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Shadmehr R. Population coding in the cerebellum: a machine learning per-
spective. J Neurophysiol 124: 2022–2051, 2020. First published October 28,
2020; doi:10.1152/jn.00449.2020.—The cerebellum resembles a feedforward, three-
layer network of neurons in which the “hidden layer” consists of Purkinje cells (P-
cells) and the output layer consists of deep cerebellar nucleus (DCN) neurons. In
this analogy, the output of each DCN neuron is a prediction that is compared with
the actual observation, resulting in an error signal that originates in the inferior olive.
Efficient learning requires that the error signal reach the DCN neurons, as well as
the P-cells that project onto them. However, this basic rule of learning is violated in
the cerebellum: the olivary projections to the DCN are weak, particularly in adult-
hood. Instead, an extraordinarily strong signal is sent from the olive to the P-cells,
producing complex spikes. Curiously, P-cells are grouped into small populations
that converge onto single DCN neurons. Why are the P-cells organized in this
way, and what is the membership criterion of each population? Here, I apply ele-
mentary mathematics from machine learning and consider the fact that P-cells that
form a population exhibit a special property: they can synchronize their complex
spikes, which in turn suppress activity of DCN neuron they project to. Thus com-
plex spikes cannot only act as a teaching signal for a P-cell, but through complex
spike synchrony, a P-cell population may act as a surrogate teacher for the DCN
neuron that produced the erroneous output. It appears that grouping of P-cells into
small populations that share a preference for error satisfies a critical requirement of
efficient learning: providing error information to the output layer neuron (DCN)
that was responsible for the error, as well as the hidden layer neurons (P-cells) that
contributed to it. This population coding may account for several remarkable fea-
tures of behavior during learning, including multiple timescales, protection from
erasure, and spontaneous recovery of memory.

eyeblink conditioning; motor learning; neural encoding; saccades; smooth pursuit

Ever tried. Ever failed. No Matter. Try again. Fail again. Fail
better.

Samuel Beckett

INTRODUCTION

During electrophysiological recording from Purkinje cells
(P-cells), listening to the sound of spikes as they are reported by
an electrode, one cannot help but be impressed by the complex
spike. Whereas the simple spikes appear ordinary and common,
raindrops falling on the roof, the complex spike is more like
lightening, a thunderous event that makes the P-cell pause its
production of simple spikes. Indeed, after generating a complex
spike, a P-cell requires 10–20 ms of recovery before it resumes
production of simple spikes (Thach 1967).
The significance of complex spikes in the life of a P-cell is

illustrated by the fact that persistent stimulation of climbing
fibers, the sole source of complex spikes, can lead to excitotoxic
damage of P-cells (Slemmer et al. 2005). Indeed, sustained

increase or decrease in the rate of complex spikes above or
below baseline damages the P-cells (O’Hearn and Molliver
1997). Thus survival of a P-cell depends on its ability to regulate
production of complex spikes to around baseline (De Schutter
1995; Mauk and Donegan 1997).

Complex spikes arise from climbing fibers that originate from
cells in the inferior olive (Eccles et al. 1966). The olive cells
receive inhibitory projections from neurons in the deep cerebel-
lar nuclei (DCN) (de Zeeuw et al. 1988) and excitatory inputs
from other regions of the brain (Saint-Cyr and Courville 1982).
In analogy to an artificial neural network, the activity of DCN
neurons is a form of prediction (Doya 1999), allowing the olive
cells to compare this prediction to the actual observations.
Indeed, a complex spike is often generated after unexpected
occurrence of a broad class of sensory inputs (Andersson and
Armstrong 1987; Ju et al. 2019), motor actions (Welsh et al.
1995), or rewarding events (Heffley et al. 2018).
Thus, as a first approximation, the signal in the climbing fiber

is the difference between what was reported to the olive from a
noncerebellar region (the observation) and what was produced
by the cerebellum (the prediction). Said in another way, neuronsCorrespondence: R. Shadmehr (shadmehr@jhu.edu).
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in the inferior olive are in the position to compare the desired
response that they have received from a noncerebellar region
with the actual output of a DCN neuron and produce an error
signal that reflects the difference between the two (De Zeeuw et
al. 1998; Kitazawa et al. 1998; Simpson et al. 1996; Soetedjo et
al. 2008). From a machine learning perspective, this signal is
termed a prediction error.
Prediction errors are fundamental to learning in artificial neu-

ral networks. In such networks, the rules of learning stipulate
that the error associated with a given output neuron must be con-
veyed to that neuron, as well as to all other neurons that project
directly or indirectly to it. However, in the cerebellum, this basic
rule is violated in at least two ways. First, the DCN neurons
receive a rather weak signal from the olive (Lu et al. 2016), a
signal that weakens further as the animal reaches adulthood
(Najac and Raman 2017). In comparison, the middle layer neu-
rons (the P-cells) receive an extraordinarily strong signal from
the olive. Second, despite the fact that each P-cell projects to
approximately four DCN neurons (in mice) (Person and Raman
2012a), a P-cell receives only a single climbing fiber. This
makes it so that a P-cell contributes to potentially erroneous out-
puts of four DCN neurons but receives error information from
only one olivary neuron.
The weak olivary input to the DCN is puzzling because it

suggests that the error signal from the olive will have difficulty
acting as a teacher for the output layer neurons. The single
climbing fiber to a P-cell is also puzzling because it implies that
the error signal is not a fair reflection of the entire error space
but rather biased to provide only a limited view.
To illustrate the implications of these puzzles, imagine you

are playing basketball and shoot from the free throw line and
your ball misses the basket. If you are looking at the basket as
the ball passes to one side, say to the right, that event will pro-
duce an increase in probability of complex spikes of P-cells that
prefer rightward prediction errors in the visual space (Herzfeld
et al. 2015; Soetedjo et al. 2008; Soetedjo and Fuchs 2006).
That same error will reduce probability of complex spikes in P-
cells that prefer leftward prediction errors. However, the right-
ward error will have no consequence for the complex spikes of
P-cells that prefer upward or downward errors. As a result, each
P-cell receives a limited view of the error space: some care
about rightward errors and some care about leftward errors, but
none care about all parts of the error space. In addition, because
the olivary projections to the DCN are weak (Lu et al. 2016),
learning from error faces a formidable obstacle: how can the
DCN neurons that contributed to your movement learn about
their erroneous output?
Thus, when we view the cerebellum from the perspective of

machine learning, two puzzles emerge. It is surprising that the
error information from the olive is conveyed strongly to the
middle layer (the P-cells) but not the output layer (the DCN).
Furthermore, it is surprising that the olivary signal to a P-cell
consists of a single input that is biased toward a specific part of
the error space.
Here, my aim is to use mathematics of machine learning to

consider these puzzles and ask why the cerebellum might be
organized in this way. I will suggest that the very limited distri-
bution of output from a single olive cell to a handful of P-cells
organizes the P-cells into populations that share the same
teacher (De Zeeuw et al. 2011; Heck et al. 2013): P-cells that
learn from the same teacher may project together as a

population to a single neuron in the DCN. This organization of
P-cells may serve a critical function: it allows the olive not
only to convey error information to a small group of P-cells
but through synchronous production of complex spikes also
to convey the same error information to the DCN neuron that
was responsible for the error (Chaumont et al. 2013; Tang et
al. 2019).
The result is a framework in which P-cells provide two differ-

ent functions. Like a typical neural network, P-cells produce sim-
ple spikes that drive activity of the output layer neurons. Unlike a
typical neural network, the P-cells are organized into populations
that through synchronous complex spikes can provide error infor-
mation to the DCN, inducing plasticity. As a result, each olivary
cell is the teacher to a handful of P-cells (Gao et al. 2012), and
those P-cells are the teachers for the DCN neuron that produced
the erroneous output (Medina and Mauk 1999).
This error-dependent organization of P-cells into populations

may have interesting consequences on how the cerebellum learns
from error. Because an error may be preferred by some P-cell
populations, increasing their probability of complex spikes, while
the same error will be antipreferred for other populations,
decreasing their probability of complex spikes, the differing sen-
sitivities to error, as reflected in the differing rates of plasticity
associated with the presence versus absence of a complex spike
(Herzfeld et al. 2018; Yang and Lisberger 2014a), are likely to
produce multiple timescales of adaptation, some fast, others slow.
In addition, the personalized view of error afforded to each P-

cell may provide protection from erasure. That is, behavior
becomes easier to learn than to unlearn. Rather than countering
plasticity in the P-cells that learned from error, reversal of error
will engage learning in a separate population of P-cells, possibly
in a different olivocerebellar module. As a result, organizing P-
cells into populations that share a common preference for error
may be responsible for a paradoxical aspect of behavior: sponta-
neous recovery of memory (Criscimagna-Hemminger and
Shadmehr 2008; Kojima et al. 2004; Sarwary et al. 2018; Smith
et al. 2006).
My analysis relies on the assumption that the olivary input

to the cerebellum reflects the erroneous output of a DCN neu-
ron. Although this assumption is consistent with anatomical
(de Zeeuw et al. 1988) and physiological data (Soetedjo et al.
2008), it remains a speculation because there are no simulta-
neous recordings from olive-projecting DCN neurons and the
feedback that they receive from the olive. Indeed, the
assumption that climbing fiber activity reflects a prediction
error is not universally accepted (Horn et al. 2004) and faces
challenges including the fact that the probability of complex
spikes poorly encodes the magnitude of prediction error
(Catz et al. 2005) and the fact that cerebellar dependent
learning can take place without obvious modulation of com-
plex spikes (Hewitt et al. 2015; Ke et al. 2009). In some
cases, modulation of simple spikes alone is sufficient to pro-
duce a form of learning (Nguyen-Vu et al. 2013). Cognizant
of these observations, I will develop the theoretical view-
point based on the assumption that olivary input provides an
error signal and then consider its limitations.

PREDICTION ERRORS OF THE CEREBELLUM

The anatomy of the cerebellum resembles a feedforward net-
work (Fig. 1A) (Raymond and Medina 2018). Like an artificial
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neural network, inputs (mossy fibers) bring information to the
first layer of neurons (granule cells), which distribute them to
the second layer (P-cells), which in turn project to the output
layer (DCN neurons) (Fig. 1B). To be sure, this resemblance is
an approximation. The input from the granule cells to the P-cells
is direct, as well as indirect (via molecular layer interneurons).
P-cells send a few collateral axons to neighboring P-cells
(Witter et al. 2016), and at least in some lobules, P-cells also
send a few collaterals to granule cells (Guo et al. 2016). As a
result, there is a degree of synchrony among neighboring P-cells
(Sedaghat-Nejad et al. 2019), a synchrony that remains even
when chemical synapses are inactivated (Han et al. 2018).
Finally, vestibular nuclei are targets of P-cells in the flocculus
and paraflocculus. Despite these complications, a feedforward
network is a useful approximation, particularly from the P-cell
layer to the output layer, which is the focus of our analysis.
In a typical artificial neural network, all cells in each layer

connect to all cells in the next layer. However, in the cerebellum
(of mice) �50 P-cells converge upon a single DCN neuron
(Person and Raman 2012a). That is, P-cells organize into small
populations, and with their simple spikes they modulate the out-
put of the DCN neurons. What determines membership of this
population? To answer this question, let us consider this prob-
lem from the perspective of machine learning.
Activities of DCN neurons represent the output of the cere-

bellum, but the nature of these outputs is diverse because the
cerebellum projects to numerous sensorimotor (May et al. 1990;
Noda et al. 1990) and reward related structures (Carta et al.
2019). We label the activation, i.e., firing rate, of each DCN
neuron as a

ðdÞ
i , where the superscript d refers to DCN neurons.

