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Cortical neurons are characterized by irregular firing and a broad distribution of rates. The bal-
anced state model explains these observations with a cancellation of mean excitatory and inhibitory
currents, which makes fluctuations drive firing. In networks of neurons with current-based synapses,
the balanced state emerges dynamically if coupling is strong, i.e. if the mean number of synapses
per neuron K is large and synaptic efficacy is of order 1/

√
K. When synapses are conductance-

based, current fluctuations are suppressed when coupling is strong, questioning the applicability
of the balanced state idea to biological neural networks. We analyze networks of strongly coupled
conductance-based neurons and show that asynchronous irregular activity and broad distributions
of rates emerge if synaptic efficacy is of order 1/ log(K). In such networks, unlike in the standard
balanced state model, current fluctuations are small and firing is maintained by a drift-diffusion
balance. This balance emerges dynamically, without fine tuning, if inputs are smaller than a critical
value, which depends on synaptic time constants and coupling strength, and is significantly more
robust to connection heterogeneities than the classical balanced state model. Our analysis makes
experimentally testable predictions of how the network response properties should evolve as input
increases.

I. INTRODUCTION1

Each neuron in cortex receives inputs from hundreds2

to thousands of pre-synaptic neurons. If these inputs3

were to sum to produce a large net current, the central4

limit theorem argues that fluctuations should be small5

compared to the mean, leading to regular firing, as ob-6

served during in vitro experiments under constant cur-7

rent injection [1, 2]. Cortical activity, however, is highly8

irregular, with a coefficient of variation of interspike in-9

tervals (CV of ISI) close to one [3, 4]. To explain the10

observed irregularity, it has been proposed that neural11

networks operate in a balanced state, where strong feed-12

forward and recurrent excitatory inputs are canceled by13

recurrent inhibition and firing is driven by fluctuations14

[5, 6]. At the single neuron level, in order for this state15

to emerge, input currents must satisfy two constraints.16

First, excitatory and inhibitory currents must be fine17

tuned so to produce an average input below threshold.18

Specifically, if K and J represent the average number19

of input connections per neuron and synaptic efficacy,20

respectively, the difference between excitatory and in-21

hibitory presynaptic inputs must be of order 1/KJ . Sec-22

ond, input fluctuations should be large enough to drive23

firing.24

It has been shown that the balanced state emerges dy-25

namically (without fine tuning) in randomly connected26

networks of binary units [7, 8] and networks of current-27

based spiking neurons [9, 10], provided that coupling is28

strong, and recurrent inhibition is powerful enough to29

counterbalance instabilities due to recurrent excitation.30

However, these results have all been derived assuming31

that the firing of a presynaptic neuron produces a fixed32

amount of synaptic current, hence neglecting the depen-33

dence of synaptic current on the membrane potential,34

a key aspect of neuronal biophysics. In real synapses,35

synaptic inputs are mediated by changes in conduc-36

tance, due to opening of synaptic receptor-channels on37

the membrane, and synaptic currents are proportional38

to the product of synaptic conductance and a driving39

force which depends on the membrane potential. Mod-40

els that incorporate this description are referred to as41

‘conductance-based synapses’.42

Large synaptic conductances has been shown to have43

major effects on the stationary [11] and dynamical [12]44

response of single cells, and form the basis of the ‘high-45

conductance state’ [13–19] that has been argued to de-46

scribe well in vivo data [20–22] (but see [23] and Dis-47

cussion). At the network level, conductance modulation48

plays a role in controlling signal propagation [24], input49

summation [25], and firing statistics [26]. However, most50

of the previously mentioned studies rely exclusively on51

numerical simulations, and in spite of a few attempts at52

analytical descriptions of networks of conductance-based53

neurons [17, 27–31], an understanding of the behavior of54

such networks when coupling is strong is still lacking.55

Here, we investigate networks of strongly coupled56

conductance-based neurons. We find that, for synapses57

of order 1/
√
K, fluctuations are too weak to sustain fir-58

ing, questioning the relevance of the balanced state idea59

to cortical dynamics. Our analysis, on the other hand,60

shows that stronger synapses (of order 1/ log(K)) gen-61

erate irregular firing when coupling is strong. We char-62

acterize the properties of networks with such a scaling,63

showing that they match properties observed in cortex,64

and discuss constraints induced by synaptic time con-65

stant. The model generates qualitatively different pre-66

dictions compared to the current-based model, which67

could be tested experimentally.68
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II. MODELS OF SINGLE NEURON AND69

NETWORK DYNAMICS70

Membrane potential dynamics. We study the71

dynamics of networks of leaky integrate-and-fire (LIF)72

neurons with conductance-based synaptic inputs. The73

membrane potential Vj of the j-th neuron in the net-74

work follows the equation75

Cj
dVj
dt

= −
∑

A=L,E,I

gjA (Vj − EA) , (1)

where Cj is the neuronal capacitance; EL, EE and EI76

are the reversal potentials of the leak, excitatory and77

inhibitory currents; while gjL, gjE and gjI are the leak,78

excitatory and inhibitory conductances. Assuming in-79

stantaneous synapses (the case of finite synaptic time80

constants is discussed at the end of the results section),81

excitatory and inhibitory conductances are given by82

gjE,I

gjL
= τj

∑
m

ajm
∑
n

δ(t− tnm) . (2)

In Eq. (2), τj = Cj/g
j
L is the single neuron mem-83

brane time constant, ajm are dimensionless measures84

of synaptic strength between neuron j and neuron m,85 ∑
n δ(t − tnm) represents the sum of all the spikes gen-86

erated at times tnm by neuron m. Every time the mem-87

brane potential Vj reaches the firing threshold θ, the jth88

neuron emits a spike, its membrane potential is set to89

a reset Vr, and stays at that value for a refractory pe-90

riod τrp; after this time the dynamics resumes, following91

Eq. (1).92

We use ajm = a (a g) for all excitatory (inhibitory)93

synapses. In the homogeneous case, each neuron re-94

ceives synaptic inputs from KE = K (KI = γK) ex-95

citatory (inhibitory) cells. In the network case, each96

neuron receives additional KX = K excitatory inputs97

from an external population firing with Poisson statis-98

tics with rate νX . We use excitatory and inhibitory99

neurons with the same biophysical properties, hence the100

above assumptions imply that the firing rates of excita-101

tory and inhibitory neurons are equal, ν = νE = νI .102

Models taking into account the biophysical diversity103

between the excitatory and inhibitory populations are104

discussed in Appendix D. When heterogeneity is taken105

into account, the above defined values of KE,I,X rep-106

resent the means of Gaussian distributions. We use107

the following single neuron parameters: τrp = 2ms,108

θ = −55mV, Vr = −65mV, EE = 0mV, EI = −75mV,109

EL = −80mV, τj = τL = 20ms. We explore various110

scalings of a with K and, in all cases, we assume that111

a � 1. When a � 1, an incoming spike produced by112

an excitatory presynaptic neuron produces a jump in113

the membrane potential of amplitude a(EE −V ), where114

V is the voltage just before spike arrival. In cortex,115

V ∼ −60mV and average amplitudes of post-synaptic116

potentials are in the order 0.5 − 1.0mV [32–38]. Thus,117

we expect realistic values of a to be in the order of 0.01.118

Diffusion and effective time constant approx-119

imations. We assume that each cell receives projec-120

tions from a large number of cells (K � 1), neurons121

are sparsely connected and fire approximately as Poisson122

processes, each incoming spike provides a small change123

in conductance (a� 1), and that temporal correlations124

in synaptic inputs can be neglected. Under these as-125

sumptions, we can use the diffusion approximation, and126

approximate the conductances as127

gE
gL

= aτL

[
KrE +

√
KrEζE

]
,

gI
gL

= agτL

[
γKrI +

√
γKrIζI

]
.

(3)

where rE and rI are the firing rates of pre-synaptic E128

and I neurons, respectively, and ζE and ζI are indepen-129

dent Gaussian white noise terms with zero mean and130

unit variance density. In the single neuron case, we take131

rE = νX , rI = ηνX where η represents the ratio of I/E132

input rate. In the network case, rE = νX + ν, rI = ν133

where νX is the external rate, while ν is the firing rate of134

excitatory and inhibitory neurons in the network, deter-135

mined self-consistently (see below). We point out that,136

for some activity levels, the assumption of Poisson pre-137

synaptic firing made in the derivation of Eq. (3) breaks138

down, as neurons in the network show interspike inter-139

vals with CV significantly different from one (e.g. see140

Fig. 3C). However, comparisons between mean field re-141

sults and numerical simulations (see Appendix E) show142

that neglecting non-Poissonianity (as well as other con-143

tributions discussed above Eq. (3)) generates quantita-144

tive but not qualitative discrepancies, with magnitude145

that decreases with coupling strength. Moreover, in Ap-146

pendix B, we show that if a� 1 the firing of neurons in147

the network matches that of a Poisson process with re-148

fractory period and hence, when ν � 1/τrp, deviations149

from Poissonianity become negligible.150

Using the diffusion approximation, Eq. (1) reduces to151

152

τ
dV

dt
= −V + µ+ σ(V )

√
τζ, (4)

where ζ is a white noise term, with zero mean and unit153

variance density, while154

τ−1 = τL
−1 + aK (rE + rIgγ) ,

µ = τ{EL/τL + aK[rEEE + rIgγEI ]} ,

σ2(V ) = a2Kτ
[
rE (V − EE)

2
+ g2γrI (V − EI)2

]
.

(5)

In Eq. (4), τ is an effective membrane time constant,155

while µ and σ2(V ) represent the average and the vari-156

ance of the synaptic current generated by incoming157

spikes, respectively.158

The noise term in Eq. (4) can be decomposed into an159

additive and a multiplicative component. The latter has160

an effect on membrane voltage statistics that is of the161
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same order of the contribution coming from synaptic162

shot noise [39], a factor which has been neglected in163

deriving Eq. (3). Therefore, for a consistent analysis,164

we neglect the multiplicative component of the noise in165

the above derivation; this leads to an equation of the166

form of Eq. (4) with the substitution167

σ(V )→ σ(µ) . (6)

This approach has been termed the effective time con-168

stant approximation [39]. Note that the substitution of169

Eq. (6) greatly simplifies mathematical expressions but170

it is not a necessary ingredient for the results presented171

in this paper. In fact, all our results can be obtained172

without having to resort to this approximation (see Ap-173

pendix A, B and D).174

Current-based model. The previous definitions175

and results translate directly to current-based models,176

with the only exception that the dependency of excita-177

tory and inhibitory synaptic currents on the membrane178

potential are neglected (see [10] for more details). There-179

fore, Eq. (1) becomes180

τj
dVj
dt

= −Vj + IjE − I
j
I , (7)

where

IjA = τj
∑
m

Jjm
∑
n

δ(t− tnm)

represent the excitatory and inhibitory input currents.181

Starting from Eq. (7), making assumptions analogous to182

those discussed above and using the diffusion approxi-183

mation [10], the dynamics of current-based neurons is184

given by an equation of the form of Eq. (4) with185

τ = τL , µ = τJK [rE − gγrI ] ,
σ2 = τJ2K

[
rE + g2γrI

]
;

(8)

Note that, unlike what happens in conductance-based186

models, τ is a fixed parameter and does not depend on187

network firing rate or external drive. Another differ-188

ence between the current-based and conductance-based189

models is that in the latter, but not the former, model190

σ depends on V ; as we discussed above, this difference191

is neglected in the main text, where we use the effective192

time constant approximation.193

III. BEHAVIOR OF SINGLE NEURON194

RESPONSE FOR LARGE K195

We start our analysis investigating the effects of196

synaptic conductance on single neuron response. We197

consider a neuron receiving K (γK) excitatory (in-198

hibitory) inputs, each with synaptic efficacy J (gJ),199

from cells firing with Poisson statistics with a rate200

rE = νX , rI = ηνX , (9)

and analyze its membrane potential dynamics in the
frameworks of current-based and conductance-based
models. In both models, the membrane potential V
follows a stochastic differential equation of the form of
Eq. (4); differences emerge in the dependency of τ , µ
and σ on the parameters characterizing the connectiv-
ity, K and J . In particular, in the current-based model,
the different terms in Eq. (8) can be writen as

τ ∼ τ curr0 , µ ∼ KJµcurr0 , σ ∼
√
KJσcurr0 ;

where τ curr0 , µcurr0 , and σcurr0 are independent of J and
K. In the conductance-based model, the efficacy of ex-
citatory and inhibitory synapses depend on the mem-
brane potential as J = a(EE,I − V ); the different terms
in Eq. (4), under the assumption that Ka� 1, become
of order

τ ∼ τ cond0

Ka
, µ ∼ µcond0 , σ ∼

√
aσcond0 .

Here, all these terms depend on parameters in a com-201

pletely different way than in the current-based case. As202

we will show below, these differences drastically modify203

how the neural response changes as K and J are varied204

and hence the size of J ensuring finite response for a205

given value of K.206

The dynamics of a current-based neuron is shown207

in Fig. 1Ai, with parameters leading to irregular fir-208

ing. Because of the chosen parameter values, the mean209

excitatory and inhibitory inputs approximately cancel210

each other, generating subthreshold average input and211

fluctuation-driven spikes, which leads to irregularity of212

firing. If all parameters are fixed while K is increased213

(J ∼ K0), the response changes drastically (Fig. 1Aii),214

since the mean input becomes much larger than thresh-215

old and firing becomes regular. To understand this ef-216

fect, we analyze how terms in Eq. (4) are modified as217

K increases. The evolution of the membrane poten-218

tial in time is determined by two terms: a drift term219

−(V − µ)/τ , which drives the membrane potential to-220

ward its mean value µ, and a noise term σ/
√
τ , which221

leads to fluctuations around this mean value. Increas-222

ing K modifies the equilibrium value µ of the drift223

force and the input noise, which increase proportion-224

ally to KJ(1 − γgη) and KJ2(γg2η + 1), respectively225

(Fig. 1B,C).226

This observation suggests that, to preserve irregular227

firing as K is increased, two ingredients are needed.228

First, the rates of excitatory and inhibitory inputs must229

be fine tuned to maintain a mean input below thresh-230

old; this can be achieved choosing γgη − 1 ∼ 1/KJ .231

Second, the amplitude of input fluctuations should be232

preserved; this can be achieved scaling synaptic efficacy233

as J ∼ 1/
√
K. Once these two conditions are met, irreg-234

ular firing is restored (Fig. 1Aiii). Importantly, in a net-235

work with J ∼ 1/
√
K, irregular firing emerges without236

fine tuning, since rates dynamically adjust to balance237

excitatory and inhibitory inputs and maintain mean in-238

puts below threshold [7, 8].239
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FIG. 1. Effects of coupling strength on the firing behavior of current-based and conductance-based neurons.
(A) Membrane potential of a single current-based neuron for (i) J = 0.3mV, K = 103, g = γ = 1, η such that 1− gγη = 0.075;

(ii) with K = 5 104; (iii) with K = 5 104 and scaled synaptic efficacy (J ∼ 1/
√
K, which gives J = 0.04mV) and input difference

1 − gγη = 0.01; (B,C) Effect of coupling strength on drift force and input noise in a current-based neuron. (D) Membrane
potential of a single conductance-based neuron for fixed input difference (g1 − γη = −2.8) and (i) a = 0.01, K = 103; (ii)

K = 5 104; (iii) K = 5 104 and scaled synaptic efficacy (a ∼ 1/
√
K, a = 0.001). (E,F) Effect of coupling strength on drift force

and input noise in a conductance-based neuron. In panels A and D, dashed lines represent threshold and reset (black) and
equilibrium value of membrane potential (green). In panels Aii and Dii, light purple traces represent dynamics in the absence
of spiking mechanism. Input fluctuations in C and F represent input noise per unit time, i.e. the integral of σ

√
τζ of Eq. (4)

computed over an interval ∆t and normalized over ∆t.

