621

activity. All analyses of population activity considered only these top 12 factors. 622

Data analysis 623

Time step selection 624

In the BCI experiments, spike counts were taken in non-overlapping 45 ms bins (‘time 625

steps’), indexed here by j = 1, ..., T , where T is the number of time steps in a given 626

trial, and j = 1 is the time step where the target first appeared. Each trial consisted 627

of three intervals of interest: 1) the pre-target interval (j ≤ 2, or 90 ms), during 628

which the monkey had not yet perceived the target due to sensory processing delays; 629

2) the freeze interval (j ≤ 6), during which the cursor was frozen in place at the 630
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center of the workspace; and 3) the cursor control interval (j ≥ 7), where the cursor 631

velocity was determined by Equation 2. Unless otherwise noted, all analyses used 632

data only during the cursor control interval. 633

We noted that when the cursor was near the target, or at the end of long trials, 634

cursor movements were often idiosyncratic (e.g., reflecting small corrective movements), 635

and so we discarded from our analyses any time steps where the cursor was more than 636

65% of the way to the target, and any time steps j > 20. To report trial-averaged 637

quantities, we wanted to ensure that all neural activity within the same trial came 638

from time steps where the monkey attempted to push the cursor in the same direction. 639

This was especially important given that we compared the time course of neural 640

engagement during learning on a target-by-target basis (see Figure 4, Figure 5, and 641

Figure 6). We therefore analyzed only the time steps where the angle between the 642

cursor and target was within 22.5◦ of the target direction on that trial. Performing 643

our analyses without this exclusion criterion did not change our results. 644

We analyzed both correct and incorrect trials in this study. We reasoned that 645

sufficiently large increases in neural engagement (e.g., on the first trial using the new 646

BCI mapping) may slow down the cursor’s speed to the extent that the monkey is 647

unable to obtain the target. Removing incorrect trials would then bias any analyses 648

that compare levels of neural engagement between targets whose performance was 649

improved versus impaired by neural engagement (see Figure 4, Figure 5, and Figure 650

6). 651

For the hand control experiments, we analyzed data from the 15 time steps of each 652

trial immediately following the appearance of the target (which cued the monkey to 653

begin moving his hand towards the target). 654

Quantifying behavior 655

To relate changes in neural engagement to the monkey’s ability to improve his 656

performance using the new BCI mapping (Figure 5), we assessed both the monkey’s 657

performance and neural engagement on a moment-by-moment basis (i.e., for each 658

time step within a trial). To quantify the monkey’s moment-by-moment behavior, 659

we calculated the speed to the target contributed by a given neural activity pattern 660

under the new BCI mapping (i.e., “cursor progress” defined in Golub et al. (2018)). 661

Specifically, given the neural activity pattern zj produced at a particular time step j, 662

the new BCI mapping parameters M2 and c (see Equation 2), and a unit vector pj 663

pointing from the cursor position at time step j to the target position, we computed 664

the speed to the target, sj (shown in Figure 5D), as: 665

sj = (vsingle−timestepj )>pj (3)

vsingle−timestepj = M2zj + c (4)

where vsingle−timestepj is the velocity contributed by the neural population activity zj 666

recorded at a single time step (Golub et al., 2018) (i.e., ignoring the contribution 667
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from the neural population activity at previous time steps; see Equation 2). Assessing 668

performance in this manner ensures that our measures of neural engagement and 669

performance (as in Figure 5) are both assessed using precisely the same neural activity. 670

Let sθ(t) be the speed to the target under the new BCI mapping for a given target 671

θ, on trial t ∈ {1, . . . , Tθ} during Block 2 (i.e., sθ(t) is the average of sj for all time 672

steps j from trial t). To report average performance changes during Block 2 (Figure 673

5D), we averaged sθ(t) for each t across all T1 targets and T2 targets separately. To 674

find the trial at which performance for each target θ was maximized (Figure 5E), we 675

first found the running mean of sθ(t) in a sliding eight trial window. Let s̃θ(t) be the 676

resulting running mean (defined for t ∈ {1, . . . , T̃θ}, where T̃θ = Tθ − 7 due to the 677

smoothing). The trial at which performance for each target θ was maximized was 678

then arg maxt s̃θ(t). To test whether performance levels at the end of Block 2 differed 679

between T1 and T2 targets, we used s̃θ(T̃θ) as the performance level of target θ at the 680

end of Block 2. Finally, to assess whether learning rates differed between T1 and T2 681

targets, for each θ we fit a saturating exponential to sθ(t) with free parameter τ > 0: 682