Some of the DCN neurons are GABA-ergic and inhibit the olive
(Bazzigaluppi et al. 2012; Lefler et al. 2014). Activity of these
DCN neurons is labeled as a

ðd�Þ
i . Another subset is non-GABA-

ergic and send their axons to the brainstem, superior colliculus,
red nucleus, thalamus, etc. It is with these non-GABA-ergic
neurons that the cerebellum influences behavior. We label activ-
ity of the non-olive-projecting DCN neurons as a

ðdþÞ
i . Thus, in

the output layer, the superscript d includes GABA-ergic as well
as non-GABA-ergic projecting DCN neurons: d e {d�,d+}.
We assume that an olivary cell compares the output a

ðd�Þ
i

that it receives from a DCN neuron with the observed event a�i .
For example, suppose the output a

ðd�Þ
i is predicting location of

the visual information that should be present following

conclusion of a saccadic eye movement. In this case, the actual
location of the visual event a�i is conveyed from the superior
colliculus to the olivary cell that receives the cerebellar output.
If the cerebellar output does not match the actually observed
collicular activity, then the olivary cell responds, producing
spikes in its cerebellar projections (Kojima and Soetedjo 2017,
2018). Because the collicular activity reflects not only the posi-
tion of the visual stimulus, but also its reward value (Ikeda and
Hikosaka 2003), the difference in the predicted reward value
of the stimulus as compared with the observed value will also
be an error signal that is conveyed to the cerebellum (Heffley
et al. 2018).
Thus, given output a

ðd�Þ
i from the GABA-ergic DCN neu-

rons, we assume that the activity in the inferior olive neuron that
projects back to the DCN and the rest of the cerebellum (De
Zeeuw et al. 1997b) is an error signal that conveys the differ-
ence between what was observed (excitatory input to the olive
from an extracerebellar region) and what was predicted (inhibi-
tory output from the DCN to the olive).
Notably, this error is only associated with activity of GABA-

ergic DCN neurons a
ðd�Þ
i . Let us label this error signal as e

ðd�Þ
i :

e
ðd�Þ
i ¼ a�i � a

ðd�Þ
i ð1Þ

In the above equation, the error signal depends on the activity
a
ðd�Þ
i of GABA-ergic olive-projecting DCN neurons but not
directly on the activity a

ðdþÞ
i of the non-GABA-ergic, non-olive-

projecting DCN neurons. This produces our first puzzle:
Puzzle P1. Even though non-GABA-ergic DCN neurons are re-
sponsible for conveying output of the cerebellum, the error asso-
ciated with their activity is not directly a part of the olivary
signal back to the cerebellum. How do non-GABA-ergic DCN
neurons receive information regarding the error in their
activities?
The consequence of computing error information based on

the activity of GABA-ergic DCN neurons, and not the other out-
put neurons, can be illustrated by an experiment by Kim et al.
(1998). The authors presented rabbits a tone followed by an air
puff, teaching them to blink just before arrival of the air puff. In
naı̈ve animals the air puff alone produced complex spikes in P-
cells. Early in training with the tone + air puff trials the P-cells
continued to produce complex spikes following the air puff, but
late in training tone + air puff no longer produced complex
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Fig. 1. A feedforward network as a simplified model of the cerebellum. A: in an artificial neural network with 3 layers, the 3rd layer provides the predictions, which
are compared with observations and then fed back via an error signal to units in layers 2 and 3. B: in the cerebellum, the 3 layers are comprised of granule cells,
Purkinje cells, and deep cerebellar nucleus neurons. The predictions of the cerebellum are conveyed via GABA-ergic deep cerebellar nucleus (DCN) neurons to the
inferior olive, which in turn provides the cerebellum with an error signal. This signal is conveyed strongly to the P-cells but weakly to the DCN neurons (dashed
line). The predictions of the cerebellum are also conveyed via non-GABA-ergic DCN neurons to the rest of the brain. C: a single P-cell projects to both GABA-ergic
and non-GABA-ergic DCN neurons. However, the error signal sent from the olive to the cerebellum depends directly on the GABA-ergic DCN neurons, not the non-
GABA-ergic neurons. Filled circles are inhibitory synapses, triangles are excitatory synapses.
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spikes: as performance improved and errors were reduced, so
were the complex spikes. Now the authors took the well-trained
animals and injected a GABA antagonist into the inferior olive.
This effectively eliminated the efficacy of the DCN input to the
olive. However, blocking the DCN input reintroduced the com-
plex spikes during tone + air puff trials. That is, although the
animal continued to blink in response to the tone, the olive
nevertheless signaled prediction errors to the cerebellum. This
suggests that even when non-GABA-ergic DCN neurons are
correctly predicting an output a

ðdþÞ
i , if the inhibitory input to the

olive is suppressed, the error signal to the cerebellum returns.
To consider this puzzle, let us further develop the mathematics

associated with training our network. A generic DCN neuron’s ac-
tivity a

ðdÞ
i depends partly on the inputs that it receives and partly

on its internal state. The inputs are the weighted activities of neu-
rons that project to it. This includes inputs from P-cells (via simple
spikes that act on inhibitory synapses) and inputs frommossy fibers
(via excitatory synapses), as shown in Fig. 1C. We approximate
the inputs to a generic DCN neuron via the following equation:

z
ðdÞ
i ¼

X
j;k

w
ðdÞ
i;j a

ðpÞ
j þ w

ðdÞ
i;k a

ðmÞ
k þ bi ð2Þ

In the above equation, a
ðpÞ
j is the activity of P-cells that pro-

ject to a given DCN neuron i, a
ðmÞ
k is the activity conveyed via

mossy fibers to that neuron, and bi is the internal bias of that
neuron (making it possible for the neuron to fire despite having
inhibitory inputs).
Notice that in Eq. 2 we omitted the influence of projections to

the DCN neuron from the olive. This is because the axons that
bring olivary input to the cerebellum fire at rates that are two
orders of magnitude smaller than P-cells and mossy fibers.
Furthermore, in the adult animal (mouse), the excitatory postsy-
naptic currents (EPSCs) that are produced in a typical DCN neu-
ron following activation of olivary axons are remarkably small
(Lu et al. 2016). For example, activation of olivary axons can
produce an EPSC event with an amplitude of 2 pA in a P-cell,
0.4 pA in the DCN neuron of a juvenile mouse (Najac and
Raman 2017), and only 8 � 10�3 pA in the DCN neuron of an
adult mouse (Lu et al. 2016). Therefore, in the adult animal the
input to the DCN from the olive is weak. This fact simplifies our
equation, but also introduces a second puzzle:

Puzzle P2. Given that the olive’s input to the DCN is weak, how

does a DCN neuron receive information about the error in its
output?
To summarize, an error signal is needed to teach the DCN

neurons. We assumed that this error signal was computed in the
olive. However, projections from the olive to the DCN represent
the error made by only a subset of output neurons: GABA-ergic
olive-projecting DCN neurons. Furthermore, the axons that pro-
ject from the olive to the DCN have weak synapses (in adult-
hood), and are essentially silent as compared with mossy fiber
and P-cell axons that converge on the same neurons. How can
the olive be an effective teacher for the DCN?

THE PROBLEM OF TEACHING A DEEP CEREBELLAR NUCLEUS

NEURON

The purpose of learning in a neural network is to minimize
a loss function, typically the sum of squared errors. For our
network, the sum of errors is a function of all output neurons,

i.e., both olive-projecting and non-olive-projecting DCN
neurons:

J ¼
X
i

e
ðdÞ
i

� �2

ð3Þ

To minimize this loss, we need to change the activity of both
the GABA-ergic DCN neurons a

ðd�Þ
i and the non-GABA-ergic

DCN neurons a
ðdþÞ
i . This is done by changing the weights asso-

ciated with the inputs that these neurons receive, as well as their
internal biases, i.e., their intrinsic excitability.
The activity (firing rate) of a generic neuron in our network is

related to its inputs and internal biases via a nonlinearity, for
example, a sigmoidal function:

a
ðdÞ
i ¼ r z

ðdÞ
i

� �
ð4Þ

To change the synaptic weight of a given input to a neuron in
the output layer, we compute the gradient of the loss function
with respect to that weight. For example, the weight change for
a GABA-ergic DCN neuron is negatively proportional to the
following gradient:

dJ

dw
ðd�Þ
i;j

¼ dJ

da
ðd�Þ
i

da
ðd�Þ
i

dz
ðd�Þ
i

dz
ðd�Þ
i

dw
ðd�Þ
i;j

¼ �2 da
ðd�Þ
i

dz
ðd�Þ
i

dz
ðd�Þ
i

dw
ðd�Þ
i;j

e
ðd�Þ
i

ð5Þ

The above expression has a simple meaning: the gradient of a
DCN neuron’s input zi with respect to its mossy fiber synaptic
weights is positive (because those inputs are excitatory), and
thus positive errors (e.g., olivary output above baseline) should
increase the mossy fiber synaptic weights. In comparison, the
gradient of zi with respect to P-cell synaptic weights is negative
(because those inputs are inhibitory), and thus positive errors
should decrease those synaptic weights. Similarly, to change the
intrinsic excitability of the DCN neuron, we compute the gradi-
ent with respect to the bias:

dJ

db
ðd�Þ
i

¼ dJ

da
ðd�Þ
i

da
ðd�Þ
i

dz
ðd�Þ
i

dz
ðd�Þ
i

db
ðd�Þ
i

¼ �2 da
ðd�Þ
i

dz
ðd�Þ
i

e
ðd�Þ
i

ð6Þ

Aside from providing general rules for learning in the DCN,
the above expressions state that the gradients of our loss func-
tion with respect to both weights and internal biases of a given
DCN neuron are proportional to the prediction errors of that
neuron. This implies an important anatomical constraint: if a
DCN neuron projects to the olive, it must receive error informa-
tion associated with its own output, not the output of some other
DCN neuron. This leads to our first conjecture:

Conjecture C1. A DCN neuron receives feedback from precisely
the same olive neurons it inhibits.
Indeed, olivary projections to the DCN are reciprocal: if a

region in the olive projects to a region in the DCN, then that
DCN region also projects back to that specific region of the
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olive (Ruigrok and Voogd 2000). However, even if conjecture
C1 were true, we still have DCN neurons that do not project to
the olive (puzzle P1). Thus we have no error signal with which
to teach the non-GABA-ergic DCN neurons.
There are several ways to consider this problem. First, it is pos-

sible that as the non-GABA-ergic DCN neurons project to their
destination, they synapse on GABA-ergic neurons, and those
GABA-ergic neurons then project back to the olive. In this way,
the olivary cell would indirectly receive the output of the non-
GABA-ergic DCN neuron. However, this introduces a delay in
communication and, importantly, imposes a timing difference in
the comparison of outputs with observations for some DCN neu-
rons (non-GABA-ergic) with respect to others (GABA-ergic).
Given that timing of complex spikes depends on the precise inter-
nal state of olive neurons (Negrello et al. 2019), which oscillate at
4–5 Hz (Khosrovani et al. 2007), and plasticity in P-cells depends
on timing of the complex spikes (Herzfeld et al. 2018; Suvrathan
et al. 2016), a timing difference may not be a good solution.
A different way to consider puzzle P1 is to note that a single

P-cell projects to only four to five DCN neurons (Person and
Raman 2012b), and critically, this small group of DCN neurons
includes both GABA-ergic, as well as non-GABA-ergic neurons
(De Zeeuw and Berrebi 1995; Teune et al. 1998). Therefore, for
each GABA-ergic DCN neuron that projects to the olive with

activity a
ðd�Þ
i , there are one or two non-GABA-ergic DCN neu-

rons that receive input from the same P-cell. In order for the

non-olive-projecting DCN neuron a
ðdþÞ
i to receive the appropri-

ate error signal, it can pair its activity with a “sister” DCN neu-

ron that projects to the olive a
ðd�Þ
i . The two sister DCN neurons

would have to receive inputs from the same P-cells and mossy
fibers so that their activities are similar (Fig. 1C).
If a relationship between a pair of non-GABA-ergic and

GABA-ergic DCN neurons existed such that
da
ðdþÞ
i

dw
ðdþÞ
i;j

¼ da
ðd�Þ
i

dw
ðdþÞ
i;j

, then

we can compute the gradient of the loss function with respect to
the weights of the non-olive-projecting DCN neurons:

dJ

dw
ðdþÞ
i;j

¼ dJ

da
ðd�Þ
i

da
ðdþÞ
i

dz
ðdþÞ
i

dz
ðdþÞ
i

dw
ðdþÞ
i;j

¼ �2 da
ðdþÞ
i

dz
ðdþÞ
i

dz
ðdþÞ
i

dw
ðdþÞ
i;j

e
ðd�Þ
i

ð7Þ

The above expression implies that a non-olive-projecting
DCN neuron shares the error signal with its “sister” olive-pro-
jecting DCN neuron. From this equation, we arrive at our sec-
ond conjecture:

Conjecture C2. The prediction error conveyed by an olive neu-
ron must result in plasticity in at least one olive-projecting
GABA-ergic neuron and one non-olive-projecting, non-GABA-
ergic neuron. These two DCN neurons should be coupled in the
sense that their activities should always be roughly equal.
At this writing, we do not know how the non-GABA-ergic

DCN neurons receive their error information. Conjecture C2
provides the possibility that if the activities in the two DCN neu-
rons were identical, then the olivary signal that reflects error for
one DCN neuron can also be the signal that teaches the other
DCN neuron. Unfortunately, even if conjectures C1 and C2
were true, we still have puzzle P2: how can a DCN neuron learn

about its error when it does not receive an effective signal from
the olive?
The trivial answer is that perhaps DCN neurons have essen-

tially static weights and internal biases and do not learn from
their errors. However, this is clearly not the case, as evidenced
by the work of Mauk and colleagues (Ohyama et al. 2003;
Ohyama and Mauk 2001), De Zeeuw and colleagues (Boele et
al. 2013; Carulli et al. 2020), and Nagao and colleagues (Shutoh
et al. 2006). For example, in a classical conditioning task in
which rabbits hear a tone and learn to close their eyes in antici-
pation of an aversive stimulus, training produces plasticity in
the P-cells (Jirenhed and Hesslow 2016), as well as the DCN, as
evidenced by the fact that after conclusion of training, discon-
nection of the P-cell input to the DCN (via GABA antagonists)
produces the conditioned behavior, albeit at an earlier time with
respect to the tone onset (Medina et al. 2001). Furthermore, this
training coincides with mossy fiber axonal growth and synaptic
genesis in the DCN (Boele et al. 2013), as well as changes to the
extracellular matrix of molecules that surround the synapses
that contact DCN neurons (Carulli et al. 2020). Thus experience
of error leads to plasticity in the P-cells as well as the DCN.
However, given the weak olivary input to the DCN, how is this
possible?
Let us consider two scenarios. On the one hand, perhaps error

information is not conveyed from the olive to the DCN but from
the simple spikes of P-cells to the DCN. In this scenario, the
olive does not play a role in computing error information for the
purpose of teaching the DCN. Rather, the P-cells indirectly
receive error information from the mossy fibers, and through
their converging simple spikes teach their downstream DCN
neurons.
Indeed, the synapses that P-cells make upon a DCN cell can

undergo plasticity based on the history of the P-cell simple
spikes (Telgkamp and Raman 2002). Furthermore, the synapses
that mossy fibers make upon a DCN neuron can also undergo
plasticity: when a period of excitation (150 ms) in the DCN neu-
ron precedes a period of strong inhibition (250 ms), excitatory
synapses strengthen (McElvain et al. 2010; Person and Raman
2010; Pugh and Raman 2008). Thus the sequential pattern of ex-
citation from the mossy fibers and inhibition from the P-cells
can, in principle, serve as a teacher for changing the synaptic
weights of the inputs onto DCN neurons (De Zeeuw et al. 2011;
Medina and Mauk 2000).
Alternatively, it is possible that error information is conveyed

from the olive to a population of P-cells via climbing fibers, and
then through synchrony of complex spikes the P-cells convey
occurrence of the error event to the DCN. In this scenario,
climbing fiber activity not only guides plasticity in a P-cells but
also organizes the P-cells anatomically into populations that
share a common error signal. The resulting temporal synchrony
in the complex spikes of the population produces a period of
suppression in the DCN neuron, which may result in plasticity
in the mossy fiber and P-cell synapses that act on that DCN neu-
ron. Let us consider these two possibilities in detail.

POSSIBILITY 1: TRANSMITTING ERROR INFORMATION TO THE

DEEP NUCLEUS VIA SIMPLE SPIKES

Modulation of P-cell simple spikes alone can drive learning
in the cerebellum. Nguyen-Vu et al. (2013) considered the ves-
tibular ocular reflex (VOR), a behavior in which a vestibular
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input is paired with a visual stimulus. Usually, P-cells in the
flocculus have simple spikes that reflect both the vestibular stim-
ulus and the visual feedback, while complex spikes reflect reti-
nal error. The authors hypothesized that modulation of simple
spikes alone could produce learning in the cerebellum independ-
ent of complex spikes. To test for this, they used optogenetics in
mice to stimulate P-cell activity, generating simple spikes that
were paired with the vestibular stimulus in the absence of visual
input. During training, a sinusoidal vestibular stimulus was pre-
sented in the dark while each side of the cerebellum was stimu-
lated during ipsiversive or contraversive turning. Pairing
optogenetic pulses of stimulation with ipsiversive turning pro-
duced learning that reduced the VOR gain, while pairing with
contraversive turning produced learning that increased the VOR
gain. Because optogenetic pulses likely synchronized produc-
tion of simple spikes across populations of P-cells, the work
illustrated that production of synchronous simple spikes was
sufficient to produce learning, a role that had generally been
ascribed to complex spikes.
The results of Lee et al. (2015) extended this work, demon-

strating that synchronized patterns of simple spikes produced
DCN plasticity. Using optogenetic pulsed stimulation of P-cells
in the forelimb region of the anterior cerebellum of mice, they
found that onset of P-cell inhibition was followed by an arm
movement (raising the arm upward), whereas offset of a period
of P-cell excitation produced a similar movement. They then
paired excitation or inhibition of P-cells with an auditory tone
and made a remarkable observation: the animal raised its arm
when the tone was presented without P-cell stimulation.
Notably, optogenetic stimulation of P-cells induced simple
spike synchrony, and this coincided with structural changes in
the mossy fiber inputs to the DCN. Thus synchronized P-cell
simple spikes produced plasticity in the DCN.
Ke et al. (2009) asked whether learning could be induced

with error-driven changes in simple spikes but without signifi-
cant changes in complex spikes. They trained monkeys in the
VOR task by rotating their heads but manipulated the visual
input so that there was a difference in how the visual target
moved as compared with how the background visual scene
moved. This novel stimulus appeared to reduce the complex
spike response to error (retinal slip). However, the simple spike
response with the novel stimulus resembled the response during
natural gain-down training. Following training with the novel
stimulus, they assessed learning by measuring eye movements
in response to head movements in darkness and found that the
VOR gain had adapted. Whereas changes in complex spikes
accounted for roughly 65% of the adaptation, 35% was driven
by changes in simple spikes.
Correlates of an error-like variable (target with respect to eye

position) in simple spikes were first noted by Kase et al. (1979)
who trained monkeys in two tasks, one in which they actively
pursued a sinusoidally moving dot with their eyes and another
in which they fixated but the dot moved sinusoidally. They
recorded from P-cells along the vermis of lobules VI-VII and
found that 14/89 cells showed simple spike modulation both
during active pursuit and during fixation as the target moved
with respect to the fovea.
More recently, correlates of error were found in simple spikes

as monkeys were trained to use a robotic arm to move a cursor
and track a moving target that traced a random path. Ebner and
colleagues (Hewitt et al. 2011, 2015; Popa et al. 2012; Streng et

al. 2018) recorded from hundreds of P-cells in the intermediate
and lateral regions of lobule IV-VI and used linear regression to
first account for the variance in the simple spike rate with
respect to motion of the arm and then determined how much of
the residual simple spike rate could be associated with error,
that is, the instantaneous distance between the handheld cursor
and the target. The regression with respect to error generally
exhibited two peaks: one at a lead (�223-ms prediction about a
future error) and the other at a lag (+227-ms feedback about the
past error) (Popa et al. 2017). The r-squares for the delayed
response of simple spikes to error were greater than the r-
squares for the prediction of future error. The coefficient of the
linear fit that predicted the error was often negative of the coeffi-
cient that responded to that error.
To check that the simple spikes were indeed responding to

visual error and not to another confounding variable, Streng et
al. (2018) introduced a delay between position of the cursor and
the position of the hand. When the cursor was not delayed, sim-
ple spikes were correlated with error at approximately �250 ms
and at +200 ms. However, in the visual delay block, the peak of
the correlation in the negative range shifted by 100 and 200 ms
but did not shift in the positive range. This means that the simple
spikes predicted hand position (not cursor position) with respect
to the target with a lead of around +250 ms. Importantly, simple
spikes responded to error with a 200 ms delay and this delay
remained stable even when there was an artificial delay in cursor
feedback. The results provided further evidence that simple
spikes were modulated following an error event.
Thus simple spikes not only can carry error information, but

that information is also sufficient to induce adaptation in the
DCN, particularly if the simple spikes are synchronized.
However, Eqs. 5 and 6 impose a stringent requirement: the net-
work must transmit the error that has been made by a single
DCN neuron specifically to that DCN neuron. This means that if
the P-cells that converge on a DCN neuron carry error informa-
tion, then that information must be the difference between the
DCN neuron’s output and the desired output. At this writing, it
is unclear how the P-cells through their simple spikes might
convey this specific error signal.

POSSIBILITY 2: TRANSMITTING ERROR INFORMATION TO THE

DEEP NUCLEUS VIA COMPLEX SPIKES

If we assume that the olivary information regarding the error
that the DCN neuron has made is not conveyed to the DCN neu-
ron directly (via a projection from the olive), we are left with
the possibility that the DCN neuron becomes informed of its
error through an indirect pathway. The obvious indirect pathway
is from the parent P-cells (Lang et al. 2017; Medina 2011).
A complex spike is a significant event at the soma of a P-cell,

generating multiple spikelets. However, the P-cell axon trans-
mits this event to the DCN via ordinary spikes (Ito and Simpson
1971): typically, one axonal spike at the onset of the complex
spike (with near 100% probability) and another one at the final
somatic spikelet (�60% probability) (Khaliq and Raman 2005;
Monsivais et al. 2005). Thus the information in the climbing
fiber is transmitted from a P-cell to the DCN as a sequence of
one or two ordinary spikes. This makes it unlikely that a DCN
neuron could dissociate between a complex spike and a simple
spike. If synchronous simple spikes can produce plasticity in the
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DCN (Lee et al. 2015), perhaps synchronous complex spikes
can also accomplish this feat.
When the inferior olive is electrically stimulated, at 5- to 10-

ms latency there is occasionally a single spike in a DCN neuron
(Bengtsson et al. 2011; Hoebeek et al. 2010). This is likely due
to the direct excitatory projections from the olive to the DCN.
This occasional spike is then followed by suppression of DCN
activity that lasts around 50 ms (Fig. 2) (which can be followed
by a rebound burst of activity). The suppression is present in
many DCN neurons, including output neurons that do not pro-
ject to the olive (e.g., non-GABA-ergic neurons that project to
the red nucleus) (Hoebeek et al. 2010). If we view olivary stimu-
lation as an artificial means to provide error feedback to the cer-
ebellum, then that error leaves its impression not via a strong
EPSC in the DCN neuron, but surprisingly, via a strong
suppression.
A series of experiments by Lang and colleagues (Blenkinsop

and Lang 2011; Tang et al. 2016, 2019) provided critical clues
regarding how the activity in the olive produced the suppression
in the DCN. Blenkinsop and Lang (2011) inserted an array of
electrodes into the anesthetized rat’s cerebellar cortex along
with a single electrode into the DCN. This allowed them to
simultaneously record from 8 to 34 P-cells and 1 to 2 DCN neu-
rons. To determine if one of the P-cells was connected to one of
the DCN neurons, they identified complex spikes in each P-cell
and used that event to align the spikes recorded from the DCN
neuron. The result was a complex spike-triggered response in
the DCN neuron (Fig. 3A).
In �100 cases, the spike-triggered response suggested that

one of the P-cells was connected to one of the DCN neurons. In
70 of the 100 putative P-cell DCN neuron pairs, the occurrence
of a complex spike was followed by a suppression in the DCN,
a suppression that lasted from 50 to 100 ms (Fig. 3A, right top).