We now show that this solution does not work once240

synaptic conductance is taken into account. The dy-241

namics of a conductance-based neuron in response to the242

inputs described above is shown in Fig. 1Di. As in the243

current-based neuron, it features irregular firing, with244

mean input below threshold and spiking driven by fluc-245

tuations, and firing becomes regular for largerK, leaving246

all other parameters unchanged (Fig. 1Dii). However,247

unlike the current-based neuron, input remains below248

threshold at large K; regular firing is produced by large249

fluctuations, which saturate response and produce spikes250

that are regularly spaced because of the refractory pe-251

riod. These observations can be understood looking at252

the equation for the membrane potential dynamics: in-253

creasing K leaves invariant the equilibrium value of the254

membrane potential µ but increases the drift force and255

the input noise amplitude as Ka and
√
Ka, respectively256

(Fig. 1E,F). Since the equilibrium membrane potential257

is fixed below threshold, response properties are deter-258

mined by the interplay between drift force and input259

noise, which have opposite effects on the probability of260

spike generation. The response saturation observed in261

Fig. 1Dii shows that, as K increases at fixed a, fluctu-262

ations dominate over drift force. On the other hand,263

using the scaling a ∼ 1/
√
K leaves the amplitude of264

fluctuations unchanged, but generates a restoring force265

of order
√
K (Fig. 1E) which dominates and completely266

abolishes firing at strong coupling (Fig. 1Diii).267

Results in Fig. 1 show that the response of a268

conductance-based neuron when K is large depends on269

the balance between drift force and input noise. The270

scalings a ∼ O(1) and a ∼ 1/
√
K leave one of the two271

contributions dominate; suggesting that an intermedi-272

ate scaling could keep a balance between them. Below273

we derive such a scaling, showing that it preserves firing274

rate and CV of ISI when K becomes large.275

IV. A SCALING RELATION THAT276

PRESERVES SINGLE NEURON RESPONSE277

FOR LARGE K278

We analyze under what conditions the response of a279

single conductance-based neuron is preserved when K is280

large. For a LIF neuron driven described by Eqs. (4, 5,281

6), the single cell transfer function, i.e. the dependency282

of the firing rate ν on the external drive νX , is given by283

[40, 41]284

ν =

[
τrp + τ

√
π

∫ vmax

vmin

dx exp(x2) (1 + erf(x))

]−1

,

(10)
with285

v(x) =
x− µ
σ

, vmin = v(Vr) , vmax = v(θ) . (11)
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FIG. 2. The scaling of Eq. (14) preserves the response of a single conductance-based neuron for large K. (A)
Scaling relation preserving firing in conductance-based neurons (Eq. (14), solid line); constant scaling (a ∼ K0, dotted line) and

scaling of the balanced state model (a ∼ 1/
√
K, dashed line) are shown as a comparison. Colored dots indicate values of a,K

used in the subsequent panels. (B-H) Response of conductance-based neurons, for different values of coupling strength and
synaptic efficacy (colored lines). The scaling of Eq. (14) preserves how firing rate (B,C); equilibrium value of the membrane
potential (D); and CV of the inter-spike interval distribution (E) depend on external input rate νX . This invariance is achieved
increasing the drift force (F) and input fluctuation (G) in a way that weakly decreases (logarithmically in K) membrane
potential fluctuations (H). Different scalings either saturate or suppress response (B, black lines correspond to K = 105 and a
values as in panel A). Parameters: a = 0.01 for K = 103, g = 12, η = 1.8, γ = 1/4.

In the biologically relevant case of a� 1, Eq. (10) sim-286

plifies significantly. In fact, the distance between the287

equilibrium membrane potential measured in units of288

noise umax is of order 1/
√
a (except for inputs νX �289

1/aKτL, where it is of order 1/a
√
KνXτL � 1/

√
a.)290

Therefore umax is large when a is small; in this limit,291

the firing rate is given by Kramers escape rate [42], and292

Eq. (10) becomes:293

ν =
1

τrp + Q
νX

, Q =
τ̄
√
π√

aKv̄
exp

(
v̄2

a

)
, (12)

where we have defined v̄2 = av2
max and τ̄ = aKνXτ . The294

motivation to introduce v̄ and τ̄ is that they remain of295

order 1 in the small a limit, provided the external inputs296

νX are at least of order 1/(aKτL). When the external297

inputs are such that νX � 1/(aKτL), these quantities298

become independent of νX , a and K and are given by299

τ̄ = (1 + gγη)
−1

, v̄ =
θ − µ̄
σ̄

,

µ̄ = τ̄ (EE + gγηEI) ,

σ̄2 = τ̄
[
(µ̄− EE)

2
+ g2γη (µ̄− EI)2

]
.

(13)

The firing rate given by Eq. (12) remains finite when a300

is small and/or K is large if Q remains of order one; this301

condition leads to the following scaling relationship302

K ∼ τ̄√
a v̄

exp

(
v̄2

a

)
; (14)

i.e. a should be of order 1/ log(K).303

In Appendix C, we show that expressions analo-304

gous to Eq. (12) can be derived in integrate-and-305

fire neuron models which feature additional intrinsic306

voltage-dependent currents, as long as synapses are307

conductance-based and input noise is small (a� 1). Ex-308

amples of such models include the exponential integrate-309

and-fire neurons with its spike-generating exponential310

current [43], and models with voltage-gated subthresh-311

old currents [23]. Moreover, we show that, in these mod-312

els, firing remains finite if a ∼ 1/ log(K), and voltage-313

dependent currents generate corrections to the logarith-314

mic scaling which are negligible when coupling is strong.315

Since v̄ and τ̄ vary with νX , Eq. (14) can be satisfied,316

and hence firing can be supported, only if the inputs317

span a small range of values, such that τ̄ and v̄ are ap-318

proximately constant, or if νX � 1/aKτL. Note that,319

while in the strong coupling limit (i.e. when K goes in-320

finity), only the second of these two possibilities can be321

implemented with input rates spanning physiologically322

relevant values, both are are admissible when coupling323

is moderate (i.e. when K is large but finite, a condi-324

tion consistent with experimental data on cortical net-325
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works [44, 45]). In what follows, with the exception of326

the section on finite synaptic time constant, we focus on327

the case νX � 1/aKτL, and investigate how different328

properties evolve with K using the scaling defined by329

Eq. (14) with v̄ and τ̄ given by Eq. (13). Importantly,330

all the results discussed below hold for inputs outside331

the region νX � 1/aKτL, as long as νX is at least of or-332

der 1/aKτL (a necessary condition for the derivation of333

Eq. (12) to be valid), and that inputs span a region small334

enough for the variations of v̄ and τ̄ to be negligible.335

In Fig. 2A, we compare the scaling defined by Eq. (14)336

with the a ∼ 1/
√
K scaling of current-based neurons.337

At low values of K, the values of a obtained with the338

two scalings are similar; at larger values of K, synaptic339

strength defined by Eq. (14) decays as a ∼ 1/log(K), i.e.340

synapses are stronger in the conductance-based model341

than in the current-based model. Examples of single342

neuron transfer function computed from Eq. (10) for343

different coupling strength are shown in Fig. 2B,C. Re-344

sponses are nonlinear at onset and close to saturation.345

As predicted by the theory, scaling a with K according346

to Eq. (14) preserves the firing rate over a region of in-347

puts that increases with coupling strength (Fig. 2C,D),348

while the average membrane potential remains below349

threshold (Fig. 2D). The quantity v̄/
√
a represents the350

distance from threshold of the equilibrium membrane351

potential in units of input fluctuations; Eq. (14) im-352

plies that this distance increases with coupling strength.353

When K is very large, the effective membrane time con-354

stant, which is of order τ ∼ 1/aKνX , becomes small and355

firing is driven by fluctuations that, on the time scale of356

this effective membrane time constant, are rare.357

We next investigated if the above scaling preserves ir-358

regular firing by analyzing the CV of interspike intervals.359

This quantity is given by [10]360

CV 2 = 2πν2τ2

∫ vmax

vmin

dx ex
2

∫ x

−∞
dy ey

2

(1 + erf(y))
2

(15)
and, for the biologically relevant case of a� 1 and µ <361

θ, reduces to (see Appendix B for details)362

CV = 1− τrpν ; (16)

i.e. the CV is close to one at low rates and it de-363

cays monotonically as the neuron approaches saturation.364

Critically, Eq. (16) depends on coupling strength only365

through ν, hence any scaling relation preserving firing366

rate will also produce CV of order one at low rate. We367

validated numerically this result in Fig. 2E.368

We now investigate how Eq. (14) preserves irregular369

firing in conductance-based neurons. We have shown370

that increasing K at fixed a produces large input and371

membrane fluctuations, which saturate firing; the scal-372

ing a ∼ 1/
√
K preserves input fluctuations but, be-373

cause of the strong drift force, suppresses membrane374

potential fluctuations, and hence firing. The scaling375

of Eq. (14), at every value of K, yields the value of376

a that balances the contribution of drift and input fluc-377

tuations, so that membrane fluctuations are of the right378

size to preserve the rate of threshold crossing. Note379

that, unlike what happens in the current-based model,380

both input fluctuations and drift force increase with K381

(Fig. 2F,G) while the membrane potential distribution,382

which is given by [46]383

P (V ) =
2ντ

σ

∫ vmax

v(V )

dxθ(x− v(Vr)) exp
[
x2 − v(V )2

]
,

(17)
slowly becomes narrower (Fig. 2H). This result can be384

understood by noticing that, when a� 1 and neglecting385

the contribution due to the refractory period, Eq. (17)386

reduces to387

P (V ) =
1

σ
√
π

exp

(
− (V − µ)

2

σ2

)
. (18)

Hence, the probability distribution becomes Gaussian388

when coupling is strong, with a variance proportional to389

σ2 ∼ a. We note that, since a is of order 1/ logK, the390

width of the distribution becomes small only for unreal-391

istically large values of K.392

V. ASYNCHRONOUS IRREGULAR ACTIVITY393

IN NETWORK RESPONSE AT STRONG394

COUPLING395

We have so far considered the case of a single neu-396

ron subjected to stochastic inputs. We now show how397

the above results generalize to the network case, where398

inputs to a neuron are produced by a combination of399

external and recurrent inputs.400401

We consider networks of recurrently connected excita-402

tory and inhibitory neurons, firing at rate ν, stimulated403

by an external population firing with Poisson statistics404

with firing rate νX . Using again the diffusion approxi-405

mation, the response of a single neuron in the networks406

is given by Eq. (10) (and hence Eq. (12)) with407

rE = νX + ν , rI = ν . (19)

Eq (10), if all neurons in a given population are de-408

scribed by the same single cell parameters and the net-409

work is in an asynchronous state in which cells fire at a410

constant firing rate, provides an implicit equation whose411

solution is the network transfer function. Example so-412

lutions are shown in Fig. 3B (numerical validation of413

the mean field results is provided in Appendix E). In414

Appendix D, we prove that firing in the network is pre-415

served when coupling is strong if parameters are rescaled416

according to Eq. (14). Moreover, we show that response417

nonlinearities are suppressed and the network response418

in the strong coupling limit (i.e. when K goes infinity)419

is given, up to saturation, by420

ν = ρνX . (20)
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FIG. 3. Response of networks of conductance-
based neurons for large K. (A) Scaling relation de-
fined by self-consistency condition given by Eqs . (14) and
(19) (black line), values of parameters used in panels B-D
(colored-dots). Constant scaling (a ∼ K0, dotted line) and

scaling of the balanced state model (a ∼ 1/
√
K, dashed line)

are shown for comparison. (B,C) Firing rate and CV of
ISI as a function of external input, obtained from Eqs. (10)
and (15) (colored lines) with strong coupling limit solution of
Eqs. (20) and (16) (black line). (D) Probability distribution
of the membrane potential obtained from (17). In panels
B-D, dotted and dashed lines represent quantities obtained
with the scalings J ∼ K0 and J ∼ 1/

√
K, respectively, for

values of K and J indicated in panel A (black dots). Param-
eters: γ = 1/4 and g = 30.