ŝθ(t) = sθ(1) + (s̃θ(T̃θ)− sθ(1))(1− exp(−(t− 1)/τ)) (5)

where τ is the learning rate, governing how quickly sθ(t) transitions from initial 683

performance, sθ(1) (unsmoothed because s changed more quickly early in learning), 684

to performance at the end of Block 2, s̃θ(T̃θ). For each target, τ was chosen so as to 685

minimize the mean squared error between ŝθ(t) and sθ(t) for all t. 686

Identifying neural engagement axes 687

For each experimental session (for either BCI or hand control), we sought to identify 688

a set of neural engagement axes, one per target direction, capturing the dimensions 689

along which neural activity varied in the absence of learning pressure (i.e., while 690

monkeys used the intuitive BCI mapping, or during baseline reaches, respectively). 691

For each target θ, we defined the neural engagement axis, aθ ∈ R10, with ‖aθ‖ = 1, 692

as the direction of greatest variance in the factor activity recorded during all trials to 693

that target. Identifying this direction in the factor activity rather than in the spiking 694

activity ensures that we focus on the shared covariance among neural units rather 695

than variance that is independent to each unit. 696

The neural engagement axes are sign-invariant, which would ordinarily prevent us 697

from identifying ‘positive’ versus ‘negative’ changes along these vectors. This would 698

make averaging values of neural engagement across sessions and targets meaningless, 699

because ‘positive’ values of neural engagement for one session or target might not 700

correspond to ‘positive’ values of neural engagement on a different session or target. 701

However, we observed that the neural engagement axes involved the activity of nearly 702

all neural units changing in the same direction (Figure S2). This allowed us to choose 703

the sign of aθ in a consistent manner, by ensuring that positive values of neural 704

engagement corresponded to increases in the firing rate for the majority of units. 705
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This allowed us to average across values of neural engagement across targets and 706

sessions, as presented in the main text. 707

Quantifying neural engagement 708

As described above, we identified the neural engagement axes, aθ, for each target 709

θ ∈ {0◦, 45◦, 90◦, 135◦, 180◦, 225◦, 270◦, 315◦} during Block 1, while monkeys controlled 710

the intuitive BCI mapping. We also identified the mean neural activity, z̄θ, produced 711

for each target. We noted that, although monkeys showed proficient control of 712

the intuitive BCI mapping, there were still substantial fluctuations around z̄θ. We 713

estimated these fluctuations along aθ, which we term neural engagement. For the 714

neural activity, zj, observed at a given time step j for target θ, we estimated neural 715

engagement, or ej, as follows: 716

ej = (zj − z̄θ)
>aθ (6)

We estimated neural engagement for each time step of the experiment, and then 717

averaged the values across all time steps within a given trial (as shown in Figure 2, 718

Figure 4, and Figure S1). To combine these values across trials to different targets (as 719

plotted in Figure 2 and Figure S1), we then z-scored the neural engagement for each 720

target separately, using the mean and standard deviation of the neural engagement 721

measured during the last 10 trials to each target during Block 1. 722

Inferring changes in neural engagement during learning. 723

To estimate neural engagement during Block 2, we cannot simply use Equation 6, 724

because some of the changes in neural activity across trials will also be due to learning 725

(e.g., by neural reassociation (Golub et al., 2018)). According to neural reassociation 726

(Golub et al., 2018), to move the cursor in a particular direction θ ∈ [0, 2π) during 727

Block 2, the monkey samples the neural population activity he used for movements 728

in a potentially different direction θ′ ∈ [0, 2π) during Block 1. Thus, to estimate 729

neural engagement during Block 2 (as shown in Figure 5 and Figure 6), we used the 730

following: 731

ej = (zj − z̄θ′j)
>aθ′j (7)

where θ′j is no longer necessarily equal to the target direction, θ. We estimated θ′j from 732

the neural activity, zj, which is reasonable provided that changes in neural activity 733

due to θj and ej are not entirely overlapping. We therefore estimated θ′j by finding the 734

direction that the cursor would have moved if zj were produced under the intuitive 735