In 24 pairs, the complex spike in the P-cell was coincident with
a brief increase in firing rate of the DCN neuron, and then sup-
pression (Fig. 3A, right bottom). The authors interpreted the
small increase as the effect of the weak projections from the
olive to the nuclear neuron. Therefore, a single axon from
the olive could project both to a DCN neuron and to the P-cell
that synapsed on that DCN neuron (Fig. 1C).
If the error associated with a DCN neuron’s output is con-

veyed to it via its parent P-cells, then we should observe com-
plex spikes in the parent P-cell following an error by the DCN
neuron. There is indirect evidence for this from optogenetic
stimulation of P-cells. A 50-ms period of P-cell stimulation
results in synchronized production of simple spikes, but when
the P-cell stimulation ends, at 80- to 150-ms latency the P-cells
produce a complex spike (Chaumont et al. 2013) (Fig. 3B, right
top). The interpretation is that when many P-cells are simultane-
ously activated, they inhibit their downstream DCN neurons
synchronously, preventing these neurons from firing. This sup-
pression of the DCN neuron’s activity removes a source of inhi-
bition at the olive. The removal of that inhibition allows the
olivary cells to reach threshold earlier and fire, resulting in a
complex spike in the P-cells (Fig. 3B, right bottom). This inter-
pretation is consistent with a closed loop in which P-cells pro-
ject to a DCN neuron, which then projects to an olive neuron,
which then projects back to the parent P-cell (Fig. 3B), termed
an olivocerebellar module (De Zeeuw et al. 1997b).
Thus we potentially have the following anatomy (Heck et al.

2013): the olive neuron that computes the error associated with
a GABA-ergic DCN neuron’s output conveys that error via a
single climbing fiber to a P-cell. That P-cell then projects back
to that specific GABA-ergic DCN neuron, which then projects
to the olive neuron that computed the error (Fig. 3B).

Conjecture C3. The error associated with a GABA-ergic DCN
neuron’s output is computed by an olive cell and then sent via
climbing fibers to a few P-cells that then project back down to
that specific DCN neuron.
This conjecture describes an olivocerebellar module (De

Zeeuw et al. 1997b) and is the result of roughly three decades of
anatomical observations (Ruigrok and Voogd 2000). A single
axon from the olive projects to approximately seven P-cells, all
located at similar distances from the midline, most of which are
clustered within a single lobule (Sugihara et al. 1999, 2001).
Molecular markers, notably the respiratory enzyme aldolase C
(commonly known as zebrin II), define �20 longitudinal com-
partments in the cerebellar cortex, each receiving inputs from
specific regions of the inferior olive. P-cells that are located in
the same compartment, and have similar climbing fiber recep-
tive field characteristics, project to the same small area in one of
the DCNs (Apps and Garwicz 2000). Indeed, Lang and col-
leagues (Tang et al. 2019) noted that the P-cells that project to a
single DCN neuron were not randomly distributed but clustered
along the rostra-caudal axis of the cerebellum (Fig. 3A). Tracing
studies have identified specific projections from the olive to
each compartment in the cerebellar cortex (Apps and Garwicz
2005). The olive projects to both GABA-ergic and non-GABA-
ergic neurons in the DCN (De Zeeuw et al. 1997b). There are no
molecular markers that have thus far shown compartmentaliza-
tion of the DCN. However, DCN regions are divided based on
tracing of inputs from the olive (Sugihara and Shinoda 2007). P-
cells that are in a given compartment, and thus receive an input
from a region in the olive, project to a region in the DCN that

Inferior
olive P-cells

DCN

Red nucleus

100ms

Fig. 2. Effect of inferior olive stimulation on deep cerebellar nucleus (DCN)
neurons (interposed nucleus) in an anesthetized rat. Neurons in the inferior
olive were stimulated while an electrode recorded activity of an excitatory
neuron that projected to the red nucleus. Stimulation of the inferior olive pro-
duced a 50-ms pause in the activity of the DCN neuron. From Hoebeek et al.
(2010).
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also receives inputs from the same olive region (Sugihara et
al. 2009). Finally, as we noted in conjecture C1, olivary pro-
jections to the DCN are reciprocal: if a region in the olive
projects to a region in the DCN, then that DCN region also
project back to that specific region of the olive (Ruigrok and
Voogd 2000). Thus we have the anatomical basis of the
closed olivo-cortico-nuclear circuit that connects a longitu-
dinal compartment of P-cells to a small subarea in the DCN
(Sugihara 2011).
In our theoretical framework, this anatomy serves a critical

purpose: by potentially synchronizing the complex spikes in
a small group of P-cells that project to a single DCN neuron,
the olive provides that DCN neuron with a reliable, life-long
error signal, despite the fact that the olivary inputs to the
DCN neuron weaken with development (Najac and Raman
2017), and may not play a significant role in adulthood (Lu et
al. 2016).
Medina and Mauk (1999), building on ideas put forth by

Miles and Lisberger (1981), had conjectured that whereas the
climbing fiber input to the P-cell controls plasticity of parallel
fiber inputs to that cell, it is the P-cell that controls the plasticity
of mossy fiber inputs to its downstream DCN neuron. For this to
happen, the mathematics require the P-cell to somehow commu-
nicate to its DCN neuron the fact that it has received an input in
its climbing fiber. The results in Figs. 2 and 3 show that the sig-
nal from the olive to a P-cell can have a dramatic effect on the
firing rates of nucleus neurons: following a single complex
spike, there can be a 50-ms reduction in the firing rate of the
DCN neuron. To be sure, some of these results are in the anes-
thetized state. Do they generalize to the awake, behaving
animal?
Ten Brinke et al. (2017) trained mice to associate an LED

with an air puff and recorded from the interposed nucleus.
During training, most task-related DCN neurons increased their
discharge in response to the LED, and this increase was causally

related to production of the eye-blink. The LED onset, which
was a random event (thus producing a prediction error) and the
air puff, both tended to produce a single complex spike in a few
P-cells (Fig. 4A). However, in DCN neurons, the LED onset and
especially the air puff tended to produce a transient pause in
spiking (Fig. 4B). The DCN neurons that produced the air puff-
induced pause also tended to show greater facilitation in their
spiking during the LED period, presumably driving the eye-
blink response. Thus, during learning of a behavior, some DCN
neurons showed a transient pause that appeared related to arrival
of a complex spike in P-cells. However, we do not know if the
P-cells in Fig. 4A project to the specific DCN neurons shown in
Fig. 4B. Thus we do not know if in this data set there is a causal
relationship between P-cell complex spikes and suppression in
DCN activity.
The results of Tang et al. (2019) provide the needed evidence.

They noted that in anesthetized animals, the P-cells that pro-
jected to a single DCN neuron tended to have higher levels of
complex spike synchrony than P-cells that did not project to the
same neuron (Fig. 5A). Indeed, when they simultaneously
recorded from six or seven P-cells that were putatively con-
nected to a single DCN neuron, they found that if the complex
spikes in the parent P-cells were not synchronous, a single com-
plex spike by itself had little or no effect in the DCN neuron
(Fig. 5C, subplot in which 1/7 P-cells had a complex spike).
However, if by chance the complex spikes in some of the parent
P-cells were synchronous, their simultaneous convergence pro-
duced a suppression (Fig. 5C, 4/7 P-cells had a complex spike).
In the rare event that all seven of the recorded P-cells happened
to produce a complex spike simultaneously, the DCN neuron’s
suppression was strong and long lasting (Fig. 5C, 7/7
condition).
Note the similarity between the effect of a complex spike on

a P-cell and its effect on a DCN neuron: following a complex
spike, both the P-cell (Fig. 5B) and the DCN neuron that it
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Fig. 3. An olivary neuron that projects to a P-cell receives input from the deep cerebellar nucleus (DCN) daughter neuron of that P-cell. A: electrode array recordings
from multiple P-cells and a single DCN neuron in an anesthetized rat. To determine if a P-cell projected to the DCN neuron, the complex spike in the P-cell was used
as the trigger to align the spikes in the DCN neuron. The data on the right are from 2 instances in which the spike-triggered averaging suggested a P-cell to DCN pro-
jection. In 70% of the pairs the complex spike in the P-cell was followed by reduced activity in the DCN neuron (top right). In 21% of the pairs there was an initial
spike in the DCN neuron followed by reduced activity. The P-cells that appeared connected to a single DCN neuron were usually clustered together along the rostra-
caudal axis of the cerebellum, as shown on the left with red-filled electrodes in the array. From Blenkinsop and Lang (2011) and Tang et al. (2019), used by permis-
sion. B: optogenetic stimulation of P-cells is followed by production of a complex spike. P-cells were optogenetically stimulated while activity was recorded with an
electrode. Stimulation resulted in intense production of simple spikes, which was then followed at a latency of�100 ms with a complex spike. A model suggests that
P-cell stimulation strongly suppresses the DCN neuron, which in turn removes inhibition from the olivary neuron. The olivary neuron has a membrane potential that
oscillates due to presence of gap junctions (De Zeeuw et al. 2003). Removal of inhibition allows the potential to reach threshold sooner, resulting in climbing fiber ac-
tivity in the parent P-cell and thus a complex spike. From Chaumont et al. (2013).
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projects to (Fig. 5C) can experience a long-lasting suppression
of spiking activity. In the case of a P-cell, a complex spike is fol-
lowed by 10–20 ms of total suppression of simple spikes (Fig.
5B). This is partly due to the fact that a climbing fiber that inner-
vates a P-cell also sends an axon collateral to a nearby molecu-
lar layer interneuron, which in turn inhibits that P-cell (J€orntell
and Ekerot 2002). In the case of a DCN neuron, a complex spike
in the parent P-cell is followed by a reduction in the firing rate
of the nucleus neuron, lasting �50 ms, but only if there is tem-
poral synchrony among the complex spikes.
We are now in position to offer a tentative solution to puz-

zle P2.
Conjecture C4. A DCN neuron is informed of its erroneous out-
put via synchronous complex spikes in the population of P-cells
that converge upon it.

Around 50 P-cells project to a single nucleus neuron (in
mice) (Person and Raman 2012a). If these P-cells shared a com-
mon error signal from the olive, then they could solve an impor-
tant problem: through simultaneity of their complex spikes, the
P-cells could reliably transmit error information to the output
layer.
There is evidence for the idea that unexpected perturbations

increase synchrony of complex spikes and that synchronous
complex spikes are essential for normal learning. Van Der
Giessen et al. (2008) produced mice that lacked gap junctions,
which are prominently expressed in the inferior olive. Gap-junc-
tion-deficient mice showed impaired ability to learn to time their
eye blink response to the end of a tone (at which point an air
puff was directed to the eyes). Instead, the mice tended to close
their eyes in response to the onset of the tone. The authors
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examined complex spike timing in the P-cells of lobule VI in
the posterior lobe and found that in response to an air puff, the
wild-type mice produced a single complex spike that was timed
at around 30-ms average latency. In contrast, in the gap-junc-
tion-deficient mice the air puff produced complex spikes that
were distributed more widely in time with two peaks, one at 30-
ms and another at 101-ms latency. Later work demonstrated that
lack of gap junctions reduced the probability that complex
spikes would be produced synchronously among P-cells in
response to a perturbation during locomotion (De Gruijl et al.
2014).
In summary, it is possible that the olivocerebellar module,

i.e., the loop from a P-cell to a DCN neuron to an olivary neuron
back to the same P-cell, serves a fundamental purpose: it allows
the olive to convey the error in the output of a DCN neuron to a
small group of P-cells, thus generating synchronous complex
spikes that can then suppress activity in the DCN neuron that
produced the erroneous output.