The parameter ρ, which is obtained solving Eq. (12)421

self-consistently (see Appendix D for details), is the re-422

sponse gain in the strong coupling limit. Finally, our423

derivation implies that Eq. (14) preserves irregular fir-424

ing and creates a probability distribution of membrane425

potential whose width decreases only logarithmically as426

K increases (Fig. 3C,D and numerical validation in Ap-427

pendix E), as in the single neuron case. While this428

logarithmic decrease is a qualitative difference with the429

current-based balanced state in which the width stays430

finite in the large K limit, in practice for realistic values431

of K, realistic fluctuations of membrane potential (a few432

mV) can be observed in both cases.433

We now turn to the question of what happens in net-434

works with different scalings between a and K. Our435

analysis of single neuron response described above shows436

that scalings different from that of Eq. (14) fail to pre-437

serve firing for large K, as they let either input noise438

or drift dominate. However, the situation in networks439

might be different, since recurrent interactions could in440

principle adjust the statistics of input currents such that441

irregular firing at low rates is preserved when coupling442

becomes strong. Thus, we turn to the analysis of the net-443

work behavior when a scaling a ∼ K−α is assumed. For444

α ≤ 0, the dominant contribution of input noise at the445

single neuron level (Figs. 1 and 2) generates saturation446

of response and regular firing in the network (Fig. 3).447

This can be understood by noticing that, for large K,448

the factor Q in Eq. (12) becomes negligible and the self-449

consistency condition defining the network rate is solved450

by ν = 1/τrp. For α > 0, the network response for large451

K is determined by two competing elements. On the one452

hand, input drift dominates and tends to suppress fir-453

ing (Figs. 1 and 2). On the other hand, for the network454

to be stable, inhibition must dominate recurrent inter-455

actions [9]. Hence, any suppression in network activity456

reduces recurrent inhibition and tends to increase neural457

activity. When these two elements conspire to generate458

a finite network response, the factor Q in Eq. (12) must459

be of order one and v̄ ∼ a ∼ K−α. In this scenario, the460

network activity exhibits the following features (Fig. 3):461

(i) the mean inputs drive neurons very close to threshold462

(θ− µ̄ ∼ aσ̄ ∼ K−α); (ii) the response of the network to463

external inputs is linear and, up to corrections of order464

K−α, given by465

ν =
(EE − θ) νX

θ(1 + gγ)− EE − gγEI
; (21)

(iii) firing is irregular (because of Eq. (16)); (iv) the466

width of the membrane potential distribution is of order467

a ∼ K−α (because of Eq. (18)). Therefore, scalings dif-468

ferent from that of Eq. (14) can produce asynchronous469

irregular activity in networks of conductance-based neu-470

rons, but this leads to networks with membrane poten-471

tials narrowly distributed close to threshold, a property472

which seems at odds with what is observed in cortex [47–473

52].474

VI. ROBUST LOGNORMAL DISTRIBUTION475

OF FIRING RATES IN NETWORKS WITH476

HETEROGENEOUS CONNECTIVITY477

Up to this point, we have assumed a number of con-478

nections equal for all neurons. In real networks, how-479

ever, this number fluctuates from cell to cell. The goal480

of this section is to analyze the effects of heterogeneous481

connectivity in networks of conductance-based neurons.482

483484

We investigated numerically the effects of connection485

heterogeneity as follows. We chose a Gaussian distri-486

bution of the number of connections per neuron, with487

mean K and variance ∆K2 for excitatory connections,488

and mean γK and variance γ2∆K2 for inhibitory con-489

nections. The connectivity matrix was constructed by490

drawing first randomly E and I in-degrees Ki
E,X,I from491

these Gaussian distributions for each neuron, and then492

selecting at random Ki
E,X,I E/I pre-synaptic neurons.493

We then simulated network dynamics and measured the494

distribution of rates and CV of the ISI in the popula-495

tion. Results for different values of CVK = ∆K/K are496

shown in Fig. 4A-C. For small and moderate values of497

connection heterogeneity, increasing CVK broadens the498
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FIG. 4. Effects of heterogeneous connectivity on the
network response. (A-B) Distribution of ν and CV of
ISI computed from network simulations (dots) and from the
mean field analysis (A, black lines) for different values of
CVK (values are indicated by dots in panel C). (C) ∆ν/ν
(green, left axis) and fraction of quiescent cells (brown, right
axis) computed from network simulations as a function of
CVK . For CVK . CV ∗K , ∆ν/ν increases linearly, as pre-
dicted by the mean field analysis; deviations from linear
scaling emerge for CVK & CV ∗K , when a significant frac-
tion of cells become quiescent. The deviation from linear
scaling at low CVK is due to sampling error in estimating
the firing rate from simulations. (D) CV ∗K as a function of
K computed from the mean field theory (green, left axis),
with a rescaled according to Eq. (14). For large K, CV ∗K
decays proportionally to a (brown, right axis). When K is
too low, the network is silent and CV ∗K = 0. In panels A-C
K = 103, g = 20, a = 1.610−3, NE = NX = NI/γ = 10K,
νX = 0.05/τrp. In network simulations, the dynamics was
run for 20 seconds using a time step of 50µs Parameters in
panel D are as in Fig. 3.

distribution of rates and CV of the ISI, but both dis-499

tributions remain peaked around a mean rate that is500

close to that of homogeneous networks (Fig. 4A,B). For501

larger CVK , on the other hand, the distribution of rates502

changes its shape, with a large fraction of neurons mov-503

ing to very low rates, while others increase their rates504

(Fig. 4A) and the distribution of the CV of ISI becomes505

bimodal, with a peak at low CV corresponding to the506

high rate neurons, while the peak at a CV close to 1 cor-507

responds to neurons with very low firing rates (Fig. 4B).508

To characterize more systematically the change in the509

distribution of rates with CVK , we measured, for each510

value of CVK , the fraction of quiescent cells, defined as511

the number of cells that did not spike during 20 seconds512

of the simulated dynamics (Fig. 4C). This analysis shows513

that the number of quiescent cells, and hence the distri-514

bution of rates, changes abruptly as the CVK is above515

a critical value CV ∗K . Importantly, unlike our definition516

of the fraction of quiescent cells, this abrupt change is517

a property of the network that is independent of the518

duration of the simulation.519

To understand these numerical results, we performed520

a mean field analysis of the effects of connection hetero-521

geneity on the distribution of rates (Appendix F). This522

analysis captures quantitatively numerical simulations523

(Fig. 4A) and shows that, in the limit of small CVK and524

a, rates in the network are given by525

νi = ν0 exp

[
Ω
CVK
a

zi

]
(22)

where ν0 is the population average in the absence of526

heterogeneity, zi is a Gaussian random variable, and the527

prefactor Ω is independent of a, K and νX . The expo-528

nent in Eq. (22) represents a quenched disorder in the529

value of vi, i.e. in the distance from threshold of the530

single cell µi in units of input noise. As shown in Ap-531

pendix F, Eq. (22) implies that the distribution of rates532

is lognormal, a feature consistent with experimental ob-533

servations [53–55] and distributions of rates in networks534

of current-based LIF neurons [56]. It also implies that535

the variance of the distribution ∆ν/ν should increase536

linearly with CVK , a prediction which is confirmed by537

numerical simulations (Fig. 4C). The derivation in Ap-538

pendix F also provides an explanation for the change in539

the shape of the distribution for larger CVK . In fact,540

for larger heterogeneity, the small CVK approximation541

is not valid and fluctuations in input connectivity pro-542

duce cells for which µi far from θ, that are either firing543

at extremely low rate (µi < θ) or regularly (µi > θ).544

The latter generates the peak at low values in the CV545

of the ISI seen for large values CVK .546

The quantity CV ∗K represents the level of connection547

heterogeneity above which significant deviations from548

the asynchronous irregular state emerges, i.e. large549

fractions of neurons show extremely low or regular fir-550

ing. Eq. (22) suggests that CV ∗K should increase lin-551

early with a. We validated this prediction with our552

mean field model, by computing the minimal value of553

CVK at which 1% of the cells fire at rate of 10−3 spk/s.554

(Fig. 4D). Note that the derivation of Eq. (22) only as-555

sumes a to be small and does not depend on the scal-556

ing relation between a and K. On the other hand,557

the fact that CV ∗K increases linearly with a makes the558

state emerging in networks of conductance-based neu-559

rons with a ∼ 1/ log(K) significantly more robust to560

connection fluctuations than that emerging with a ∼561

K−α, for which CV ∗K ∼ K−α, and with current-based562

neurons, where CV ∗K ∼ 1/
√
K [57]. Note that, while in563

randomly connected networks CVK ∼ 1/
√
K, a larger564

degree of heterogeneity has been observed in cortical565

networks [51, 57–61]. Our results show that networks of566

conductance-based neurons could potentially be much567

more robust to such heterogeneities than networks of568

current-based neurons.569
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VII. COMPARISON WITH EXPERIMENTAL570

DATA571

The relation between synaptic efficacy and number of572

connections per neuron has been recently studied experi-573

mentally using a culture preparation [62]. In this paper,574

it was found that cultures in which K was larger had575

weaker synapses than cultures with smaller K (Fig. 5).576

In what follows we compare this data with the scalings577

expected in networks of current-based and conductance-578

based neurons, and discuss implications for in vivo net-579

works.580581

In the current-based model, the strength of excitatory582

and inhibitory post synaptic potentials as a function583

of K can be written as JE = J0/
√
K and JI = g JE .584

In the conductance-based model, these quantities be-585

come JE = (V − EE)a and JI = g(V − EI)a; where586

a = a(K, v̄) is given by Eq. (14) while, for the dataset587

of [62], V ∼ −60mV, JE ∼ JI , EE ∼ 0mV and588

EI ∼ −80mV. For each model, we inferred free param-589

eters from the data with a least-squares optimization in590

logarithmic scale (best fit: g = 1.1 and J0 = 20mV in591

the current-based model; g = 3.4 and v̄ = 0.08 in the592

conductance-based model) and computed the expected593

synaptic strength as a function of K (lines in Fig. 5A).594

Our analysis shows that the performance of the current-595

based and the conductance-based model in describing596

the data, over the range ofK explored in the experiment,597

are similar, with the former being slightly better than598

the latter (root mean square 2.2mV vs 2.4mV). This re-599

sult is consistent with the observation made in [62] that,600

when fitted with a power-law J ∼ K−β , data are best601

described by β = 0.59 but are compatible with a broad602

range of values (95% confidence interval: [0.47:0.70]).603

Note that even though both models give similar results604

for PSP amplitudes in the range of values of K present605

in cultures (∼50-1000), they give significantly different606

predictions for larger values of K. For instance, for607

K = 10, 000, JE is expected to be ∼ 0.2 mV in the608

current-based model and ∼ 0.7 mV in the conductance-609

based model.610

In Fig. 5B, we plot the distance between the equi-611

librium membrane potential µ and threshold θ in units612

of input fluctuations, v̄/
√
a as a function of K using613

the value of v̄ obtained above, and find that the ex-614

pected value in vivo, where K ∼ 103 − 104, is in the615

range 2-3. In Fig. 5C,D, we plot how total synaptic616

excitatory conductance, and effective membrane time617

constant, change as a function of K. Both quantities618

change significantly faster using the conductance-based619

scaling (gE/gL ∼ K/ log(K); τ/τL ∼ log(K)/K) than620

what expected by the scaling of the current-based model621

(gE/gL ∼
√
K; τ/τL ∼ 1/

√
K). For K in the range622

103 − 104 and mean firing rates in the range 1-5 spk/s,623

the total synaptic conductance is found to be in a range624

from about 2 to 50 times the leak conductance, while the625

effective membrane time constant is found to be smaller626

than the membrane time constant by a factor 2 to 50.627

We compare these values with available experimental628

data in the Discussion.629

VIII. EFFECT OF FINITE SYNAPTIC TIME630

CONSTANTS631

Results shown in Fig. 5 beg the question whether the632

assumption of negligible synaptic time constants we have633

made in our analysis is reasonable. In fact, synaptic634

decay time constants of experimentally recorded post-635

synaptic currents range from a few ms (for AMPA and636

GABAA receptor-mediated currents) to tens of ms (for637

GABAB and NMDA receptor-mediated currents, see638

e.g. [63]), i.e. they are comparable to the membrane time639

constant already at weak coupling, where τ ∼ τL is typ-640

ically in the range 10-30ms [64, 65]. In the strong cou-641

pling limit, the effective membrane time constant goes642

to zero, and so this assumption clearly breaks down. In643

this section, we investigate the range of validity of this644

assumption, and what happens once the assumption of645

negligible time constants is no longer valid.646

With finite synaptic time constants, the temporal evo-647

lution of conductances of Eq. (2) is replaced by648

τE,I
dgjE,I
dt

= −gjE,I +gjLτE,I
∑
m

ajm
∑
n

δ(t− tnm) . (23)

It follows that the single-neuron membrane potential dy-649

namics is described by Eqs. (1,23). Here, for simplicity,650

we take excitatory and inhibitory synaptic currents to651

have the same decay time constant τS . Fig. 6A shows652

how increasing the synaptic time constant modifies the653

mean firing rate of single integrate-and-fire neurons in654

response to K (γK) excitatory (inhibitory) inputs with655

synaptic strength a (ga) and frequency νX (ηνX). The656

figure shows that, though the mean firing rate is close657

to predictions obtained with instantaneous synapses for658

small τS/τ , deviations emerge for τS/τ ∼ 1, and firing659

is strongly suppressed as τS/τ becomes larger. To un-660

derstand these numerical results, we resort again to the661

diffusion approximation [67], together with the effective662

time constant approximation [11, 68] to derive a simpli-663

fied expression of the single neuron membrane potential664

dynamics with finite synaptic time constant (details in665

Appendix G); this is given by666

τ
dV

dt
= − (V − µ) + σ

√
τ

τS
z , (24)

where τ , µ and σ are as in the case of negligible synap-667

tic time constant (Eq. (5)), whilst z is an Ornstein-668

Uhlenbeck process with correlation time τS . It follows669

that, with respect to Eq. (4), input fluctuations with670

frequency larger than 1/τS are suppressed and, for large671

τS/τ , the membrane potential dynamics is given by672

V (t) = µ+ σ

√
τ

τS
z(t) , (25)
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FIG. 5. Comparison of predictions given by current-based and the conductance-based models in describing
experimental data from cultures. A Strength of excitatory (EPSP) and inhibitory (IPSP) post synaptic potentials recorded
in [62] are compared with best fits using scaling relationships derived from networks with current-based synapses (dashed line)
and conductance-based synapses (continuous line). Root mean square (RMS) and best fit parameters are: RMS=2.2mV,
g = 1.1, J0 = 20mV, for the current-based model; and RMS=2.4mV, g = 3.4, v̄ = 0.08, for the conductance-based model. B
Value of v̄/

√
a predicted by the conductance-based model as a function of K. C Ratio between excitatory and leak conductance

as a function of K, for νE = νI = νX = 1. spk/s (black) and νE = νI = νX = 5spk/s (gray) obtained with a rescaled as

Eq. (14) (continuous line) and as 1/
√
K (dashed line). D Ratio between τ and τL as a function of K, parameters and scaling

as in panel C.