mapping, as changes in neural engagement tended to have less effect on the cursor’s 736

movement direction using the intuitive mapping. This procedure allowed our estimate 737

of θ′ to vary as the monkey learned to control the new BCI mapping, thus factoring 738

out any changes in neural activity due to neural reassociation. To compute z̄θ′j and 739

aθ′j for any continuous value of θ′t ∈ [0, 2π), we used a cubic spline to interpolate 740

between the values measured for each θ ∈ {0◦, 45◦, 90◦, 135◦, 180◦, 225◦, 270◦, 315◦}. 741
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For this procedure we again estimated neural engagement at each time step, and 742

then averaged the values across all time steps within a given trial. As described 743

above, we z-scored the neural engagement for each target separately. The z-scoring 744

again used the mean and standard deviation of the neural engagement measured 745

during the last 10 trials to each target during Block 1, ensuring that values of neural 746

engagement could be compared across different blocks of the experiment. 747

In the above procedure, the neural engagement axes corresponding to a given θ 748

are assumed to be the same during both Block 1 and Block 2. We confirmed that 749

the neural engagement axes estimated before learning (during Block 1) and after 750

learning (at the end of Block 2) were similar (Figure S5), indicating that the largest 751

fluctuations in neural activity occurred along similar dimensions throughout the 752

experiment. 753

Comparing neural engagement to pupil size. For each session, we estimated 754

the correlation between the estimated neural engagement with the monkey’s pupil 755

size (Figure 2E-F). Pupil sizes were measured consistently only during Block 2 (see 756

Experimental details above), and so this analysis used trials only from Block 2, for 757

all sessions where Block 2 consisted of at least 200 trials (45 of 46 sessions). To 758

compare slow timescale fluctuations between neural engagement and pupil size during 759

Block 2, we first applied boxcar smoothing to the trial-averaged measurements of 760

each quantity with a sliding window of 30 trials. We then computed the Pearson’s 761

correlation between the two time series. 762

Variance explained by changes in neural engagement. We sought to 763

estimate the amount of variance in the neural population activity due to changes 764

in neural engagement (Figure 2G). To estimate the variance for trials to a given 765

target, we first found the neural activity zt for each trial to that target, along with 766

the corresponding neural engagement, et. The measure of the variance explained by 767

changes in engagement for that target was then Vart(et)

Tr Covt(zt)
. To compute the total 768

amount of variance explained by changes in engagement, we computed the same 769

metric above, but used the activity from all trials combined rather than just the trials 770

to a particular target. 771

Predicting the impact of neural engagement on performance under 772

the new mapping. We estimated the impact of increased neural engagement on 773

cursor movements under the new mapping for each target. To do this, we quantified 774

the predicted change in the cursor speed to the target given an increase in neural 775

activity along the positive direction of the neural engagement axis. Specifically, let 776

z̄θ be the average neural activity recorded during Block 1 for target θ, and let aθ be 777

the corresponding neural engagement axis. Then we labeled that target as improved 778

by an increase in neural engagement if we expected the speed to target to increase 779

(see Equation 3): 780

(M2(z̄θ + εaθ) + c)>p > (M2z̄θ + c)>p (8)

where M2 and c are the parameters of the new BCI mapping, and ε > 0. This 781

procedure was used to identify the targets for which performance would initially be 782
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improved versus impaired by an increase in neural engagement, as introduced in 783

Figure 4. 784

Identifying output-potent and output-null engagement axes. Given a 785

neural engagement axis, a ∈ R10, not all changes in neural activity along this axis 786

will lead to changes in cursor velocity through the new BCI mapping, M2. This is 787

because the mapping between neural activity and cursor velocity, given by Equation 788

2, is a linear mapping from 10D to 2D, implying that M2 has a non-trivial null 789

space, Nul(M2). To identify which components of a will result in changes in cursor 790

velocity, we can find bases for the null space, Nul(M2), and the row (or potent) space, 791

Row(M2) (Hennig et al., 2018). To do so, we took a singular value decomposition of 792