PLASTICITY IN THE DCN

De Zeeuw et al. (2011) had conjectured that the complex
spike induced suppression of activity in DCN (and the rebound
that followed in some DCN neurons) played a key role in con-
trol of DCN plasticity. Indeed, Raman and colleagues (Person
and Raman 2010; Pugh and Raman 2008) had observed that a
sequential pattern of excitation followed by inhibition in a DCN
neuron produced long-term potentiation (LTP) in the mossy
fiber synapses: when a period of excitation (150 ms) in the DCN
neuron preceded a period of strong inhibition (250 ms), mossy
fiber synapses strengthened. Similarly, in the medial vestibular
nucleus (a DCN analog for some regions of the cerebellar cor-
tex), vestibular nerve synapses (a mossy fiber analog) on the
vestibular nucleus neurons exhibited LTP when nerve stimula-
tion coincided with nucleus neuron hyperpolarization
(McElvain et al. 2010). In addition, Zhang and Linden (2006)
had found that a period of mossy fiber excitation alone led to
long-term depression (LTD) of the mossy fiber synapses.
Thus we have a potential mechanism with which the error in

the output of a DCN neuron can cause plasticity in that specific
DCN neuron: e

ðd�Þ
i is detected by an olive cell and sent via

climbing fibers to a population of P-cells whose synchronous
complex spikes produce a suppression of spiking in the DCN
neuron. If that suppression is preceded by a period of excitation
from mossy fibers, the result is an increase in the weight of the
mossy fiber synapses on the DCN neuron. On the other hand,
without this suppression there may be a decrease in the weight
of the mossy fiber synapses.
Complex spike-induced suppression of spiking in the DCN

neuron must also affect the strength of the P-cell synapse onto
the DCN neuron. Mechanisms of plasticity in the P-cell synap-
ses in the nucleus are poorly understood, but there is some evi-
dence that this plasticity depends on activation patterns that
resemble the suppression of DCN activity that follows a com-
plex spike. Aizenman et al. (1998) found that in slices from the
cerebellum of juvenile rats, following 200 ms of hyperpolariza-
tion that suppressed the nuclear cell’s spiking, there was
rebound depolarization (i.e., a burst of spikes). The amount of
this rebound depolarization dictated the direction of plasticity in
the P-cell synapse: if the rebound was missing or weak, the
synaptic strength was reduced. It is noteworthy that in vivo,

generation of a complex spike in the parent P-cell not only leads
to a period of suppression of spiking in the DCN neuron, this
suppression is occasionally followed by a burst of spiking
(Hoebeek et al. 2010). Results of Aizenman et al. (1998) imply
that the magnitude of this rebound depolarization influences
direction of weight change in the P-cell synapses upon the DCN
neuron.
In summary, DCN neurons provide the output of the cerebel-

lum and must be informed of their errors. However, most of
these neurons do not project to the olive, one of the locations
where error may be computed. Furthermore, those that do pro-
ject to the olive receive olivary projections that progressively
weaken through development. As a result, at present we do not
know how a DCN neuron learns to change its erroneous output.
However, synchronous complex spikes in the parent P-cells can
produce a 50-ms period of suppression in the DCN neuron. If
the suppression is preceded by a period of excitation, the synap-
tic inputs from the mossy fibers to the DCN neuron strengthen.
If the suppression is followed by rebound spiking, the synaptic
inputs from the P-cells to the DCN neuron strengthen. Thus con-
trol of plasticity at the DCN may be via synchronous complex
spike activity among the population of P-cells that project onto
it, providing an indirect pathway that communicates the error in-
formation from the olive to the DCN neurons.

MEMBERSHIP CRITERION FOR P-CELL POPULATIONS

We are now in position to make a guess regarding the mem-
bership criterion for the P-cell population: to transmit the error
signal reliably from the climbing fiber to the DCN, there is a
need for complex spike synchrony, which is more likely if the
population of P-cells that project to a given DCN neuron share a
similar error signal from the olive. Furthermore, for the error
signal to be a teacher for the downstream DCN neuron, it must
be generated by olivary neurons that compute the error in that
DCN neuron’s output.
The ideal scenario would be the following. Suppose that an

olive neuron computes the error associated with a given DCN
neuron, i.e., receives an inhibitory synapse from that DCN neu-
ron. The olive neuron’s axon to the cerebellum should split and
synapse on every 1 of the 50 P-cells that project to that DCN
neuron. However, a single olivary axon projects to only approxi-
mately seven P-cells (Sugihara et al. 1999, 2001). Therefore, the
population of P-cells that project to a nucleus neuron is bigger
than what a single olive neuron can serve.
A typical DCN neuron receives inputs from approximately

eight olivary axons (Najac and Raman 2017). If we imagine that
each of these axons is a collateral from an olivary axon that trav-
els to the cerebellar cortex and becomes the climbing fiber for
seven P-cells, then the olive to nucleus convergence ratio (8:1)
combined with the olive to P-cell divergence ratio (1:7) pro-
duces roughly 56 P-cells that receive information about the error
made by a single nucleus neuron. In a remarkable coincidence,
�50 P-cells converge on a single nucleus (in mice) (Person and
Raman 2012a). We thus arrive at our conjecture regarding the
membership criterion for a P-cell population (Fig. 6A):

Conjecture C5. The population of P-cells that project onto a
DCN neuron is composed of those P-cells that receive climbing

fibers from the olivary neurons that also receive projections
from that specific nucleus neuron.
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In summary, a handful of olivary cells send axons to a single
nucleus neuron, and each olivary cell also sends climbing fibers
to a handful of P-cells. Perhaps through development, the oli-
vary cells guide those P-cells to project to the same nucleus neu-
ron (Najac and Raman 2017). In this scenario, the P-cell
population that projects to a single DCN neuron would consist
of P-cells that receive a climbing fiber from one of those olivary
cells. If most of these olivary cells also receive a projection
from that DCN neuron, then the olivary cells are in position to
compute the error (Eq. 1) in the DCN neuron’s output and pro-
vide that information via climbing fibers to the 50 P-cells that
represent the parent of the DCN neuron. The P-cells would
transform the error information into a complex spike, which if
synchronized with other P-cells in the population, would result
in a brief suppression of the DCN neuron’s activity that was re-
sponsible for the error. This in turn would produce plasticity in
the DCN neuron’s mossy fiber and P-cell synapses. If these con-
jectures are true, then the responsibility to teach a DCN neuron
would be relegated to the population of P-cells that converged
on that DCN neuron.

AN APPROPRIATE ERROR SIGNAL FOR A P-CELL

The next step is to ask how we should teach the neurons in
our middle layer, i.e., the P-cells. This may seem like a trivial
task because each P-cell receives a climbing fiber, thus endow-
ing it with a powerful channel to receive error information.
Indeed, both the presence and absence of complex spikes syn-
chronous with simple spikes produce parallel fiber plasticity
(J€orntell and Ekerot 2002). However, if we consider this ques-
tion mathematically, we arrive at another useful inference.
Due to its placement in the middle layer, a P-cell does not

have a direct role in producing an output from the cerebellum
and is not directly responsible for any error. Rather, it projects
to a handful of DCN neurons that produce outputs and thus con-
tribute to our loss function (Eq. 3). Importantly, because a P-cell
projects to only four or five DCN neurons (Person and Raman
2012b), it contributes to errors made by only these specific out-
put neurons. The mathematics require that the climbing fiber
that the P-cell receives must carry error information related to
activity of the DCN neurons that it projects to.

If this were an artificial neural network, we would send a P-
cell a distinct error signal associated with each of the DCN neu-
rons it projects to. However, a P-cell has only a single climbing
fiber. Thus we face a puzzle in how to teach the P-cells.

Puzzle P3. A P-cell contributes to the activity of multiple DCN
neurons. Yet, it receives only a single climbing fiber. How can
the P-cell learn to change its activity to reduce the errors associ-
ated with the DCN neurons it projects to?
Suppose that P-cell k has activity a

ðpÞ
k , where the superscript

refers to the fact that this unit is a P-cell. This P-cell projects to
neurons j = {1,···,N} in the DCN layer, contributing to their
activities a

ðdÞ
j . As a result, the gradient of the loss function with

respect to activity of this P-cell is:

dJ

da
ðpÞ
k

¼
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The above expression implies that the error that the P-cell
must learn from is proportional to the weighted sum of the errors
made by its downstream DCN neurons. Unfortunately, the P-
cell receives only a single climbing fiber. Thus this climbing
fiber must represent the errors made by all the DCN neurons j =
{1,···,N} that the P-cell projects to.
Among the four or five DCN neurons that a single P-cell proj-

ects to, some are GABA-ergic, projecting to the olive, and some
are non-GABA-ergic, projecting elsewhere in the brain (Teune
et al. 1998). A potential solution to our puzzle is an anatomy in
which the GABA-ergic DCN neurons of a given P-cell converge
their axons on a single olive neuron and that olive neuron serves
as the teacher for the parent P-cell, providing it with its single
climbing fiber (Fig. 6B). Alternatively, the GABA-ergic DCN
neurons of a given P-cell may converge their axons on different
olive neurons that are electrically coupled, one of which pro-
vides the climbing fiber to that P-cell.
For this to be an effective solution, the GABA-ergic and non-

GABA-ergic DCN neurons of our single P-cell would have to
be matched in their activity, which is indeed what we had

P-cells

inf. olive

DCN

7 P-cells

P-cell to DCN convergence P-cell to DCN divergence

observation
prediction

mossy
fiber

P-cell

inf. olive

DCN

A B

Fig. 6. Membership criterion for population of P-cells. A: it is possible that the population of P-cells that project onto a single nucleus neuron is composed of those P-
cells that receive climbing fibers from the olivary neurons that also project to that specific nucleus neuron. B: a single P-cell projects to �4 deep cerebellar nucleus
(DCN) neurons, which include both GABA-ergic and non-GABA-ergic cells. Efficient learning requires that the error signal that the P-cell receives represent only
these errors. Here, the GABA-ergic DCN daughters of a given P-cell converge their axons on a single olive neuron, and that olive neuron serves as the teacher for the
parent P-cell, providing it with its single climbing fiber. The olive cell in turn sends excitatory projections to all the DCN daughters of the P-cell.
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conjectured earlier when we considered the problem of teaching
the two groups of DCN neurons (conjecture C2). This conjec-
ture raises the following requirement: the olive cell that provides
the climbing fiber to a P-cell should be the same olive cell that
receives inhibitory projections from every GABA-ergic DCN
neuron that this P-cell projects to (Fig. 6B). This is consistent
with the proposal that during development, the activity of the
climbing fiber, and particularly the coincidence of complex
spikes in the parent P-cell with the DCN neuron’s EPSCs from
the olive, may be a guide in wiring the cerebellum (Lang et al.
2017; Lu et al. 2016).
In summary, efficient learning in a P-cell requires that its

climbing fiber should come from an olive neuron that is the re-
cipient of synapses from a specific group of DCN neurons: those
that are “daughters” of that P-cell.

POPULATION CODING OF P-CELLS

Vernon Mountcastle used to start some of his lectures by
reminding his students that “if you want to know what a neuron
does, figure out what it is connected to.” That advice looms
large in the motor system, where control is often via population
coding: a few dozen neurons in a region of the brain project to a
common output neuron, forming a population that encodes an
aspect of behavior. In this population, activity of a single neuron
is less important than the collective activity of all the neurons.
Unfortunately, we currently have no method that can label the
membership of this population in the living brain. Instead, the
common technique is to collect neurons into pseudopopulations
based on the statistical properties of their discharge, for exam-
ple, via principal component analysis, a technique in which one
assigns a weight to each neuron’s output and then labels the
weighted sum of all activities as the population response
(Churchland et al. 2010).
We can take an alternate approach in the cerebellum, one that

rests upon an a priori hypothesis about the role of the teacher
(inferior olive) in organizing the students (the P-cells and their
downstream DCN neurons). Our hypothesis states that P-cells
that receive similar error signals are likely to be part of the same
population (Fig. 6A). Recent work has tested this idea by organ-
izing P-cells in the oculomotor vermis of macaques into popula-
tions that share a common teacher: a common complex spike
tuning with respect to visual error.
Saccadic eye movements depend critically on the cerebellum,

as evidenced by the deficits observed in patients with cerebellar
damage (Leigh and Zee 2015; Xu-Wilson et al. 2009) and mon-
keys with lesions (Barash et al. 1999; Kojima et al. 2010a;
Takagi et al. 1998). Electrical (Keller et al. 1983) or optogenetic
(El-Shamayleh et al. 2017) stimulation of P-cells does not usu-
ally evoke a saccade but alters saccade trajectory at 10- to 15-
ms latency. Given this evidence, one might expect that P-cell
simple spikes should encode kinematic parameters of saccades
(e.g., eye speed, amplitude, or direction). However, individual
P-cells show little modulation of simple spikes with respect to
saccade kinematics (Helmchen and B€uttner 1995). Indeed, sim-
ple spikes during saccades (Fig. 7A) present a bewildering
assortment of responses, including P-cells that produce a burst,
P-cells that produce a pause, and P-cells that do both (Kojima et
al. 2010b; Ohtsuka and Noda 1995). Most puzzling is the fact
that simple spikes are modulated well beyond saccade end
(Thier et al. 2000), as shown in Fig. 7B.