i.e. the membrane potential is essentially slaved to a time673

dependent effective reversal potential corresponding to674

the r.h.s. of Eq. (25) [14]. Note that Eq. (25) is valid only675

in the subthreshold regime. When the r.h.s. of Eq. (25)676

exceeds the threshold, the neuron fires a burst of action677

potentials whose frequency, in the strong coupling limit,678

is close to the inverse of the refractory period [69]. As679

νX increases, the equilibrium value µ remains constant680

while τ decreases, leading to a suppression of membrane681

fluctuations (Fig. 6D), and in turn to the suppression of682

response observed in Fig. 6A.683

In Appendix G, we use existing analytical expan-684

sions [67, 69, 70], as well as numerical simulations, to685

shows that neural responses obtained with finite τS are686

in good agreement with predictions obtained with in-687

stantaneous synapses as long as τS/τ . 0.1. It follows688

that the single neuron properties we discussed in the689

case of instantaneous synapses hold in the region of in-690

puts for which τS/τ . 0.1 (i.e. νX . 0.1/aKτS) and691

the derivation of Eq. (14) is valid (i.e. νX is at least of692

order 1/aKτL). Thus, there is at best a narrow range693

of inputs for which these properties carry over to the fi-694

nite synaptic constant case. Interestingly, when biolog-695

ically relevant parameters are considered (e.g. Fig. 6),696

inputs within this region generate firing rates that are697

in the experimentally observed range in cortical net-698

works [23, 47–55]. The analysis of Appendix G also699

shows that, when τS/τ ∼ 1, i.e. once the input rate700

νX is of order 1/aKτS , firing is suppressed exponen-701

tially. The scaling relation of Eq. (14) does not pre-702

vent this suppression, which emerges for external rates703

of order 1/aKτS ∼ log(K)/KτS . Scalings of the form704

a ∼ K−α, with α > 0, on the other hand, create a larger705

region of inputs for which τS/τ � 1 but, as we showed706

when studying the neural dynamics with instantaneous707

synapses, fail in generating response for large K. We708

next asked if another scaling relation between a and K709

could prevent suppression of neural response when τS710

is finite. The single neuron response computed in Ap-711

pendix G is a nonlinear function of the input νX , which712

depends parametrically on a and K. It follows that, in713

order to preserve the single neuron response, a should714

scale differently with K for different values of νX . Since715

in cortical networks input rates, i.e. νX , change dynam-716

ically on a time scale much shorter than that over which717

plasticity can modify synaptic connections, we conclude718

that a biologically realistic scaling between a and K,719

which prevents suppression of neural response when τS720

is finite in a broad range of external inputs, does not721

exist. Moreover, the membrane potential dynamics for722

large K and τS/τ (Eq. (25)) becomes independent of723

a. This shows that rescaling synaptic efficacy with K724

cannot prevent suppression of response.725

We next examined the effect of synaptic time constant726

on network response. Numerically computed responses727

in networks of neurons with finite synaptic time con-728

stant are shown in Fig. 6B,C. Network response is close729

to the prediction obtained with instantaneous synapses730

for small τS/τ , and deviations emerge for τS/τ ∼ 1.731

Hence, analogously to the single neuron case, the net-732

work properties discussed in the case of instantaneous733

synapses remain valid for low inputs. However, unlike734
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FIG. 6. Effects of synaptic time constant on single neuron and network response. (A) Single neuron response as
a function of input rate νX , computed numerically from Eqs. (1), (23) for different synaptic time constants τS (indicated in
the bottom right of the figure). In all panels, black lines correspond to the prediction obtained with instantaneous synapses.
Colored bars below the first and the fourth row indicate inputs that gives 0.1 < τS/τ < 1, i.e. the region where deviations in
the neural response from the case of instantaneous synapses emerge. Firing rates (first row) match predictions obtained for
instantaneous synapses for small τS/τ ; significant deviations and response suppression emerge for larger τS/τ . The effective
membrane time constant (τ , second row) decreases with input rate, is independent of τS , and reaches the value τS/τ ∼ 1 for
different levels of external drive (dashed lines represent the different values of τS). The equilibrium value of the membrane
potential (µ, third row) increases with input rate and is independent of τS (dotted line represents spiking threshold). The
fluctuation of the membrane potential (σV , fourth row) has a non-monotonic relationship with input rate, and peaks at a value
of νX for which τ is of the same order as τS . (B) Analogous to panel A but in the network case. Firing rates are no longer
suppressed as τS/τ increases, but approach the response scaling predicted by Eq. (21) (dashed line). As discussed in the text,
high firing rates are obtained by increasing the value of µ towards threshold. (C) Zoom of panel B in the neurobiologically
relevant region of low rates. (D, E) Examples of membrane potential dynamics for single neuron (D) and network (E) in the
absence of spiking mechanisms (νX = 5spk/s in D and 20spk/s in E). High frequency fluctuations are suppressed at large
τS . In the network case, increasing τS reduces recurrent inhibition and produces membrane potential trajectories which are
increasingly closer to firing threshold. Single neuron parameters: a = 0.01, K = 103, g = 8, η = 1.5, γ = 1/4. Network
parameters: a = 0.0016, K = 103, g = 20, γ = 1/4. Simulations were performed with the simulator BRIAN2 [66], with neurons
receiving inputs from NEX,IX= 10 K independent Poisson units firing at rates νX , ηνX , in the single neuron case, or νX , in
the network case . Network simulations used NE,I = 10K excitatory and inhibitory neurons.

the single neuron case, no suppression appears for larger735

τS/τ . This lack of suppression in the network response,736

analogously to the one we discussed in networks with in-737

stantaneous synapses and a ∼ K−α, is a consequence of738

the fact that, to have stable dynamics when K is large,739

inhibition must dominate recurrent interactions [9]. In740

this regime, any change which would produce suppres-741

sion of single neuron response (e.g. increase of νX or742

τS) lowers recurrent inhibition and increases the equilib-743

rium value of the membrane potential µ (Fig. 6B,C,E).744

The balance between these two effects determines the745

network firing rate and, when τS/τ � 1, generates a re-746

sponse which (see derivation in Appendix G), up to cor-747

rections of order 1/
√
KτS , is given by Eq. (21) (dashed748
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line in Fig. 6B). Similarly to what happens in networks749

with instantaneous synapses and a ∼ K−α, this finite750

response emerges because recurrent interactions set µ751

very close to threshold, at a distance θ − µ ∼ 1/
√
K752

that matches the size of the membrane potential fluc-753

tuations (Eq. (25), σ
√
τ/τS ∼ 1/

√
K). In addition,754

the network becomes much more sensitive to connec-755

tion heterogeneity, with CV ∗K ∼ 1/
√
K. However, here756

the dynamics of the single neuron membrane potential757

is correlated over a timescale τS (Fig. 6E) and firing is758

bursty, with periods of regular spiking randomly inter-759

spersed in time. Moreover, the properties discussed here760

are independent of the scaling of a with K, since they761

always emerge once τS/τ � 1, a condition that is met762

for any scaling once νX � 1/aKτS . The specific scaling763

relation, on the other hand, is important to determine764

the input strength at which τS/τ ∼ 1.765766

In the previous sections, we have shown that net-767

works of conductance-based neurons with instantaneous768

synapses present features similar to those observed in769

cortex if synaptic efficacy is of order a ∼ 1/ log(K),770

while other scalings generate network properties that are771

at odds with experimental data (see Tab. I for a sum-772

mary). In this section, we have found that, when the773

synaptic time constant is considered, these properties774

are preserved in the model for low inputs. As the input775

increases, the structure of the network response evolves776

gradually and, for large inputs (νX � 1/aKτS), signifi-777

cant deviations from the case of instantaneous synapses778

emerge (see Tab. I for a summary). In particular, as the779

input to the network increases, our analysis shows that:780

the membrane potential approaches threshold while its781

fluctuations become smaller and temporally correlated;782

firing becomes more bursty; the network becomes more783

sensitive to heterogeneity in the in-degree and, if the784

heterogeneity is larger than that of random networks,785

significant fractions of neurons become quiescent or fire786

regularly. These features of the model provide a list787

of predictions which could be tested experimentally by788

measuring the evolution of the membrane potential dy-789

namics of cells in cortex with the intensity of inputs to790

the network.791

IX. DISCUSSION792

In this work, we analyzed networks of strongly coupled793

conductance-based neurons. The study of this regime is794

motivated by the experimental observation that in cor-795

tex K is large, with single neurons receiving inputs from796

hundreds or thousands of pre-synaptic cells. We showed797

that the classical balanced state idea [5, 6], which was798

developed in the context of current-based models and799

features synaptic strength of order 1/
√
K [7, 8], results800

in current fluctuations of very small amplitude, which801

can generate firing in networks only if the mean mem-802

brane potential is extremely close to threshold. This803

seems problematic since intracellular recordings in cor-804

tex show large membrane potential fluctuations (see805

e.g. [47–52]). To overcome this problem, we introduced806

a new scaling relation which, in the case of instanta-807

neous synaptic currents, maintains firing by preserving808

the balance of input drift and diffusion at the single809

neuron level. Assuming this scaling, the network re-810

sponse automatically shows multiple features that are811

observed in cortex in vivo: irregular firing, wide distri-812

bution of rates, membrane potential with non-negligible813

distance from threshold and fluctuation size. When fi-814

nite synaptic time constants are included in the model,815

we showed that these properties are preserved for low in-816

puts, but are gradually modified as inputs increase: the817

membrane mean approaches threshold while its fluctu-818

ations decrease in size and develop non-negligible tem-819

poral correlations. These properties, which are summa-820

rized in Tab. I, provide a list of predictions that could821

be tested experimentally by analyzing the membrane po-822

tential dynamics as a function of input strength in cor-823

tical neurons.824

When synaptic time constants are negligible with re-825

spect to the membrane time constant, our theory shows826

properties that are analogous to those of the classical827

balanced state model: linear transfer function, CV of828

order one, and distribution of membrane potentials with829

finite width. However, these properties emerge from a830

different underlying dynamics than in the current based831

model. In current-based models, the mean input current832

is at distance of order one from threshold in units of in-833

put fluctuations. In conductance-based models, this dis-834

tance increases with coupling strength and firing is gen-835

erated by large fluctuations at strong coupling. The dif-836

ferent operating mechanism manifests itself in two ways:837

the strength of synapses needed to sustain firing and the838

robustness to connection heterogeneity, as we discuss in839

the next paragraphs.840

The scaling relation determines how strong synapses841

should be to allow firing at a given firing rate, for a842

given a value of K. In current-based neurons, irregular843

firing is produced as long as synaptic strengths are of844

order 1/
√
K. In conductance-based neurons, stronger845

synapses are needed, with a scaling which approaches846

1/ log(K) for large K. We showed that both scaling re-847

lations are in agreement with data obtained from culture848

preparations [62], which are limited to relatively small849

networks, and argued that differences might be impor-850

tant in vivo, where K should be larger.851

In current-based models, the mean input current must852

be set at an appropriate level to produce irregular fir-853

ing; this constraint is realized by recurrent dynamics in854

networks with random connectivity and strong enough855

inhibition [7–9]. However, in networks with structural856

heterogeneity, with connection heterogeneity larger than857

1/
√
K, the variability in mean input currents produces858

significant departures from the asynchronous irregular859

state, with large fractions of neurons that become silent860

or fire regularly [57]. This problem is relevant in cor-861

tical networks [57], where significant heterogeneity of862
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Synaptic model
Ratio of synaptic
and membrane

time constant (τS/τ)

Synaptic
strength

Membrane potential
statistics

Activity
structure

Heterogeneity
of in-degree

supported (CV ∗K)

Current-based
(balanced state model)

constant,
independent of
νX , a, and K

J ∼ 1√
K

θ − µ ∼ σV ∼ 1;
τV ∼ τL

Irregular firing,
CV of ISI∼ 1

∼ 1√
K

Conductance-based

� 1 for νX � 1
aKτS

;

always satisfied
for instantaneous
synapses (τS = 0)

a ∼ 1
logK

θ − µ ∼ 1;
σV ∼ 1√

logK
;

τV ∼ log(K)/K

Irregular firing,
CV of ISI∼ 1

∼ 1
logK

a ∼ K−α,
α > 0

θ − µ ∼ σV ∼ K
−α
2 ;

τV ∼ Kα−1

Irregular firing,
CV of ISI∼ 1

∼ K−α

� 1 for νX � 1
aKτS any scaling

θ − µ ∼ σV ∼ 1√
K

;

τV ∼ τS
Irregular bursting ∼ 1√

K

TABLE I. Overview of of networks of current-based and conductance-based neurons. Synaptic strength and time
constant strongly affect response properties in networks of conductance based neurons. Properties similar to what is observed
in cortex emerge in these networks if a ∼ 1/ logK and input rates are lower than a critical value, which is fixed by synaptic
time constant and coupling strength. The model predicts that these properties should gradually mutate as the input to the
network increases and, for large inputs, should coincide with those indicated in the last line of the table. In the table, the
different quantities related to the membrane potential represent: the mean distance from threshold (θ−µ); the size of temporal
fluctuations (σV ); the membrane potential correlation time constant (τV ).