M2 = USV T , with U ∈ R2×2, S ∈ R2×10, and V ∈ R10×10, where the columns of S 793

were ordered so that only the first two columns had non-zero elements. Then, we 794

let R ∈ R10×2 be the first two columns of V , and N ∈ R10×8 be the remaining eight 795

columns. The columns of N and R are mutually orthonormal and together form an 796

orthonormal basis for the 10-dimensional space of factor activity. This allows us to 797

rewrite the neural engagement axis for each target θ as the sum of a null-engagement 798

axis, anullθ , and a potent-engagement axis, apotentθ : 799

aθ = anullθ + apotentθ (9)

anullθ = aθNN
> (10)

apotentθ = aθRR
> (11)

We then normalized anullθ and apotentθ to be unit vectors. The resulting axes were used 800

to compute values of null and potent engagement, as shown in Figure 6, by using 801

these axes in Equation 7. 802
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Figure S1. Neural engagement showed stereotyped changes relative to experimental
events in multiple example sessions from three monkeys. Same conventions as Figure 2C.
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Figure S2. Changes in neural engagement corresponded to nearly all neural units
increasing or decreasing their activity together. We wanted to understand how changes in
neural engagement were represented by the activity of individual units. For each target, a neural
engagement axis was defined in 10-dimensional factor space. We used the q× 10 loading matrix from
factor analysis (see Methods) to define the neural engagement axis in the q-dimensional population
activity space of the q recorded units. For example, if there were 90 units, the neural engagement
axis would have 90 coefficients, describing how changes in neural engagement for a given target
would be represented by the activity of each of the 90 units. For each target, we computed the
percentage of units whose coefficients had the same sign (for whichever sign was in the majority, so
that percentages could never be below 50%). Shown in black is the distribution of these percentages
across the neural engagement axes for all targets across all sessions (bootstrapped 95% C.I. [97.6%,
97.7%]). For reference, in gray, is the distribution after sampling random dimensions in factor
space, and computing the corresponding effects on individual neural units (bootstrapped 95% C.I.
[59.7%, 62.5%]). Triangles depict the medians of the ‘data’ and ‘chance’ distributions, which were
significantly different (p < 0.001, two-sided Wilcoxon rank-sum test).
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Figure S3. Increased neural engagement during arm movements predicted faster hand
speeds towards most targets. A. For the experiments involving arm movements (see Methods),
we visualized the average neural population activity (circles, left subpanel) and neural engagement
axes (orange arrows, left subpanel) during baseline reaches to each of eight targets. Same conventions
as Figure 3B. We also visualized the monkey’s average hand velocity during reaches to each target
(circles, right subpanel). Unlike during BCI control, we do not know the causal relationship between
neural population activity and hand velocity. To understand how changes in neural engagement
related to hand velocity, we used linear regression to predict the monkey’s hand velocity during
baseline reaches at each 50 ms time step during the movement epoch of every trial, using the neural
population activity recorded 100 ms prior. Cross-validated r2 for the x- and y- components of hand
velocity were 67% and 77%, respectively. The linear regression model (M̂) allowed us to estimate
how increases in the neural engagement related to the monkey’s average hand velocity towards
each target (orange dashed arrows), and to intermediate target directions (gray dashed arrows). In
this session, an increase in neural engagement predicted an increase in the monkey’s hand speed
towards all but the 135◦ target. This suggests that differences in the neural engagement axes across
targets may have behavioral relevance. ‘Target directions’ panel is a legend depicting the color
corresponding to each target direction. B. We repeated the above procedure during the other two
arm movement sessions. Across sessions, increases in neural engagement predicted faster hand
speeds towards all but the 135◦ target.
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Figure S4. New BCI mappings induced a variety of relationships between neural
engagement and cursor velocity, across targets and sessions. Same conventions as the
bottom right panel of Figure 3B, for multiple example sessions (all with the same scale). ‘Target
directions’ panel is a legend depicting the color corresponding to each target direction.
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Figure S5. Neural engagement axes were largely unchanged after learning. Distribution
of the angle (‘data’, in black) between the neural engagement axis identified for each target during
Block 1 (‘before learning’) vs. during the last 50 trials of Block 2 (‘after learning’). To identify neural
engagement axes during the last 50 trials of Block 2, we used the same procedure as used during
Block 1 (i.e., the procedure used in the main text; see Methods), but applied to the last 50 trials of
Block 2. ‘Chance’ (in gray) indicates the distribution of the angle between random directions in
ten-dimensional space. Triangles depict the medians of the ‘data’ and ‘chance’ distributions, which
were significantly different (p < 0.001, two-sided Wilcoxon rank-sum test).
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