These puzzles are not unique to saccades. Both the diversity
of simple spike responses and the fact that modulation of dis-
charge outlasts the movement are also features of P-cell activity
during wrist (Ishikawa et al. 2014; Mano and Yamamoto 1980;
Tomatsu et al. 2016) and arm movements (Hewitt et al. 2015).
For example, Ishikawa et al. (2014) recorded from nearly 200 P-
cells during wrist movements and found bursters, pausers, and
P-cells that exhibited both bursting and pausing. They found
that the discharge modulation outlasted the movement, exhibit-
ing no obvious patterns with respect to movement direction.
Given that the cerebellum is critical for precise control of sac-
cades (Robinson et al. 1993) as well as arm movements (Becker
and Person 2019; Chen et al. 2006; Viaro et al. 2017; Vilis and
Hore 1980), it is puzzling that simple spikes of individual P-
cells are modulated long after the movement ends.
A key to this puzzle may be population coding. Thier and col-

leagues (Catz et al. 2008; Thier et al. 2000) were first to sum
activities of all recorded P-cells into a population response.
They focused on “bursters” and demonstrated that although du-
ration of the population response was longer than movement du-
ration, it correlated with saccade duration (Thier et al. 2000), as
well as a linear combination of position, velocity, and accelera-
tion during pursuit (Dash et al. 2012). We extended this
approach by considering all task-related P-cells (bursters, paus-
ers, etc.) and then applied the hypothesis that the inferior olive
divided the P-cells into groups wherein all the P-cells within a
group shared a common response to error.
To measure the error response of each P-cell, we relied on the

observation that if a saccade concluded but the target was not on
the fovea, some P-cells were likely to produce a complex spike
(Junker et al. 2018; Kojima et al. 2010b; Soetedjo et al. 2008;
Soetedjo and Fuchs 2006). To measure the tuning of complex
spikes, we induced visual errors. Following fixation, a target
was presented in the periphery. As the monkey made a saccade
toward the primary target, we jumped the target to a new posi-
tion (Fig. 8A). During the 50- to 200-ms period following com-
pletion of the primary saccade, the visual error (target position
with respect to fovea) induced a complex spike with a probabil-
ity that depended on the direction of the error vector (Fig. 8B).
At around 150 ms after completion of the primary saccade, the
animal made a corrective saccade.
The jumping of the target often resulted in a complex spike

and then a corrective saccade. Thus, with these data alone we
cannot say whether the complex spike was associated with the
unexpected sensory event, the motor event that followed (i.e.,
the corrective saccade), or both. However, further experiments
that we will review below suggest that the unexpected sensory
event alone (Kaku et al. 2009; Soetedjo et al. 2009), without the
motor correction (Tseng et al. 2007; Wallman and Fuchs 1998),
may be the main driver of the complex spikes.
For each P-cell, the emission of complex spikes depended on

the direction of error (Fig. 8C). The direction of error that pro-
duced the largest probability of complex spikes in the postsacca-
dic period for a given P-cell was labeled as CS-on. The complex
spike tuning for all cells is plotted in Fig. 8C. We found that if
the error was in direction CS-on, following saccade completion
the probability of complex spikes peaked at around 100 ms, pro-
ducing a response that was roughly twice the baseline. In con-
trast, if the error was in direction CS-on + 180, the probability
of complex spike decreased by roughly 40% below baseline.
Importantly, the probability of a complex spike following
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saccade end was unrelated to direction of the preceding saccade.
Rather, it was driven by the direction of the postsaccadic error.
These results were acquired in macaques and then confirmed in
marmosets (Sedaghat-Nejad et al. 2019). Thus, in two primate
species, P-cells in the oculomotor vermis exhibited a strong
preference for direction of the visual error.
This preference for error appears to be present in P-cells of

other species as well. In the cerebellum-like circuit of the elec-
tric fish, MG cells, which are analogous to P-cells, produce
broad spikes that are analogous to complex spikes. An unex-
pected sensory input produces broad spikes in some MG cells
but suppresses the broad spikes in others (Muller et al. 2019).
Thus MG cells in the electric fish also exhibit a tuning for error.
After we organized the P-cells in groups that shared similar

complex spike tuning with respect to the visual error, a remark-
able pattern emerged. The simple spikes produced by the popu-
lation of P-cells appeared related to eye velocity (Fig. 9A). That
is, whereas individual P-cells exhibited great diversity in their

responses, with activity that was modulated long after the sac-
cade had ended (Fig. 7A), as a population the simple spikes
appeared to be associated with motion of the eyes rather pre-
cisely. For example, when the saccade was in the antipreferred
error direction (CS-on + 180) of the P-cells, the combined sim-
ple spikes of the population increased before saccade onset, had
a peak discharge that scaled with peak velocity of the eye (Fig.
9A), and then exhibited a brief period of reduce activity that
coincided with deceleration of the eyes. It is remarkable that
this pattern was not present in the activity of any single P-cell
but unmasked in the population.
If saccade direction was aligned with the CS-on direction of

the P-cells, the peak population response still correlated with
peak eye velocity, but now with a lower gain (Fig. 9C), and
without the reduced activity during the deceleration period.
Therefore, the population response appeared modulated by ve-
locity of the eye, with a gain that multiplicatively depended on
direction of motion. This encoding is termed a “gain-field”: the
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magnitude of the population response increased linearly with
speed and was cosine tuned in direction, with a multiplicative
interaction between speed and direction. Gain fields are also
employed by cells in the posterior parietal cortex to combine
two pieces of information, position of the eye in the orbit and
position of the stimulus on the fovea (Andersen et al. 1985).
A limitation of this work is that it included P-cells from five

monkeys yet organized them into a single population. Future
work will test whether P-cells in a single animal exhibit popula-
tion coding that resembles the data shown in Fig. 9.
In summary, in both macaques and marmosets, individual P-

cells in the oculomotor vermis had simple spikes that were modu-
lated for periods that lasted much longer than the saccade. The
conjecture that the olive organized the P-cells (Fig. 6A) presented
a hypothesis for population coding: P-cells that shared a similar
error signal would group together to influence a DCN neuron. To
find population membership, we measured each P-cell complex
spike response to postsaccadic visual error. We assigned mem-
bership based on complex spike tuning and then simply summed
the simple spikes of the member P-cells. The resulting sum of
simple spikes produced a population response that presented
a consistent pattern. In direction CS-on + 180, simple spikes
increased by an amount that correlated with peak velocity of
the eye and then reduced activity as the eyes decelerated. In
direction CS-on, simple spikes increased by a smaller amount
during acceleration, and then returned to near baseline during
deceleration. Hence, when the P-cells were organized into
populations that shared a similar preference for error, their
simple spikes as a population appeared to play a role in con-
trolling the real-time motion of the ongoing saccade. This
framework for forming P-cells into populations awaits test-
ing and confirmation in other paradigms and laboratories.

SUPERIOR COLLICULUS AND THE ORIGIN OF THE ERROR

SIGNAL IN THE COMPLEX SPIKES OF SACCADE-RELATED

P-CELLS

Why do P-cells in the oculomotor vermis exhibit complex
spikes that are tuned with respect to visual error? Recent experi-
ments suggest that complex spike tuning reflects activity of neu-
rons in the superior colliculus in response to events in the visual

field (Kaku et al. 2009; Kojima and Soetedjo 2018; Soetedjo et
al. 2009). In this framework, activity in a specific region of the
colliculus drives the contralateral inferior olive (Saint-Cyr and
Courville 1982), leading to production of complex spikes in a
group of P-cells (Soetedjo et al. 2019). To illustrate this process,
let us consider an example.
Superior colliculus is a topographic structure, organized into

regions that respond to visual inputs with respect to the fovea
(Mays and Sparks 1980). Suppose we place a target at location
“a” on the left of the screen and ask a volunteer to make a sac-
cade toward it (Fig. 10A). During this primary saccade, we erase
target “a” and replace it with a target at “b,” located a few
degrees to the left of “a.” As the primary saccade ends, imagine
that the cerebellum predicts that the target should be near the
fovea, and thus there should be activity among the foveal-
related neurons in the rostral pole of the colliculus. However,
the actual sensory consequence is different: the visual stimulus
is a few degrees to the left of the fovea, and thus there is higher
than expected activity in a group of neurons located in the right
caudal superior colliculus (red region “b” in right colliculus,
Fig. 10B), and lower than normal activity in a group of neurons
in the left caudal superior colliculus (blue region in the left colli-
culus, Fig. 10B). The presumed lower than normal collicular ac-
tivity is a speculation based on the fact that caudal neurons in
one colliculus inhibit the neurons on the contralateral side
(Mascetti and Arriagada 1981; Munoz and Istvan 1998;
Takahashi et al. 2005). Some of the affected neurons in the left
and right superior colliculus project to neurons in the right and
left olive, respectively (Saint-Cyr and Courville 1982). Hence,
in this hypothetical framework, the collicular map of the visual
space is at least partly responsible for the complex spike tuning
of the P-cells in the oculomotor vermis.
There is experimental evidence in support of the idea that

unexpected activity on the colliculus is the source of the com-
plex spikes that drive learning in the saccade task. Soetedjo et
al. (2009) and Kaku et al. (2009) used subthreshold stimulation
following saccade termination to artificially produce unexpected
activity in a small region of the colliculus. Their idea was to
mimic collicular activity that would arise from a visual error
and do this without eliciting the corrective saccade that would
normally follow the visual error. For example, at around 80 ms
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following completion of the saccade, they stimulated a region of
the superior colliculus that was associated with visual activity of
magnitude 2� in a specific direction with respect to the fovea.
They found that this subthreshold stimulation led to saccade ad-
aptation that corresponded to the direction and magnitude of
this error vector. Their results established that unexpected activ-
ity in a small group of neurons in the superior colliculus follow-
ing saccade end acted like an error, inducing learning.
To test whether unexpected collicular activity was necessary

for learning, Kojima and Soetedjo (2018) deactivated a small
region of the colliculus using muscimol. Their idea was to elimi-
nate the ability of the colliculus to communicate to the inferior
olive the presence of an unexpected visual event and thus block
the error signal. Notably, they took advantage of the topographic
map of the colliculus and focused the disruption on a specific
vector in the visual space. They found that the disruption led to
near elimination of learning. That is, the animals were unable to
learn from that specific error vector.