in-degrees as been reported [51, 58–61], and different863

mechanisms have been proposed to solve it [57]. Here864

we showed that networks of conductance-based neurons865

also generate irregular activity without any need for fi-866

nite tuning, and furthermore can support irregular ac-867

tivity with substantial structural heterogeneity, up to868

order 1/ log(K). Therefore, these networks are more ro-869

bust to connection heterogeneity than the current-based870

model, and do not need the introduction of additional871

mechanism to sustain the asynchronous irregular state.872

The strength of coupling in a network, both in the873

current-based model [71, 72] and in the conductance-874

based model (e.g. Fig. 3) determines the structure of875

its response and hence the computations it can imple-876

ment. Recent theoretical work, analyzing experimental877

data in the framework of current-based models, has sug-878

gested that cortex operates in a regime of moderate cou-879

pling [44, 45], where response nonlinearities are promi-880

nent. In conductance-based models, the effective mem-881

brane time constant can be informative on the strength882

of coupling in a network, as it decreases with coupling883

strength. Results from in vivo recordings in cat pari-884

etal cortex [21] showed evidence that single neuron re-885

sponse is sped up by network interactions. In particular,886

measurements are compatible with inhibitory conduc-887

tance approximately 3 times larger than leak conduc-888

tance and support the idea that cortex operates in a889

“high-conductance state” [22] (but see [23] and discus-890

sion below). This limited increase in conductance sup-891

ports the idea of moderate coupling in cortical networks,892

in agreement with what found in previous work [44, 45].893

When the synaptic time constant is much larger than894

the membrane time constant, we showed that, regard-895

less of synaptic strength, the size of membrane poten-896

tial fluctuations decreases and firing in the network is897

preserved by a reduction of the distance from thresh-898

old of the mean membrane potential. Moreover, the899

robustness to heterogeneity in connection fluctuations900

decreases substantially (the maximum supported het-901

erogeneity becomes of order 1/
√
K) and the membrane902

potential dynamics becomes correlated over a time scale903

fixed by the synaptic time constant. For really strong904

coupling, the regime of large synaptic time constant is905

reached for low input rates. In the case of moderate906

coupling, which is consistent with experimental data on907

cortical networks [44, 45], the network response at low908

rates is well approximated by that of networks with in-909

stantaneous synapses, and the regime of large synaptic910

time constant is reached gradually, as the input to the911

network increases (Fig. 6). This observation provides a912

list of prediction on how properties of cortical networks913

should evolve with input strength (summary in Tab. I),914

that are testable experimentally.915

Experimental evidence suggests that the response to916

multiple inputs in cortex is non-linear (for an overview,917

see [73]). Such nonlinearities, which are thought to be918

fundamental to perform complex computations, cannot919

be captured by the classical balanced state model, as920

it features a linear transfer function [7, 8]. Alternative921

mechanisms have been proposed [71, 73, 74], but their922

biophysical foundations [71, 73] or their ability to cap-923

ture experimentally observed nonlinearities [74] are still924

not fully understood. We have recently shown [72] that,925

in networks of current-based spiking neurons, nonlinear-926

ities compatible with those used in [71, 73] to explain927

phenomenology of inputs summation in cortex emerge928

at moderate coupling. Here we have shown that, as in929

the case of networks of current-base neurons [72], nonlin-930
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ear responses appears in networks of conductance-based931

neurons at moderate coupling, both at response onset932

and close to single neuron saturation. In addition, we933

have found that synaptic time constants provide an ad-934

ditional source of nonlinearity, with nonlinear responses935

emerging as the network transitions between the two936

regimes described above. A full classification of the937

nonlinearities generated in these networks is outside the938

scope of this work, but could be performed generalizing939

the approach developed in [72].940

Recent whole cell recording have reported that an in-941

trinsic voltage-gated conductance, whose strength de-942

creases with membrane potential, contributes to the943

modulation of neuronal conductance of cells in pri-944

mary visual cortex of awake macaques and anesthetized945

mice [23]. For spontaneous activity, this intrinsic con-946

ductance is the dominant contribution to the cell con-947

ductance and drives its (unexpected) decrease with in-948

creased depolarization. For activity driven by sen-949

sory stimuli, on the other hand, modulations coming950

from synaptic interactions overcome the effect of the in-951

trinsic conductance and neuronal conductance increases952

with increased depolarization. Our analysis shows that953

voltage-dependent currents, such as that produced by954

the voltage-gated channels [23] or during spike gener-955

ation [43], affect quantitatively, but not qualitatively,956

the single neuron response and the scaling relation al-957

lowing firing. Therefore, the results we described in958

this contribution seem to be a general property of net-959

works of strongly coupled integrate-and-fire neurons960

with conductance-based synapses.961

Understanding the dynamical regime of operation of962

the cortex is an important open question in neuro-963

science, as it constrains which computations can be per-964

formed by a network [71]. Most of the theories of neural965

networks have been derived using rate models or current-966

based spiking neurons. Our work provides the first the-967

ory of the dynamics of strongly coupled conductance-968

based neurons, it can be easily related to measurable969

quantities because of its biological details, and suggests970

predictions that could be tested experimentally.971
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[69] Rubén Moreno-Bote and Néstor Parga. Role of synaptic1251

filtering on the firing response of simple model neurons.1252

Physical Review Letters, 92(2):4, 2004.1253

[70] Laurent Badel. Firing statistics and correlations in spik-1254

ing neurons: A level-crossing approach. Physical Review1255

E, 84(4):041919, oct 2011.1256

[71] Yashar Ahmadian, Daniel B Rubin, and Kenneth D1257

Miller. Analysis of the stabilized supralinear network.1258

Neural Computation, 25(8):1994–2037, 2013.1259

[72] Alessandro Sanzeni, Mark H. Histed, and Nicolas1260

Brunel. Response nonlinearities in networks of spiking1261

neurons. PLOS Computational Biology, 16(9):1–27, 091262

2020.1263

[73] Daniel B. Rubin, Stephen D. VanHooser, and Ken-1264

neth D. Miller. The stabilized supralinear network: A1265

unifying circuit motif underlying multi-input integration1266

in sensory cortex. Neuron, 85(2):402–417, 2015.1267

[74] Cody Baker, Vicky Zhu, and Robert Rosenbaum. Non-1268

linear stimulus representations in neural circuits with1269

approximate excitatory-inhibitory balance. bioRxiv,1270

2019.1271

[75] Magnus J E Richardson. Firing-rate response of lin-1272

ear and nonlinear integrate-and-fire neurons to mod-1273

ulated current-based and conductance-based synaptic1274

drive. Physical Review E - Statistical, Nonlinear, and1275

Soft Matter Physics, 76(2):1–15, 2007.1276

[76] Francesca Barbieri and Nicolas Brunel. Irregular persis-1277

tent activity induced by synaptic excitatory feedback.1278

Frontiers in Computational Neuroscience, 1:5, 2007.1279

[77] Bard Ermentrout and David Terman. The1280

Mathematical Foundations of Neuroscience, volume 35.1281

07 2010.1282

[78] Daniel J. Amit and Nicolas Brunel. Dynamics of a re-1283

current network of spiking neurons before and following1284

learning. Network, 8:373–404, 1997.1285

[79] Carl van Vreeswijk and Farzad Farkhooi. Fredholm the-1286

ory for the mean first-passage time of integrate-and-fire1287

oscillators with colored noise input. Physical Review E,1288

100(6), Dec 2019.1289

[80] S. O. Rice. Mathematical analysis of random noise. Bell1290

System Technical Journal, 23(3):282–332, 1944.1291

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 14, 2020. ; https://doi.org/10.1101/2020.09.24.312579doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.24.312579
http://creativecommons.org/licenses/by-nc-nd/4.0/


17

Appendix A: Calculations in the multiplicative noise case1292

In the main text, we analyze the distribution of membrane potential, firing rate and CV using the effective time1293

constant approximation, which neglects the dependence of the noise amplitude on the membrane potential. This1294

approximation is motivated by the fact that corrections to this approximation are of the same order of shot noise1295

corrections to the diffusion approximation used to describe synaptic inputs [75]. In this section, we derive results1296

without resorting to the effective time constant approximation (i.e. keeping the voltage dependence of the noise term),1297

and show that the results derived in the main text remain valid, even though it complicates the calculations. The1298

inclusion of shot noise corrections is outside the scope of this contribution.1299

1. Equations for arbitrary drift and diffusion terms1300

In this section, we compute the probability distribution of the membrane potential, the firing rate, and the CV of1301

ISI of a neuron whose membrane potential follows the equation1302

dV

dt
= A(V ) +B(V )ζ . (A1)

Eq. (4) of the main text is a special form of Eq. (A1) with1303

A(V ) =
µ− V
τ

, B(V ) =
σ(V )√
τ
. (A2)

The Fokker-Plank equation associated to Eq. (A1), in the Stratonovich regularization scheme, is given by

dP

dt
= − ∂J

∂V
,

where P is the probability of finding a neuron with membrane potential V and J is the corresponding probability1304

current given by1305

J =

(
A+

1

2
B
∂B

∂V

)
P − 1

2

∂B2P

∂V
. (A3)

We are interested in the stationary behavior of the system in which P does not depend on time and the current J
is piecewise constant. In particular, for V between the activation threshold θ and the resting potential Vr, J is equal
to the neuron firing rate ν and the normalization condition implies∫ θ

Vr

P (V )dV + ν τrp = 1 ,

where τrp is the refractory period.1306

To derive the probability distribution of the neuron potential, we introduce in Eq. (A3) the integrating factor

W (V ) = exp

[
−2

∫ V

du
A(u) + 1

2B(u)∂B(u)
∂u

B(u)2

]
and obtain

−2νW (V )θ(V − Vr) =
∂

∂V

[
W (V )B(V )2P (V )

]
.

Using the boundary condition P (θ) = 0, we find1307

P (V ) =
2ν

W (V )B(V )2

∫ θ

V

duW (u)θ(u− Vr) (A4)

and

1

ν
= τrp + 2

∫ θ

−∞
dx

1

W (x)B(x)2

∫ θ

x

duW (u)θ(u− Vr)
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Integrating by parts, we obtain1308

1

ν
= τrp + 2

∫ θ

Vr

dvW (v)

∫ v

−∞
dx

1

W (x)B(x)2
(A5)

This solution has been obtained in general form in [40] and for the specific form of Eq. (A2) in [11].1309

We now compute the coefficient of variation of the interspike interval. The moments Tk of the interspike intervals
of the stochastic process defined by Eq. (A1) are given by (see [42])

B(x)2

2

d2Tk(x)

dx2
+

(
A(x) +

1

2
B(x)

∂B(x)

∂x

)
dTk(x)

dx
= −kTk−1(x)

with boundary conditions

Tk(θ) = 0 ,
dTk(b)

dx
= 0 ,

i.e. θ is an absorbing boundary and b is a reflective boundary (we will then consider the limit b→ −∞). The general1310

solution of an equation of the form1311

d2f(x)

dx2
+ P (x)

df(x)

dx
= Q(x) (A6)

is

f(x) =

∫ x

θ

dt

∫ t

−∞
dzQ(z) exp

(∫ z

t

dwP (w)

)
.

For T1(x) we have

P (x) =
2A(x) +B(x)∂B(x)

∂x

B(x)2
, Q(x) = − 2

B(x)2

For T2(x) we look for a solution of the form

T2(x) = T1(x)2 +R(x)

and find that R obeys to an equation of the form of Eq. (A6) with

P (x) =
2A(x) +B(x)∂B(x)

∂x

B(x)2
, Q(x) = −2

(
dT1(x)

dx

)2

Combining the previous results, the CV of ISI is obtained as1312

CV 2 =
R(x)

T1(x)2
; (A7)

the explicit expression of the CV is given in the following section.1313

Eqs. (17), (10) and (15) of the main text have been obtained from Eqs. (A4), (A5) and (A7) using Eq. (A2).1314

2. Equations for conductance-based LIF neurons1315

Starting from Eqs. (4,5) of the main text, we write the different terms as

τ−1 = τL
−1 + aK ω−1 , µ = τ{EL/τL + aK[rEEE + rIgγEI ]} ,

σ2 = a2K
τ

χ

[
(V − ES)

2
+ ED

2
]
,

(A8)

where, to shorten the expressions, we have introduced two auxiliary variables with time dimension

ω−1 = rE + rIgγ , χ−1 = rE + rIg
2γ , (A9)
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FIG. 7. Drift and diffusion terms of Eq. (4) as a function of voltage. (A) Input drift as a function of membrane
potential V produced with both inhibitory and excitatory inputs (black line), excitatory inputs only (red dotted line), or
inhibitory inputs only (blue dotted line). The drift term decreases monotonically with V and it is zero at V = µ, which is a
stable fixed point of the deterministic dynamics. (B) The noise variance is quadratic in V . Its minimum at V = ES is equal to

ED

√
a2K/χ. Note that the minimum amplitudes of drift and variance are obtained at different values of V .

as well as two variables with voltage dimensions,

ES = χ
(
rEEE + rIg

2γEI
)
, ED = χ

√
rErIg2γ (EE − EI) . (A10)

The terms − (V − µ) /τ and σ(V )ζ/
√
τ of Eq. (4) represent the input drift and noise to the membrane dynamics1316

respectively. The voltage dependence of these terms is sketched in Fig. 7.1317

In the large K limit, the different terms in Eq. (4) scale as1318

τ ∼ ω

aK
, µ ∼ ω (rEEE + rIgγEI) , σ

√
τ ∼ ω√

χK

√
(V − ES)

2
+ ED

2 ; (A11)

while the values of ω, µ, ES, and ED are independent of K. It follows that the noise term σ
√
τ and the time constant1319

τ in Eq. (4) become small in the strong coupling limit. This result is analogous to what we obtained in the main text1320

with the effective time constant approximation, since this approximation does not change how these terms scale with1321

a and K.1322

We now insert the drift and diffusion terms of the conductance-based LIF neuron in Eqs. (A4), (A5), and (A7),1323

and obtain1324

P (V ) =
2νχEDe

−F(V )
a

a2K
[
(V − ES)

2
+ ED

2
] ∫ vmax

u(V )

dxθ(x− u(Vr))e
F(x)
a , (A12)

1325

1

ν
= τrp +

2χ

a2K

∫ vmax

vmin

dv

∫ v

−∞
dx

1

x2 + 1
exp

[
F (v)− F (x)

a

]
, (A13)
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and1326

CV 2 =
8χ2ν2

a4K2

∫ vmax

vmin

dv

∫ v

−∞
dz exp

[
F(v)− F(z)

a

]{∫ z

−∞
dw

1

w2 + 1
exp

[
F(z)− F(w)

a

]}2

(A14)

where1327

F(x) =
2χ

aKτ

[
1

2

(
1− a2Kτ

2χ

)
log(x2 + 1)− α arctan(x)

]
, u(V ) =

V − ES

ED

,

vmin = u(Vr) , vmax = u(θ) , α = u(µ) .

(A15)

Eqs. (A12) and (A13) are analogous to those derived in [11]. To simplify the following analysis, we will neglect the1328

contribution of the term a2Kτ/2χ, which derives from the regularization scheme. This assumption is justified by the1329

fact that, for large K, τ ∼ 1/aK and the factor a2Kτ/2χ is of order a� 1.1330

Appendix B: Calculations in the strong coupling regime - Single neurons1331

In the main text, we derived a simplified expression for the single neuron response neglecting the dependency of1332

noise on membrane potential. In this section we generalize this result to the case in which the full noise expression1333

is considered. We compute simplified expressions of the single neuron transfer function and CV, both in the sub-1334

threshold regime µ < θ, and the supra-threshold regime µ > θ. These expressions are validated numerically in Fig. 81335

and used in the last part of this section to define a scaling relation between a and K which preserves single neuron1336

firing in the strong coupling limit.1337

FIG. 8. Response of single conductance-based neuron to noisy inputs. Estimates of firing rate (A, B, E, F), µ (C,
G) and CV (D, H) obtained with numerical integration of Eqs (A13), (13) and (A14) for different values of a and K (colored
dots). For the two regimes µ < θ (first row) and µ > θ (second row), the transfer function saturates as K increases. Note the
same change in a has a more drastic effect if µ < θ, this is due to the exponential dependence that appears in Eq. (B6). The
approximated expressions (continuous lines) capture the properties of transfer function (A Eq. (B6) and E, Eq. (B4)) and CV
(C, Eq (B17) and G, Eq (B9)). For small inputs (F), Eq. (B4) fails to describe the transfer function for some values of K
because the corresponding µ is below threshold. Simulations parameter are: g = 12; γ = 1/4; η = 1.5 (top) or 0.6 (bottom).
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1. Single neuron transfer function at strong coupling1338

The starting point of our analysis is the observation that the integrand in Eq. (A13) depends exponentially on1339

1/a � 1. This suggests to perform the integration with a perturbative expansion of the exponent. We will show1340

below that, since the exponent has a stationary point at x = v = α (see Fig. 9), the integration gives two qualitatively1341

different results if α is larger or smaller than the upper bound of the integral vmax. Moreover, since the condition1342

α ≶ vmax corresponds to θ ≶ µ, the two behaviors correspond to supra/sub-threshold regimes, respectively.1343

FIG. 9. Graphical representation of the exponent in Eq. (A13) The function F (v) − F (x) is stationary at x = v = α,
this point is a maximum for x and a minimum for v. Parameters are as in Fig. 7. In this figure, α = 1.2 (black diamond).