Finally, to test whether collicular activity is the source of
complex spike tuning, Soetedjo et al. (2019) used subthreshold
stimulation of the colliculus while the animal was fixating and
recorded from P-cells in the oculomotor vermis. They noted that
stimulation at a particular location on the colliculus reliably pro-
duced a complex spike (at around 15-ms latency). They then
recorded the complex spike tuning of each P-cell with respect to
visual errors during a saccade task (as in Fig. 8A). Remarkably,
when subthreshold stimulation of a particular region of the colli-
culus produced complex spikes in a P-cell, the direction of sac-
cade that was encoded by that particular region tended to be
aligned to the direction of visual error that was preferred by the
P-cell.
These results suggest that a major source of complex spikes

in the oculomotor vermis is unexpected activity in the superior
colliculus, and that CS tuning of P-cells with respect to direction
of visual error is likely derived from spatial organization of col-
licular neurons with respect to the visual space.
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Fig. 10. Hypothetical relationship between preferred error of a P-cell and the projections of its deep cerebellar nucleus (DCN) daughters. A: a model of activity in the
superior colliculus as the subject views a fixation point and a target is presented at location “a.” During fixation, foveal related neurons in the rostral part of both colli-
culi are active. Presentation of the target “a” activates neurons in the caudal region of the right colliculus (orange, labeled “a”), which results in a saccade. A copy of
the saccade related activity is sent via mossy fibers to the cerebellum. B: at saccade end, the target is expected to be on the fovea. Instead, the target is at location “b.”
This produces activity in a region labeled “b” in the right colliculus, which in turn inhibits a region on the contralateral colliculus. The unexpected activity on the right
colliculus engages olivary neurons on the contralateral side, which produce a complex spike (CS) among P-cells on the right of the oculomotor vermis. The unex-
pected reduced activity on the left colliculus also affected the contralateral olive, which reduces the complex spike probability (Pr) for P-cells to the left of the vermis.
The presence of complex spike for the right P-cells slightly depresses the parallel fiber synapses that were activated during the preceding saccade. The lack of com-
plex spike in the left P-cells slightly increases the weight of the parallel fiber synapse. The P-cells on the right project to DCN neurons that project to burst generators
that activate motoneurons that pull the eyes to the left. On the next saccade, presentation of the same mossy fiber input now produces a slight reduction in the simple
spikes of P-cells on the right (with respect to the previous trial), which results in greater force production to the left. Similarly, the P-cells on the left side of the vermis
produce slightly more simple spikes, and this results in production of slightly less right-ward force. Hence, if there is a correspondence between the preferred action
of the DCN neurons and the preferred error of their P-cell parents, a prediction error results in learning that correctly compensates for the experienced error. That is,
the DCN neurons project to a group of downstream neurons that can produce an effect that will remedy the specific error that is of concern to the parent P-cells.
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PROJECTIONS OF DCN NEURONS AND THEIR RELATIONSHIP

TO COMPLEX SPIKE TUNING OF THE PARENT P-CELLS

We do not need the cerebellum to make a saccade (or any
other movement). The superior colliculus is quite capable of
activating the brainstem burst generators and the downstream
motoneurons to produce a saccade. However, without the cere-
bellum’s contributions, the saccade is dysmetric, particularly for
its horizontal component. For example, if a DCN (caudal fasti-
gial nucleus) on one side of the cerebellum is disabled, the hori-
zontal component of the saccade will overshoot the target when
it is shown toward the same side (hypermetria) and undershoot
the target if it is shown on the other side (hypometria) (Goffart
et al. 2004; Guerrasio et al. 2010; Robinson et al. 1993). In par-
ticular, saccades to the side of the deactivated DCN are hyper-
metric and have a larger than normal amount of acceleration
(Quinet and Goffart 2007), while missing some of the decelera-
tion commands that are needed to stop the eyes (Buzunov et al.
2013; Kojima et al. 2014). This is likely due to combined effects
from both DCNs: the unaffected DCN produces unopposed ago-
nist drive, while the lesioned DCN is unable to produce an an-
tagonist drive (Bourrelly et al. 2018). Thus the cerebellum adds
something to the ongoing movement. What is it adding?
To answer this question, consider that a P-cell may have a

preference for a particular aspect of error (tuning of its complex
spikes) but that error is not its direct responsibility. Rather, the
error arises because of a miscalculation in the output of the
DCN neurons that the P-cell projects to. Where do these DCN
neurons project to? Are the projections related to the preferred
error (i.e., CS-on) of the parent P-cell?
Equation 8 provides a clue: the error signal that is conveyed

via a climbing fiber to a P-cell must be associated with the oli-
vary cell that computes the error in the output of the DCN
“daughters” of the P-cell. However, P-cells do not respond
equally to all errors. Rather, they are most concerned with a spe-
cific error, as evidenced by their complex spike tuning. Perhaps
the DCN neurons should produce downstream effects that will
alleviate the specific error concerns of their parent P-cells.
In our example in Fig. 10A, we placed a target at location “a”

and then jumped it to location “b.” This produced unexpected
activity in certain regions of the colliculus. That activity was
unexpected because it was not predicted by the GABA-ergic
DCN neurons that inhibit the specific olive cells that these col-
licular regions project to. The larger than expected activity in
the right colliculus leads to increase in complex spike produc-
tion among the P-cell parents of the right DCN neurons,
whereas the (hypothetically) smaller than expected activity in
the left colliculus leads to suppression of complex spikes among
the parents of the left DCN neurons.
Thus a single unexpected event that occurs after completion

of a saccade (the target is not on the fovea) is a miscalculation
by two distinct groups of DCN neurons. Their miscalculations
are conveyed to their parents P-cells via climbing fibers. The
change in complex spike probability (with respect to baseline)
signals to the P-cell that the DCN neurons that it projects to
failed to correctly anticipate the sensory consequences of the
movement. Therefore, if these DCN neurons are to correctly
predict the visual consequences of this saccade, they must learn
to anticipate the activity that will take place in neurons that re-
side in the caudal region of the superior colliculus and cancel it
when it is conveyed to the inferior olive. If they did that, they

would inhibit the olive neurons that these collicular neurons pro-
ject to, anticipating their activity and returning the complex
spikes to baseline. As a result, if a P-cell exhibits a preference
for leftward visual errors, this implies that its DCN daughters
project to an olivary neuron that receives excitatory inputs from
collicular neurons that encode a region to the left of the fovea
(Fig. 10A).
However, it is not enough for the cerebellum to merely learn

to predict the sensory consequence of a movement. Rather, we
need a mechanism with which to alter the motor commands and
guide the saccade to the desired destination, placing the target
on the fovea. That is, motor learning is not about eliminating
sensory prediction errors by building more accurate predic-
tors (termed forward models). Rather, motor learning aims to
improve movements. This provides us with a clue as to where
the non-GABA-ergic DCN daughters of a P-cell should pro-
ject to.

Conjecture C6. A DCN neuron should project to a group of neu-
rons that can produce an effect that will remedy the specific
error that is of concern to the parent P-cells.
For example, if the saccade concludes but the target is to the

left of the fovea (Fig. 10B), and there is a P-cell population that
prefers this error, then the non-GABA-ergic DCN daughters
should be able to do something constructive about eliminating
this error. They could do that if their axons projected to neurons
that indirectly engaged muscles that pulled the eyes horizontally
to the left (Fig. 10B), for example, by projecting to burst genera-
tors that act on left-pulling abducens motoneurons. Similarly,
for the P-cell population that prefers errors to the right, a con-
structive action would be for their DCN neurons to reduce the
drive for right-ward pulling abducens motoneurons. With access
to effectors, the non-GABA-ergic DCN neurons could profit-
ably influence the saccade’s trajectory in a way that would help
restore the complex spikes in their parent P-cells toward
baseline.
Now let us consider how presence of this leftward error at

saccade end should produce trial-to-trial learning. The leftward
error increases probability of complex spikes for P-cells that
prefer that error, slightly reducing their simple spikes on the
next trial (push more to the left). The same error decreases the
probability of complex spikes for P-cells for which this error is
CS-on + 180, slightly increasing their simple spikes on the next
trial (push less to the right). As a result, on the next trial, as the
target is shown at location “a” and the saccade is made, the cere-
bellum via its non-GABA-ergic DCN neuron adds a small left-
ward force to the ongoing motor commands, guiding it toward
location “b.” If such an anatomy existed, the non-GABA-ergic
neurons would be able to alter the saccade’s trajectory, reducing
the sensory prediction error.
The suggested correspondence between the error that con-

cerns the parents and the downstream influence of the DCN neu-
rons helps us understand why the population of P-cells show
reduced activity when the saccade is decelerating toward the
CS-on + 180 direction, but not when it is decelerating toward
direction CS-on (Fig. 9B). In the oculomotor vermis of the cere-
bellum, P-cells that are on the right side of the midline project to
the right caudal fastigial nucleus. These P-cells tend to prefer
errors that are to the left part of the visual space (Herzfeld et al.
2015) and thus have their CS-on + 180 to the right. According
to conjecture C6, their DCN neurons indirectly affect effectors
that produce a leftward force. When a rightward saccade is
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made, the P-cell population shows reduced activity during the
deceleration period because this leads to increased activity in
their DCN neurons, which in turn increases leftward forces,
helping stop the saccade.
If indeed the direction of CS tuning of a population of P-cells

corresponds to the direction of action of their downstream DCN
neurons (Fig. 10), then what might happen if the P-cells are arti-
ficially stimulated during a saccade? If the P-cells are on the
left side of the vermis, they would tend to have rightward CS
tuning (because their climbing fibers originate from olivary
cells that receive input from the left superior colliculus). If
these P-cells are stimulated, their higher than normal activity
would suppress the left caudal fastigial nucleus, which would
in turn produce less rightward force (than normal) during sac-
cades, thus biasing all saccades to the left. This is precisely
what has been observed during optogenetic stimulation of P-
cells that were believed to be on the left side of the vermis
(El-Shamayleh et al. 2017).
Is there evidence for this conjecture outside of the oculomotor

system? Ekerot et al. (1995) examined the part of the interposi-
tus nucleus that received inputs from P-cells, which responded
with complex spikes when the cat’s forelimb was touched or
pinched on the skin. To determine the complex spike tuning of
the P-cells, in the decerebrated cat they recorded local field
potentials from the interpositus neurons and noted that provid-
ing a noxious pinch on a specific forelimb skin area produced an
excitatory response. They used this as a proxy for the complex
spike tuning of the P-cells. They then electrically stimulated
these interpositus neurons and observed multijoint movements
of the forelimb. The movements were likely generated because
stimulation engaged DCN neurons that projected to the red nu-
cleus and then neurons to the projected to the spinal cord via the
rubrospinal tract.
When they compared the complex spike tuning of the P-cells

(as inferred from the field potentials in the DCN) and the stimu-
lation results, there was a general correspondence: the move-
ment that was evoked from stimulation of a particular DCN
region pulled the limb away, protecting the part of the skin that
was pinched to produce the complex spike in the parent P-cells.
For example, if the skin on the ventral forepaw was touched,
generating potentials in a region of DCN that received input
from P-cells that had a complex spike receptive field for that
part of the skin, stimulation of that DCN region activated a pal-
mar flexor of the wrist, producing a withdrawal of the forepaw
away from the noxious stimulus. That is, the action produced by
stimulation of DCN neurons appeared constructive in prevent-
ing the occurrence of the stimulus that produced complex spikes
in the parent P-cells.
In summary, from a theoretical perspective the error that is

transmitted to a P-cell must reflect the miscalculations that are
made by only the DCN neurons that it projects to. P-cells may
exhibit a preference for a specific error vector. To remedy this
error, it would be useful if the DCN neurons produced actions
that could remedy the error concerns of their parent P-cells. In
the case of eye movements, this means that the DCN neurons
should project to a location where they can indirectly engage
motoneurons that pull the eyes in a direction that is parallel to
the preferred visual error vector of their parent P-cells. That is,
there should be a correspondence between the actions that can
be influenced by the DCN neurons and the errors that concern
their P-cell parents.