Supra-threshold regime vmax < α (θ < µ)1344

The exponent in Eq. (A13) is negative for every value of x, except for x = v in which it is zero. The integral in x can1345

be written has1346

I =

∫ v

−∞
dx g(x) e

fv(x)
a =

∫ v

−∞
dx g(x) e

1
a (f ′v(v)(x−v)+f ′′v (v)/2(x−v)2+... ) (B1)

With a change of variable z = (x− v)/a we obtain1347

I = a

∫ 0

−∞
dz g(v + az) ef

′
v(v)z+af ′′v (v) z

2

2 +... (B2)

Neglecting all the terms of order a we get1348

I = a
g(v)

f ′v(v)
. (B3)

Performing the integration in v we obtain1349

1

ν
= τrp + τ log

(
µ− Vr
µ− θ

)
. (B4)

Eq. (B4) is the transfer function of a deterministic conductance-based neuron with the addition of the refractory1350

period. This is not surprising since the noise term becomes negligible compared to mean inputs in the small a limit.1351
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In Fig. 8B we show that Eq. (B4) gives a good description of the transfer function predicted by the mean field theory1352

in the supra-threshold regime.1353

Sub-threshold regime vmax > α (θ > µ)1354

First we consider α < vmin (µ < Vr). For every value of v, the integral in x in Eq (A13) has a maximum in the1355

integration interval, hence it can be performed through saddle-point method and gives1356

1

ν
− τrp =

√
4πχτ

a2K(α2 + 1)

∫ vmax

vmin

dv exp

[
F(v)− F(α)

a

]
. (B5)

In the last equation, the exponent in the integrand has a minimum for v = α and is maximum at v = vmax; we expand1357

the exponent around v = vmax and, keeping term up to the first order, obtain1358

1

ν
− τrp = τ

√
πa2Kτ

χ(α2 + 1)

v2
max + 1

| vmax − α |
exp

[
F(vmax)− F(α)

a

]
. (B6)

In the regime vmin < α < vmax, the integral in v of Eq. (A13) can be divided into three parts1359 ∫ vmax

vmin

dv =

∫ α−ε

vmin

dv +

∫ α+ε

α−ε
dv +

∫ vmax

α+ε

dv ; (B7)

the third integral is analogous to case α < vmin, hence it has an exponential dependency on the parameters and1360

dominates the other terms. In Fig. 8A we show that Eq. (B6) gives a good description of the transfer function1361

predicted by the mean field theory for µ < θ.1362

2. Single neuron CV of ISI at strong coupling1363

In this section we provide details of the derivation the approximated expressions of the response CV . Starting from1364

the mean field result of Eq. (A14), we compute integrals using the approach discussed above.1365

Suprathreshold regime vmax < α (θ < µ)1366

The inner integral in Eq. (A14) yields in the small a limit1367 ∫ z

−∞
dw

1

w2 + 1
exp

[
F(z)− F(w)

a

]
=

a

z2 + 1

1
dF(z)
dz

(B8)

from which we obtain1368

CV 2 = a
ν2(aKτ)3

a2K2χ

[
log

(
vmin − α
vmax − α

)
+
−3α2 + 4αvmax + 1

2(α− vmax)2
− −3α2 + 4αvmin + 1

2(α− vmin)2

]
(B9)

hence the rescaling needed to preserve the deterministic component a ∼ 1/K produces CV 2 ∼ a � 1. We validated1369

this result numerically in Figs. 8H and 10F.1370

Subthresold regime vmax > α (θ > µ)1371

The integral defining the CV , Eq. (A14), can be expressed as1372 ∫ v

−∞
dz exp

[
F(v)− F(z)

a

]
g(z) =

∫ v∗

−∞
dz exp

[
F(v)− F(z)

a

]
g(z) +

∫ v

v∗
dz exp

[
F(v)− F(z)

a

]
g(z) (B10)

with1373

g(z) =

{∫ z

−∞
dw

1

w2 + 1
exp

[
F(z)− F(w)

a

]}2

, v∗ = α− ε . (B11)

The first integral gives1374 ∫ v∗

−∞
dz exp

[
F(v)− F(z)

a

]
g(z) =

a3

(v∗ + 1)2
[
dF(v∗)
dz

]3 (B12)
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In the second integral1375

g(z) =
aπ

(α2 + 1)2 d
2F(α)
dz2

exp

[
2F(z)− 2F(α)

a

]
. (B13)

from which we get1376 ∫ v

v∗
dz exp

[
F(v) + F(z)− 2F(α)

a

]
aπ

(α2 + 1)2 d
2F(α)
dz2

. (B14)

Integrating in z we obtain1377 ∫ v

v∗
dz exp

[
F(z)

a

]
=

a
dF(v)
dz

exp

[
F(v)

a

]
. (B15)

Integrating in v we obtain1378

CV 2 =
8χ2ν2π

(α2 + 1)2 d
2F(α)
dz2

(
dF(vmax)

dz

)2

exp
[
F(vmax)−F(α)

a

]
√
aK

2

. (B16)

Using Eq. (B6) we obtain1379

CV = 1− ντrp , (B17)

which corresponds to the CV of the ISIs of a Poisson process with dead time, with rate ν and refractory period τrp.1380

We validated this result numerically in Figs. 8D and 10C.1381

3. Scaling relations preserving firing in the strong coupling limit1382

In this section we use the simplified expressions derived above to define scaling relations of a with K which preserves1383

neural response in the strong coupling limit. Importantly, the scaling defined here depends on the operating regime1384

of the neuron, i.e. on the asymptotic value of µ.13851386

In the limit of large K, terms in Eq. (A8) can be written as

τ−1 = aKνX (1 + ηgγ) , ω−1 = νX (1 + ηgγ) , χ−1 = νX
(
1 + ηg2γ

)
, (B18)

while µ, ED, ES, vmax, α and the function F(x) are independent of K, a and νE . We have shown in the previous1387

section that the single neuron transfer function is given by1388

1

ν
= τrp +

Q

νE
(B19)

with1389

Q =


(

1√
aK

exp F(vmax)−F(α)
a

)√
π(1+ηg2γ)

(1+ηgγ)3(α2+1)

v2max+1
|vmax−α| for µ < θ

1
aK(1+ηgγ) log

(
µ−θ
µ−Vr

)
for µ > θ

(B20)

For µ > θ, the parameters a and K in Eq. (B20) appear only in the combination aK. It follows that a rescaling1390

a ∼ 1

K
(B21)

leaves invariant the neural response for large K. For µ < θ, Eq. (B20), and hence the transfer function, is invariant1391

under the rescaling1392

K ∼ 1√
a

exp

[
F(vmax)− F(α)

a

]
(B22)
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FIG. 10. Scaling relationships preserving firing in the large K limit. Colored dots represent mean field transfer function
(A, B), CV (C, D) and membrane potential (E, F) obtained from Eqs. (A13), (A14) and (A8), respectively. Different colors
correspond to different values of a and K which are scaled according to Eqs. (B22) (first row) and (B21) (second row). Mean
field predictions are well described by the relevant approximated expressions (continuous lines). For µ < θ transfer function
and CV are described by Eqs. (B22) (A) and (B17) (C); both quantities are invariant as K increases. For µ > θ, transfer
function and CV are described by Eqs. (B21) (A) and (B9) (C); note that, as explained in the text, the firing is preserved
while the CV becomes smaller as K increases (different line colors correspond to different values of K). Parameters: g = 12;
γ = 1/4.

In Fig. 10A,D we show neural responses computed for different values of K with a rescaled according to Eqs (B21)1393

or (B22); as predicted the network transfer function remains invariant as K increases. Note that the response remains1394

nonlinear in the limit of large K; we will show in the next section that in the network case, because of the self1395

consistency relation, nonlinearities are suppressed by the scaling relation.1396

Finally, from Fig. 10C,F, we see that the rescaling preserves the CV for µ < θ and suppresses it for µ > θ. In the1397

case µ < θ, the CV is given by Eq. (B17). This expression shows that the scaling relation of Eq. (B22) also leaves1398

invariant the CV . Interestingly, in some parameter regime, the CV in Figs. 8D and 10C shows a non-monotonic1399

behavior with νX which is not captured by Eq. (B17). In particular, a CV above one 1 is observed when µ is below1400

the reset Vr. As pointed out in [76], this supra-Poissonian firing is explained by the fact that, when µ < Vr, spiking1401

probability is higher just after firing that it is afterwards. In agreement with this interpretation, we find that the1402

non-monotonic behavior of the CV is disappears in the large K limit, where the region of inputs for which µ < Vr1403

becomes negligible. Thus, our analysis shows that the irregularity of firing is preserved in the strong coupling limit1404

of a single neuron with µ < θ.1405

In the case µ > θ, the CV is given by Eq. (B9). This expression shows that the scaling relation of Eq. (B21)1406

produces a CV which decreases as 1/K in the strong coupling limit. It follows that, in a single neuron with µ > θ,1407

the strong coupling limit produces finite firing that is regular.1408

Starting from the next section we will focus our attention to network of conductance-based neurons. Since we are1409

interested in describing the irregular firing observed in the cortex, we will focus our study on networks with µ < θ.1410
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Appendix C: Firing rate and scaling relation in leaky integrate-and-fire neuron models with1411

voltage-dependent currents1412

In the main text, we have shown that, when coupling is strong and a� 1, the response of a single LIF neuron with1413

conductance-based synapses is well approximated by Eq. (12), i.e. Kramers escape rate. Using this expression, we1414

have show that the scaling relation of Eq. (14) allows finite firing in single neuron and in networks of neurons. Here,1415

we show that the first order approximation of this scaling, i.e. a ∼ 1/ log(K), appears also in neuron models with1416

additional biophysical details, such as spike generating currents [43] and voltage-gated subthreshold currents [23], as1417

long as coupling is strong, a is small, and synapses are conductance-based.1418

We consider integrate-and-fire models featuring voltage-dependent currents, indicated here as φ(V ), and1419

conductance-based synapses. In these models, the membrane potential dynamics can be written as1420

Cj
dVj
dt

= −
∑

A=L,E,I

gjA (Vj − EA) + ψ(V ). (C1)

In the leaky integrate-and-fire model (LIF), ψ(V ) = 0 and Eq. (C1) reduces to Eq. (1) analyzed in the main text. In1421

the exponential integrate-and-fire model (EIF) [43], the function ψ(V ) = ∆TgL exp[(V − θ)/∆T ] describes the spike1422

generation current; in this model, once the membrane potential crosses the threshold θ it diverges to infinity in finite1423

time. The current generated by inward rectifier voltage-gated channels, such as the one recently reported in [23], is1424

captured by an expression of the form ψ(V ) = −gin(V )(V − Ein), where gin(V ) and Ein represent the conductance1425

and the reversal potential of the channels, respectively; in the case of [23], 1/gin(V ) was shown to well approximated1426

by a linear increasing function of V .1427

The dynamics Eq. (C1), following an approach analogous to the one we used for the derivation of Eq. (4), can be1428

approximated by1429

τ
dV

dt
= −∂H(V )

∂V
+ σ
√
τζ , H(V ) =

1

2
(V − µ)

2 − τ

τLgL

∫ V

ψ(x)dx (C2)

where ζ is a white noise term, with zero mean and unit variance density, while τ , µ and σ(V ) are as in Eq. (5). In what1430

follows, as in the main text, we use the effective time constant approximation [39], i.e. we neglect the multiplicative1431

component of the noise term in Eq. (C2), and make the substitution σ(V ) → σ(µ∗), where µ∗ is the mean value of1432

the membrane potential dynamics.1433

The firing rate of a neuron following Eq. (C2) can be computed exactly using Eq. (A5) and is given by1434

ν =

[
τrp +

2τ

σ2

∫ ∞
−∞

dx

∫ ∞
max(Vr,x)

exp

(
H(z)−H(x)

σ2

)
dz

]−1

. (C3)

In what follows, we provide a more intuitive derivation of the single neuron response, which is valid in the biologically1435

relevant case of a� 1. The function H in Eq. (C2) can be though of as an energy function which drives the dynamics1436

of the membrane potential. In the case of LIF neurons, H is a quadratic function with a minimum at V = µ. In1437

neuron models with a spike generation current, such as the EIF model [43], the shape of the function H far from1438

threshold is qualitatively similar to that of the LIF model (with a minimum at V = µ∗), but becomes markedly1439

different close to threshold, where the potential energy has a maximum at V = θ∗ and goes to −∞ for V > θ∗. Here,1440

we focus on the case in which additional subthreshold voltage-gated currents do not lead to additional minima of the1441

energy function, a scenario that can happen with potassium inward-rectifier currents (e.g. see [77] chapter 4.4.3). In1442

models in which H has a single minimum in the subthreshold range at µ∗, and a maximum at θ∗, the firing rate of a1443

neuron when input noise is small (i.e. when a � 1) can again be computed using Kramers escape rate, which gives1444

the average time it take for the membrane potential to go from µ∗ to θ∗, (see [42] section 5.5.3)1445

1

ν
− τrp =

2πτ̄Ῡ

aKνX
exp

(
∆̄

a

)
(C4)

where

Ῡ =

(
d2H

dV 2

∣∣∣
θ∗

d2H

dV 2

∣∣∣
µ∗

)− 1
2

, ∆̄ =
H(θ∗)−H(µ∗)

σ̄
, τ̄ = aKνXτ , σ̄ =

σ√
a
,

while .̄ indicates quantities that remain of order 1 in the small a limit, provided the external inputs νX are at least1446

of order 1/(aKτL). Eq. (C4) is the generalization of Eq. (12) to the case of integrate-and-fire neuron models with1447

voltage-dependent currents; it shows that, at the dominant order, finite firing emerges if a ∼ 1/ log(K). Moreover,1448

Eq. (C4) shows that corrections to the logarithmic scaling depend on the specific type of voltage-dependent currents1449

used in the model.1450
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Appendix D: Calculations in the strong coupling regime - Networks1451

In this section, we show how the results on the strong coupling limit of single neuron response can be generalized to1452

the network case. First, we analyze the problem in the case in which excitatory and inhibitory neurons have the same1453

biophysical properties (model A). In this model we start by discussing the results using the effective time constant1454

approximation, and then discuss the full results. Then we study the case in which excitatory and inhibitory neurons1455

have different biophysical properties (model B).1456

1. Model A, effective time constant approximation1457

As discussed in the main text, the network response in model A with the effective time constant approximation1458

is obtained solving the self-consistency condition given by (19) and Eq. (10). At strong coupling, this condition can1459

be simplified to the form of Eq. (12). In the strong coupling limit, when νX � 1/aKτL and ν � 1/τrp, the right1460

hand side of Eq. (10) depends on ν and νX only through their ratio. Therefore, we look for solutions of the simplified1461

self-consistency condition with a Taylor expansion1462

ν

νX
=
k=∞∑
k=1

ρkx
k−1 , x = τrpνX (D1)

Keeping only terms up to first order in x, the self-consistency condition becomes

1

ρ1
−
(

1 +
ρ2

ρ2
1

)
x = Q(ρ1) + ρ2

dQ(y)

dy

∣∣∣
y=ρ1

x

from which we find1463

ρ1 =
1

Q(ρ1)
. (D2)

The solution of Eq. (D2) provides the linear component of the network response; this is preserved in the strong
coupling limit with an expression analogous to Eq. (14) but with

rE
νX

= 1 + ρ1 ,
rI
νX

= ρ1 .

This uniquely defines a scaling between a and K (see Fig. 3A for an example of the scaling function). We test the1464

validity of our result in Fig. 3B. The numerical analysis shows that, as K increases, the scaling relation prevents1465

saturation and suppression of the network response. However, unlike what happens in the single neuron case, the1466

shape of the transfer function is not preserved and becomes increasingly linear as K becomes larger. This is analogous1467

to what happens in the balanced state model [7, 8, 10, 72], where the network transfer function becomes linear in the1468

strong coupling limit. For the case under investigation here, we can understand this suppression of nonlinearities by1469

looking at the second order terms in the expansion of Eq. (D1). Keeping the dominant contribution in a, we find1470

ρ2 ∼ a
ρ1σ̄

2

2v̄max

(
σ̄ dµdy + (θ − µ)dσ̄dy

) . (D3)

Hence ρ2 goes to zero as a decreases, producing a linear transfer function. This follows directly from the self-consistency1471

relation and is not present in the single neuron case, where in fact a nonlinear transfer function is observed in the large1472

K limit. Fig. 3B shows that linearity is reached really slowly with K; this follows directly from Eq. (D3) where the1473

suppression of nonlinear terms is controlled by a, which slowly goes to zero with K (approximately logarithmically).1474

2. Model A, multiplicative noise1475

In this section, we generalize the approach used above, relaxing the effective time constant approximation.14761477

As discussed in Appendix B, Eq. (A13) in the strong coupling limit becomes1478

1

ν
= τrp +

Q

νX
(D4)
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FIG. 11. Strong coupling limit of networks of conductance-based neurons in model A. Numerically computed
network transfer function (A), CV (B) and probability distribution of the membrane potential (D) obtained from Eqs. (D4),
(A12) and (B17). Different colors correspond to different values of a and K which have been changed according to the scaling
relation (D10) (C). As K increases the network transfer function and CV converges to the expression derived in the main
text (black lines). Note that, unlike the case of single neuron, the network transfer functions becomes linear. The probability
distribution of the membrane potential becomes Gaussian and slowly converges to a delta function. Panels (E) and (F) show
the network gain and membrane potential for different values of a at fixed K. Note that, unlike what happens in current-based
networks (black dashed lines), the gain is not monotonic with g. Simulation parameters are as in Fig. 8; in panels A-D g = 20.

with1479

Q =

{
1√
aK

exp

[
F(vmax)− F(α)

a

]}√√√√√√ π
[
1 + ν

νX
(1 + g2γ)

]
(

1 + ν
νX

(1 + gγ)
)3

(α2 + 1)

v2
max + 1

| vmax − α |
, (D5)

and

τ−1 = aKω−1 , ω−1 = νX

[
1 +

ν

νX
(1 + gγ)

]
, χ−1 = νX

[
1 +

ν

νX
(1 + g2γ)

]
,

µ =
EE + ν

νX
(EE + gγEI)

1 + ν
νX

(1 + gγ)
, ES =

EE + ν
νX

(EE + g2γEI)

1 + ν
νX

(1 + g2γ)
,

ED =
(EE − EI)

√
(1 + ν

νX
) ν
νX
g2γ

1 + ν
νX

(1 + g2γ)
.

(D6)

Here we assumed aK � 1/τLνX so that the function Q depends on ν and νX only through the combination ν/νX .1480

We will show below that a scaling relation analogous to that of single neurons holds, hence for K large enough1481
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aK � 1/τLνX is automatically implemented. To solve the self consistency condition, we express the firing rate ν with1482

a Taylor expansion1483

τrpν =
k=∞∑
k=1

ρkx
k , x = τrpνX . (D7)

Note that in Eq. (D7) we assumed ρ0 = 0, we will come back to this point at the end of the section. Under this1484

assumption y := ν/νX =
∑k=∞
k=1 ρkx

k−1 and the function Q depends only on powers of the dimensionless variable x.1485

Keeping only terms up to first order in x, Eq. (D4) becomes1486

1

ρ1
−
(

1 +
ρ2

ρ2
1

)
x = Q(ρ1) + ρ2

dQ(y)

dy

∣∣∣
y=ρ1

x (D8)

from which we find1487

ρ1 =
1

Q(ρ1)
. (D9)

The solution of Eq. (D9) provides the linear component of the network response, i.e. its gain; we will discuss this1488

function in more detail at the end of this section.1489

From Eq. (D9) we find that the network gain ρ1 is preserved in the strong coupling limit if the factor1490

1√
aK

exp

[
F(vmax)− F(α)

a

]
, (D10)

is constant. Eq. (D10) uniquely defines a scaling between a and K (see Fig. 11C for an example of the scaling function).1491

We test the validity of the scaling in Fig. 11 as follows: given a set of parameters a, K and ρ1, we compute numerically1492

the transfer function from Eq. (A13), then we increased K, determined the corresponding change in a using Eq. (D10)1493

and compute again the transfer function; results of this procedure are shown in Fig. 11A. The numerical analysis1494

shows that, as K increases our scaling relation prevent saturation and the network response remains finite.1495

As in the case with diffusion approximation, the shape of the transfer function is not preserved by the scaling and1496

an increasing linear response is observed. We can understand this suppression of nonlinearities by looking at the1497

second order terms in the expansion of Eq. (D4); we find1498

ρ2 =
−ρ2

1

ρ1
d log(Q(y))

dy + 1
, (D11)

and, keeping the dominant contribution in 1/a at the denominator,1499

ρ2 ∼
−a ρ1

dF(vmax(y),y)
dy

∣∣∣
ρ1

+ dF(α(y),y))
dy

∣∣∣
ρ1

. (D12)

Hence ρ2 goes to zero as a decreases, producing a linear transfer function. The nonlinearities at low rate in Fig. 11A1500

(e.g. see red and yellow lines) show that our assumption ρ0 = 0 is not valid in general. However it turns out that the1501

above defined scaling relation suppresses also these nonlinearities in the limit of strong coupling (e.g. blue and cyan1502

lines).1503

We now characterize the dependency of the transfer function gain, i.e. its slope, on network parameters. For fixed1504

network parameters, the network gain ρ1 is defined as the solution of Eq. (D9); solutions as a function of a and g1505

are shown in Fig. 11E. At fixed values of a, the gain initially decreases as g increases and, for g large enough, the1506

opposite trend appears. This behavior is due to two different effects which are produced by the increase of g: on1507

one hand, it increases the strength of recurrent inhibition; on the other hand, it decreases the equilibrium membrane1508

potential µ and bring it closer to the inhibitory reversal potential Ei, which in turn weakens inhibition (see Fig. 11F).1509

Fig. 11E shows that the gain is finite only for a finite range of the parameter g; divergences appear because recurrent1510

inhibition is not sufficiently strong to balance excitation. At small g, the unbalance is produced by week efficacy of1511

inhibitory synapses; at large g, inhibition is suppressed by the approach of the membrane potential to the reversal1512

point of inhibitory synapses. Increasing the value of a produces an upward shift in the curve and, at the same time,1513

decreases the range of values in which the gain is finite. The observed decrease in gain generated at low values of g is1514
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observed also networks of current-based neurons [10] where the gain is found to be 1/(gγ − 1). Finally, we note that1515

the difference between conductance and current-based model decreases with a.1516

To conclude this analysis, we give an approximated expression of the probability distribution of the membrane1517

potential of Eq. (A12) which, in the strong coupling limit, becomes1518

P (V ) =
νω

|vmax − µ|

[
u (Vmax)

2
+ 1

u (V )
2

+ 1

]
e

F(vmax)−F(V )
a

aK
(D13)

where Vmax is the value of the membrane potential V which maximizes the integrand of Eq. (A12) while the function1519

u() has been defined in Eq. (A15). Examples of the probability distribution and the corresponding approximated1520

expressions are given in Fig. 11D.1521

3. Model B, multiplicative noise1522

In this section we generalize the results obtained so far to the case of networks with excitatory and inhibitory1523

neurons with different biophysical properties.1524

FIG. 12. Limit of large K for networks, model B. Firing rate and CV of excitatory and inhibitory neurons in a network
predicted by the mean field model for different values of inputs and K; the expected asymptotic behavior is shown in black. On
the left (C, F),we show the corresponding scaling relations with dots associated to the connectivity parameters. Simulations
parameter: the two populations have ge = 20.0 and gi = 19.0; for both populations the a = 0.0005 for K = 105; other
parameters as in Fig. 8.

1525

1526

a. Model definition1527

Here we take into account the diversity of the two types of neurons with1528

τj = τE , ajm = aEX , aEE , aEI ; (D14)

for excitatory neurons and1529

τj = τI , ajm = aIX , aIE , aEE ; (D15)

for inhibitory neurons. We use the parametrization

aEX = aE , aEE = aE , aEI = gEaE ,

aIX = aI , aIE = aI , aII = gIaI ,
(D16)
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and

KEX = KE , KEE = KE , KEI = γEKE ,

KIX = KI , KIE = KI , KII = γIKI .
(D17)

Eq. (1) becomes1530 {
τE

dVE
dt = − (VE − µE)− σE(VE)

√
τEζE ,

τI
dVI
dt = − (VI − µI)− σI(VI)

√
τIζI .

(D18)

The expressions for excitatory neurons are

τ−1
E = τ−1

L,E + aEKEω
−1
E , ω−1

E = νEX + νE + gEγEνI ,

µE = τE{EL + aEKEτL,E [νEXEE + νEEE + νIgEγEEI ]} ,

σ2
E = a2

EKE
τE
χE

[
(V − ES,E)

2
+ ED,E

2
]
, χ−1

E = νEX + νE + g2
EγEνI

ES,E = χE
[
νEXEE + νEEE + νIg

2
EγEEI)

]
,

ED,E = χE

√
(νEX + νE) g2

EγEνI (EE − EI) ;

(D19)

analogous expressions are valid for inhibitory neurons.1531

The firing rate is given by solving a system of two equations1532 
1
νE
− τrp = 2χE

a2EKE

∫ vmax,E
vmin,E

dv
∫ v
−∞ dx 1

x2+1 exp
[
FE(v)−FE(x)

aE

]
,

1
νI
− τrp = 2χI

a2IKI

∫ vmax,I
vmin,I

dv
∫ v
−∞ dx 1

x2+1 exp
[
FI(v)−FI(x)

aI

] (D20)

with1533

FE(x) =
2χE

aEKEτE

[
1

2
log(x2 + 1)− αE arctan(x)

]
,

vmin,E =
Vr − ES,E

ED,E
, vmax,E =

θ − ES,E

ED,E
, αE =

µE − ES,E

ED,E
.

(D21)

and analogous expressions for the inhibitory population. The probability distribution of the membrane potential and1534

the CV are straightforward generalizations of Eqs. (A12) and (A14).1535

b. Scaling analysis1536

We parametrize inputs to the two populations as νEX and νIX = ηνEX . Using an analysis analogous to the one1537

depicted above, we obtain a simplified expression for the self-consistency Eq. (D20) that is1538 {
1
νE
− τrp = QE(νE/νEX ,νI/νEX)

νEX
,

1
νI
− τrp = Qi(νE/νEX ,νI/νEX)

νEX
,

(D22)

where1539

QE =

[
1

√
aEKE

exp
FE(vmax,E)− FE(αE)

aE

]√√√√√√ π
[
1 + νE

νEX
+ g2

EγE
νI
νEX

]
[
1 + νE

νEX
+ gEγE

νI
νEX

]3
(α2
E + 1)

v2
max,E + 1

| vmax,E − αE |
, (D23)

and1540

QI =

[
1

√
aIKI

exp
FI(vmax,I)− FI(αI)

aI

]√√√√√√ π
[
η + νE

νEX
+ g2

IγI
νI
νEX

]
[
η + νE

νEX
+ gIγI

νI
νEX

]3
(α2
I + 1)

v2
max,I + 1

| vmax,I − αI |
. (D24)
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We investigate the solution in the strong coupling limit using an expansion1541

τrpνE =
k=∞∑
k=1

ρEk x
k , τrpνI =

k=∞∑
k=1

ρIkx
k , x = τrpνEX , (D25)

and obtain1542 {
ρE1 = 1

QE(ρE1 ,ρ
I
1)

ρI1 = 1
QI(ρE1 ,ρ

I
1)

. (D26)

Eq. (D26) defines the gain of the excitatory and inhibitory populations. As for model A, requiring that network gain1543

is preserved in the large K limit is equivalent to assuming the products1544

1
√
ajKj

exp
Fj(vmax,j)− Fj(αj)

aj
(D27)

constant; these constraints defines how synaptic strength should scale with K to preserve the response gain. We note1545

that, since Fj(vmax,j)−Fj(αj) is different for the two populations, in the general case there are two different scalings1546

for the two populations; in Fig 12 we verify this prediction.1547

Appendix E: Simulations vs theory1548

All the results showed in the main text are based on the mean field analysis of the network dynamics. in this1549

section we investigate how the predictions of the mean field theory compare to numerical simulations of networks of1550

conductance-based neurons.15511552

Using the simulator Brian2 [66], we simulated the dynamics of networks of spiking neurons defined by Eq. (1). We1553

investigated networks of NE excitatory and NI inhibitory neurons; the two groups were driven by two populations of1554

Poisson units of size NEX and NIX , respectively. Simulations were performed for NE = NI = NEX = NIX = 10K1555

and 100K, with no significant differences between the two. We used uniformly distributed delays of excitatory1556

and inhibitory synapses. Delays were drawn randomly and independently at each existing synapse from uniform1557

distributions in the range [0, 10]ms (E synapses) and [0, 1]ms (I synapses). For fixed network parameters, the1558

dynamics was simulated for 10 seconds with a time step of 10µs. We performed simulations for different values1559

of K; the values of a was rescaled according to the scaling relation of Eq. (D10). From the resulting activity we1560

measured firing rate, CV and probability distribution of the membrane potential; results are shown in Fig. 13. Mean1561

field predictions are in qualitative agreement with numerical simulations, and the agreement improves as a decreases.1562

Deviations from mean-field are expected to arise potentially from three factors: (1) Finite size of conductance jumps1563

due to pre-synaptic action potentials; (2) Correlations in synaptic inputs to different neurons in the network due1564

to recurrent connectivity; (3) Temporal correlations in synaptic inputs due to non-Poissonian firing behavior. In1565

our simulations, deviations due to (1) and (2) become small when both a and the connection probability are small.1566

Deviations due to (3) become small when ν � 1/τrp, since as shown in Eq. (B17) of Appendix B, the statistics of1567

presynaptic neurons firing tend to those of a Poisson process. As predicted by the mean field analysis, with increasing1568

K (and decreasing a) the network response becomes linear and approaches the asymptotic scaling; the firing remains1569

irregular, as shown by the CV , and the membrane potential becomes Gaussian distributed.1570

Appendix F: Effects of heterogeneity in the connectivity between neurons1571

In this section, we describe how fluctuations in single cell properties modify the expressions described above; in1572

particular we investigate the effect of heterogeneities in number of connections per neuron in the simplified framework1573

of model A. The formalism described here is a generalization to networks of conductance-based neurons of the analysis1574

done in refs [56, 78] for networks of current-based neurons.1575

We assume that the i-th neuron in the network receives projections from Ki
X , Ki

E and Ki
I external, excitatory and1576

inhibitory neurons, respectively. These numbers are drown randomly from Gaussian distributions with mean K (γK)1577

and variance ∆K2 (γ2∆K2) for excitatory (inhibitory) synapses. Note that ∆K2 is assumed to be sufficiently small1578

so that the probability to generate a negative number can be neglected. Fluctuations in the number of connections1579
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FIG. 13. Comparison of mean field theory and numerical simulations. Network transfer function (first row), CV of ISI
distribution (second row) and probability distribution of the membrane potential at νE = 0.05τrp (third row). In every panel
we show mean field prediction (green), results from numerical simulations (red) and value expected in the strong coupling limit
(black). Different columns correspond to different values of K and a which were scaled according to Eq. (D10). The agreement
between network simulations (red) and mean field predictions (green) improves as a decreases, as expected since we used the
diffusion approximation to derive the results. Simulation parameters are: g = 20, NE = NI = NEX = NIX = 100K.

are expected to produce a distribution of rates in the population, characterized by mean and variance ν and ∆ν2. As1580

a result, the rates of incoming excitatory and inhibitory spikes differ from cell to cell and become1581

Ki
Er

i
E = K

(
rE + ∆Ez

i
E

)
, Ki

Ir
i
I = γK

(
rI + ∆Iz

i
I

)
, rE = ν + νX , rI = ν ,

∆2
E = CV 2

K

(
ν2 + ν2

X

)
+

∆ν2

K
≈ CV 2

K

(
ν2 + ν2

X

)
, ∆2

I = CV 2
Kν

2 +
∆ν2

γK
≈ CV 2

Kν
2 ;

(F1)

where rE,I are the average presynaptic rates and ziE,I are realizations of a quenched normal noise with zero mean1582

and unit variance, fixed in a given realization of the network connectivity. Starting from Eq. (F1), the rate νi of the1583

cell is derived as in the case without heterogeneities, the main difference is that it is now a function of the particular1584

realizations of ziE and ziI . The quantities ν and ∆ν2 are obtained from population averages through the self consistency1585
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relations1586 {
ν = 〈ν(zE , zI)〉 ,
∆ν2 = 〈ν(zE , zI)

2〉 − ν2 ,
(F2)

where 〈.〉 represents the Gaussian average over the variables zE and zI . Once ν and ∆ν2 are known, the probability1587

distribution of firing rate in the population is given by1588

P (ν) =
1

2π

∫ ∞
−∞

dzEdzIe
−z2E/2e−z

2
I/2δ [ν − ν(zE , zI)] . (F3)

As showed in the main text (Fig. 4A), Eq. (F3) captures quantitatively the heterogeneity in rates observed in1589

numerical simulations.1590

In the large K (small a) limit, the mathematical expressions derived above simplify significantly. First, as long as1591

the parameter µi of the i-th neuron is below threshold, its rate is given by an expression analogous to Eq. (12) which,1592

for small ∆E,I , can be written1593

Qi = Q exp (Γzi) , Γ2 =

(
∂v2

max

∂rE
∆E

)2

+

(
∂v2

max

∂rI
∆I

)2

, (F4)

where zi is generated from a Gaussian random variable with zero mean and unit variance. Moreover, if responses are1594

far from saturation, the single rate can be written as1595

νi =
νX
Qi

= ν0 exp (−Γzi) , Γ2 = Ω2CV
2
K

a2
, Ω2 =

[(
a

∂v2
max

∂(rE/νX)

)2

(ρ2 + 1)2 +

(
a

∂v2
max

∂(rI/νX)

)2

ρ2

]
(F5)

where ν0 is the rate in the absence of quenched noise (i.e. Eq. (20) of the main text). It is easy to show that, in1596

Eq. (F5), Ω2 is independent of a, K and νX in the large K (small a) limit. Finally, as noted in [56], if the single1597

neuron rate can be expressed as an exponential function of a quenched variable z, Eq. (F3) can be integrated exactly1598

and the distribution of rates is lognormal and given by1599

P (ν) =
1√

2πΓν
exp

(
− (log(ν)− log(ν0))

2

2Γ2

)
. (F6)

Therefore, when the derivation of Eq. (F5) is valid, rates in the network should follow a log normal distribution, with1600

parameters given by1601 ν = ν0 exp
(

Γ2

2

)
∆ν2 = ν2

[
exp

(
Γ2

2

)
− 1
] , (F7)

For Γ2 � 1, we find ∆ν/ν ≈ Γ/2 which scales linearly with CVK , consistent with numerical results shown in Fig. 4C.1602

Appendix G: Finite synaptic time constants1603

In this section, we discuss the effect of synaptic time constant on single neuron and network responses. First, we1604

derive an approximated expression for the single neuron membrane time constant; we then compute approximated1605

expressions which are valid for different values of the ratio τS/τ ; at the end of the section, we discussing the response1606

of networks of neurons with large τS/τ .1607

The single neuron membrane potential dynamics is given by1608 
Cj V̇j(t) = −gjL (Vj − EL)−

∑
A=E,I

gjA(t) (Vj − EA) ,

τE ġ
j
E = −gjE + gjLτE

∑
m ajm

∑
n δ(t− tnm −D)

τI ġ
j
I = −gjI + gjLτI

∑
m ajm

∑
n δ(t− tnm −D)

(G1)
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Using the effective time constant approximation [39], we have1609 
CV̇ = −g0 (V − µ)− gEF (µ− EE)− gIF (µ− EI) ,
τE ġEF = −gEF + σE

√
τEζE ,

τI ġIF = −gIF + σI
√
τIζI ,

(G2)

where gAF represents the fluctuating component of the conductance gA, i.e.1610

gA(t) = gA0 + gAF (t) , (G3)

and1611

〈ζA(t)ζB(t′)〉 = δA,Bδ(t− t′) , g0 = gL + gE0 + gI0 ,

gA0 = aAτARA , σ2
A = a2

AτARA
(G4)

We are interested in stationary response, we introduce the term1612

z = (µ− EE) gEF + (µ− EI) gIF (G5)

with derivative1613

ż = (µ− EE)
−gEF + σEζE

τE
+ (µ− EI)

−gIF + σIζI
τI

(G6)

Since we are interested in understanding the effect of an additional time scale, we can simplify the analysis assuming1614

a unique synaptic time scale τE = τI = τS and obtain1615

τS ż = −z + σz
√
τSζ

σ2
z = σ2

E (µ− EE)
2

+ σ2
I (µ− EI)2 (G7)

To have the correct limit for τS → 0, we impose aA = aA0τL/τS , where aA0 is the value of the synaptic efficacy in the1616

limit of instantaneous synaptic time scale. With these assumptions the system equation becomes1617 {
τ dVdt = − (V − µ)− σ

√
τ
τS
z ,

τs
dz
dt = −z +

√
τSζ .

(G8)

One can check that in the limit τS → 0, the equations become analogous to those of the main text with η = z/
√
τS . In1618

what follows, we provide approximated expressions for the single neuron transfer function in three regimes: small time1619

constant [67], large time constant [69], and for intermediate values [70]. We also note that a numerical procedure to1620

compute the firing rate exactly for any value synaptic time constant was introduced recently, using Fredholm theory1621

[79].1622

1. Single neuron transfer function for different values of τS/τ1623

For τS/τ � 1, as shown in [67], the firing rate can be computed with a perturbative expansion and is given by1624

1

ν
= τ
√
π

∫ ṽmax

ṽmin

dx (1 + erf(x)) , ṽ(x) =
x− µ
σ
− α̃

√
τS
τ
. (G9)

with ᾱ = −ζ(1/2) ≈ 1.46. As shown in Fig. 14, Eq. (G9) generates small corrections around the prediction obtained1625

with instantaneous synapses, and captures well the response for values τS/τ . 0.1.1626

For τS/τ ≈ 1, as shown in [70] using Rice formula [80], the single neuron firing rate is well approximated by the1627

rate of upward threshold crossing of the membrane potential dynamics without reset. Starting from Eq. (G8) and1628

using the results of [70], we obtain1629

ν =
1

2π
√
ττS

exp
[
−v2

max

(
1 +

τS
τ

)]
. (G10)
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FIG. 14. Synaptic time constant suppresses single neuron response in the strong coupling limit. Single neuron
response for different values of K, with a rescaled according to Eq. (14). Rates are plotted as a function of K (first row)
and τS/τ (second row); different columns correspond to different synaptic time constant τS (title). As K increases, because
of the synaptic time constant τS non-negligible compared to the membrane time constant τ , rates computed numerically from
Eq. (23) (black dots) depart from the prediction of Eq. 10 (green). The dependency of the rate on K is captured by Eq. (G9)
(blue) for small values of τS/τ and by Eq. (G11) (red) for large values of τS/τ . This decay cannot be prevented by a new
scaling relation of a with K and provides an upper bound to how much coupling can be increased while preserving response.
Simulations parameter: a = 0.006 for K = 103, g = 12, η = 1.46.

For τS/τ � 1, as shown in [69], the neuron fires only when fluctuations of z are large enough for V to be above1630

threshold; the corresponding rate is given by1631

ν =

∫ ∞
vmax/ε

dw
e−w

2

√
π

1

τrp + τ log
(
vmin−εw
vmax−εw

) , ε =

√
τ

τS
(G11)

As shown in Fig. 14, Eq. (G11) captures the response for values τS/τ & 1 and predicts a strong suppression of response1632

at larger τS/τ .1633

Higher order terms in the τS/τ expansion could be computed using the approach described in [79]. However,1634

Fig. 14 shows that Eqs. (G9-G11) are sufficient to capture quantitatively responses observed in numerical simulations1635

for different regimes of τS/τ . Eqs. (G9-G11) show that the single neuron response is a nonlinear function of input1636

rates, this nonlinearity prevents a scaling relation between a and K to rescue the suppression observed in Fig. 14 and1637

Fig. 6A.1638

2. Network response for τS/τ larger than one1639

In this section, we study responses in networks of neurons with large τS/τ . As in the case of instantaneous synapses,
the network response can be obtained solving the self-consistency relation given by the single neuron transfer function
using input rates

rE = νX + ν , rI = ν .
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FIG. 15. Approximation of network response for large τS/τ . Plots analogous to Fig. 6B,C of the main text. Dots
represent network response as a function of input rate νX , computed numerically from Eqs. (1), (23) for τS = 1ms (green) and
τS = 10ms (red). Continuous lines correspond to the prediction obtained with instantaneous synapses (black) and for large
synaptic time constant (Eqs. (G12,5, G13), colored lines). As explained in the text, the latter predictions are valid only for
large τS/τ ; because of this, we plotted only values obtained for τS/τ > 1. For τS/τ � 1, the network response is well describe
by Eq. (21) of the main text.

In particular, solutions of the implicit equation generated by Eq. (G11) give the network response in the region of1640

inputs for which τS/τ � 1. In this region of inputs, assuming coupling to be strong, the implicit equation becomes1641

ν =

√
τ/τS

τrpvmax
√
π

exp
(
−v2

max

τS
τ

)
. (G12)
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Eq. (G12), which is validated numerically in Fig. 15, implies that firing is preserved if vmax
√
τS/τ is of order one, i.e.1642

if1643

µ ∼ θ − σ
√

τ

τS
∼ θ − 1√

K

σ/
√
a√

τS [νX + ν (1 + gγ)]
. (G13)

Combining the above equation with the definition of µ, we obtained Eq. (21), which captures the behavior of network1644

response observed in numerical simulations for τS/τ � 1 (Fig. 6B and Fig. 15).1645

Eq. (G12) can be used to understand the effect of connection-heterogeneity in networks with large τS/τ . In1646

particular, generalizing the analysis of Appendix F, we found that rates in the network, in the limit of small CVK1647

and large K, are given by1648

νi = ν0 exp

[
ΩS

CVK√
K
zi

]
(G14)

where ν0 is the population average in the absence of heterogeneity (i.e. the solution of Eq. (G12)), and zi is a Gaussian1649

random variable of zero mean and unit variance. The prefactor ΩS , which is independent of a and K, and is given1650

by1651

Ω2
S =

[(
∂f(rE , rI)

∂rE

)2 (
ν2 + ν2

X

)
+

(
∂f(rE , rI)

∂rI

)2

ν2

]
, f(rE , rI) =

v2
max τS
K τ

. (G15)

Eq. (G15) is a generalization of Eq. (22) to the case of large τS/τ . It shows that, in this limit, the state of the network1652

is preserved with connection fluctuations up to CVK ∼ 1/
√
K.1653
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