EFFECT OF COMPLEX SPIKES ON CHANGING BEHAVIOR

Because complex spikes are random events that may or
may not occur after a given error, there is a way to test if there
is a relationship between error tuning of a P-cell and the
downstream motor effects of the DCN neurons that the P-cell
projects to.
Suppose in trial n a saccade is made and an error is observed

following conclusion of that saccade. If that error is in the pre-
ferred direction of a P-cell, in some fraction of trials that P-cell
will generate a complex spike, whereas in most trials it will not.
Conjecture 6 predicts that if the complex spike did occur, it sig-
naled the preferred error, which in turn produced plasticity in
the P-cell and its DCN neurons. On trial n + 1, the eyes should
be pulled slightly in the direction specified by the CS-on vector
of the parent P-cell.
We tested this idea in Herzfeld et al. (2018). After saccade

completion, an error was present or absent, and the P-cell pro-
duced a complex spike, or not. We measured trial-to-trial
change in behavior via the difference in motor output (eye ve-
locity) from the trial in which the error was experienced to the
subsequent trial in which the same target was presented.
We began with trials in which there was an error following sac-

cade completion and the direction of that error was in the CS-on
direction of the P-cell that was being recorded (Fig. 11A). In
some trials, the P-cell did not produce a complex spike in the
postsaccadic period (Fig. 11A, CS absent). In other trials, the P-
cell did produce a complex spike (Fig. 11A, CS present). In both
cases, in the subsequent trial the motor commands pulled the eyes
more in the direction of error, which in this case happened to
coincide with CS-on of the P-cell under study (Fig. 11A, left).
The actual errors were similar in trials that the complex spike had
or had not occurred. Yet, the change in the motor output from trial
n to n + 1 was significantly larger, i.e., the pull was stronger, if
the P-cell produced a complex spike in the postsaccadic period of
trial n (Fig. 11A, left, difference). A similar observation has been
made in a different task (pursuit) when visual error was in direc-
tion CS-on of P-cells in the flocculus region of the cerebellum
(Medina and Lisberger 2008; Yang and Lisberger 2014a).
Sometimes the movement was perfect: a saccade took place

and the target was on the fovea (Fig. 11B). Despite this lack of
error, on a fraction of trials the P-cell nevertheless generated a
complex spike in the postsaccadic period. Remarkably, in the
subsequent trial the eyes were again pulled in the CS-on direc-
tion of that P-cell (Fig. 11B, CS present). The change in behav-
ior was the same whether an error was present or not (the
difference curves are the same in Fig. 11, A and B); what mat-
tered was whether the P-cell received a complex spike or not.
Therefore, even without an error, the presence of a postsaccadic
complex spike in a single P-cell was followed by a change in
behavior in the subsequent trial. The eyes were pulled in the
CS-on direction of that P-cell.
These results hinted that if a P-cell produced a postsaccadic

complex spike, in the subsequent trial that P-cell and others in
that population through their DCN neurons (indirectly) influ-
enced a specific group of motoneurons, those that produced
force along the P-cell CS-on direction. To test this hypothesis,
we focused on trials in which error was in direction CS-on +
180� (i.e., error was opposite the preferred error direction of the
P-cell). Following experience of this error, the behavior in the
subsequent trial changed in the direction of that error (Fig. 11C,
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left). Remarkably, the trial-to-trial change in behavior was sig-
nificantly smaller if the P-cell had produced a complex spike.
As a result, the difference between the trial-to-trial change in
the motor commands that took place with and without a com-
plex spike was always in direction CS-on, regardless of whether
error was in direction CS-on (Fig. 11A), CS-on + 180� (Fig.
11C), or absent altogether (Fig. 11B).
We therefore made our analysis blind to the error that the ani-

mal had experienced and instead labeled each trial based on
whether the P-cell had or had not produced a postsaccadic com-
plex spike. We found that if the P-cell produced a complex
spike, the trial-to-trial change in saccade velocity was entirely
in the CS-on direction of that P-cell (CS present, Fig. 11D),
with no component along CS-on + 90�. In contrast, if the P-cell
did not produce a complex spike, the trial-to-trial change was in
direction CS-on + 180� of that P-cell (CS absent, Fig. 11D).
In summary, following production of a postsaccadic complex

spike in a P-cell, in the subsequent trial the eyes were pulled
along a vector that was parallel to the CS-on direction of that P-
cell. Without a complex spike, in the subsequent trial the eyes
were pushed away along that same vector. Importantly, this pat-
tern was present even when there were no errors at the end of
the saccade. This appears consist with the idea that there is a
correspondence between the complex spike tuning of a P-cell

and the direction of action of the DCN neurons it projects to
(Apps and Garwicz 2005; Ekerot et al. 1995).

DO COMPLEX SPIKES ENCODE PREDICTION ERRORS?

The central assumption in our framework is that the inferior
olive provides the error signal that serves as a teacher for the
cerebellum. However, the idea that complex spikes signal a pre-
diction error is controversial. For example, Horn et al. (2004)
trained cats to reach and grasp a lever and then displaced the le-
ver during some trials. They found no olivary neuron that dis-
charged near the time of the error (when the paw would have
grasped the lever), despite the fact that the neurons responded to
taps on the paw.
Another issue is that complex spikes are rare events that

occur approximately once per second, producing a disparity
between the richness of information conveyed by the simple
spikes, and the poverty of the error signal transmitted by the
complex spikes. Indeed, errors can double or halve in size with-
out significant changes in the rate of complex spikes (Ke et al.
2009; Ojakangas and Ebner 1992; Soetedjo et al. 2008). For
example, in a saccade adaptation task, Catz et al. (2005) noted
that the large errors at the onset of training produced only mod-
est changes in complex spike probability among P-cells in the
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oculomotor vermis. Notably, while training produced reductions
in error magnitude, the expected reductions in the probability of
complex spikes did not materialize. Indeed, in tasks as diverse
as arm movements, head movements, and eye movements, a
consistent finding has been that error size can change without
altering the probability of complex spikes (Ke et al. 2009;
Keating and Thach 1995; Soetedjo et al. 2008). From a machine
learning perspective, it is quite problematic if the error signal is
insensitive to error size.
Two clues shed light on this puzzle: the precise timing of the

complex spikes, and the shape of their waveforms. Eccles et al.
(1966) had stimulated the inferior olive and measured the com-
plex spike response in P-cells, finding that an increase in the
strength of olivary stimulation coincided with a reduction in the
latency of the complex spike. This raised the possibility that
complex spike timing might be an important variable with
which the olive transmitted information about magnitude of
error to the cerebellum. Indeed, experiments in slice prepara-
tions have noted that complex spike timing is a critical factor in
determining the amount of plasticity at the parallel fiber to P-
cell synapse (Suvrathan et al. 2016). That work demonstrated
that complex spikes that arrived at a precise temporal window
produced a greater effect on the simple spikes by maximizing
the change in the strength of the recently active P-cell synapses.
A second clue is the shape of the complex spike waveform.

Unlike simple spikes, complex spikes that are recorded near the
dendrites of a P-cell have waveforms that have a variable num-
ber of spikelets (Davie et al. 2008; Monsivais et al. 2005), which
in turn affects the duration of the complex spike and the subse-
quent rebound in simple spikes (Burroughs et al. 2017). Yang
and Lisberger (2014b) measured the waveform of complex
spikes in the flocculus during a visual pursuit task. They noted
that when an error occurred during pursuit (retinal slip), duration
of the complex spike was longer as compared with when the
animal was fixating and no error was present. Importantly, when
there was an error during pursuit, the trial-to-trial amount of
learning was greater when the duration of the error-induced
complex spike was longer.
We recently examined timing and duration of complex spikes

by systematically varying the direction and magnitude of the error
vector in the task shown in Fig. 8A (Herzfeld et al. 2018). While
the probability of complex spikes was modulated by the direction
of the visual error vector (Fig. 8B), changes in error magnitude did
not produce an appreciable change in the probability of complex
spikes (Fig. 12A). For example, while error magnitude increased
by sevenfold (from 1� to 7�), there were no significant changes in
probability of complex spikes. Instead, error magnitude affected
the timing of the complex spikes. When error magnitude was
small, complex spike timing was distributed uniformly throughout
the postsaccadic period (Fig. 12B). As error magnitude increased,
mean time of the complex spike shifted earlier, from 130 ms to
around 100ms with respect to saccade end (Fig. 12C, left). In addi-
tion, as error magnitude increased the timing of complex spikes
became more consistent, resulting in a reduction in the standard
deviation of the timing distribution (Fig. 12C, right). As a result,
small errors produced complex spikes that were distributed widely
in time. In contrast, large errors produced complex spikes that clus-
tered at a specific time: around 110 ms after the onset of the error
event (saccade end).
An example of variability in the waveform duration of com-

plex spikes is shown in Fig. 12D, left. A P-cell sometimes

produced a complex spike that had many spikelets and a long
duration, whereas in other times the same cell produced a com-
plex spike with few spikelets and a short duration. Notably,
Herzfeld et al. (2018) found that complex spikes that occurred
at around 100 ms following the error event tended to be longer
in duration (Fig. 12D, right).
These results suggested that error magnitude affected the tim-

ing and duration of complex spikes. Indeed, Herzfeld et al.
(2018) noted that complex spike timing affected the process of
learning from error: complex spikes that arrived at around 100
ms were followed by greater trial-to-trial learning than spikes
that arrived earlier or later (Fig. 12E).
In summary, varying the magnitude of error does not produce

an appreciable change in the probability of the complex spike.
Rather, error magnitude affects the timing and duration of com-
plex spikes, which in turn regulate the amount of plasticity in P-
cell synapses. Because synchronizing complex spikes and thus
coordinating their timing is also a key factor in regulating dis-
charge of DCN neurons (Fig. 5C), the results raise the likelihood
that complex spike timing is an important variable with which
the olive transmits error information to the cerebellum.

WHY DO COMPLEX SPIKES CARRY INFORMATION ABOUT

THE REWARD VALUE OF THE STIMULUS?

The probability of a complex spike depends on many factors
beyond the presence or absence of a prediction error. For exam-
ple, while sudden occurrence of a stimulus by itself may not
produce a complex spike in the P-cell of a naı̈ve animal, it will
do so if the animal has learned to associate that stimulus with an
aversive event (Ohmae and Medina 2015), with a greater reward
(Heffley and Hull 2019; Kostadinov et al. 2019; Larry et al.
2019), or with a previous performance error (Junker et al.
2018). Withholding of reward when it was expected can also
modulate complex spike rates (Heffley et al. 2018; Kostadinov
et al. 2019). These results have demonstrated that the signal in
the climbing fiber is not merely the difference between what
was predicted and what was observed, at least not if this com-
parison is in terms of a simple sensory coordinate system.
Rather, complex spikes also reflect a measure of the learned
value of the stimulus. How does one reconcile these facts with
the assumption that complex spikes encode a prediction error?
To illustrate this puzzle, consider the results of Larry et al.

(2019) who trained monkeys in a pursuit task in which the
amount of reward varied on each trial. Each trial began with a
center target that changed color to indicate whether low or high
reward would be available. As a population, P-cells showed an
increase in probability of complex spikes at 200 ms following
the cue that indicated high reward and reduction of this proba-
bility when it indicated low reward. Why was the probability of
complex spikes modulated by the reward value of the stimulus?
Let us assume that in this and other visual tasks, complex

spikes are partly generated to signal unexpected activity among
a group of neurons in the superior colliculus. However, activ-
ities of collicular neurons are not simply a reflection of retinal
input, but also inputs from the basal ganglia and the cerebral
cortex. For example, response of neurons in the superior collicu-
lus is greater if the stimulus is novel and threatening as com-
pared with familiar and unthreatening (Lee et al. 2020). The
response is greater if the stimulus is associated with reward
(Ikeda and Hikosaka 2003). This utility-dependent collicular
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response to the visual stimulus is likely because of value-de-
pendent modulation of inhibition from the basal ganglia (Sato
and Hikosaka 2002) and excitation from the frontal eye fields
(Glaser et al. 2016).
Upon presentation of a visual stimulus, the basal ganglia

and the frontal eye fields evaluate the stimulus and alter the
inhibition and excitation that they respectively impose on the
superior colliculus (Glaser et al. 2016; Sato and Hikosaka
2002). As a result, the collicular response to a visual stimu-
lus depends on the location of the stimulus on the retina, as
well as the utility that the cortex and the basal ganglia assign
to that stimulus [for a systematic presentation of this topic,
see Shadmehr and Ahmed (2020)]. This leads to the specula-
tion that utility dependent activity on the colliculus may in
turn be at least partly responsible for modulation of complex
spike probability as a function of the reward value of the
stimulus.
In summary, several recent reports have shown that complex

spikes carry information about the reward value associated with
a stimulus (Heffley and Hull 2019; Kostadinov et al. 2019;
Larry et al. 2019). To reconcile this fact with the idea that com-
plex spikes carry an error signal, we can consider an olivary
neuron that receives two inputs: inhibition from a DCN neuron
and excitation from a neuron in the superior colliculus. The
DCN neuron produces an output that attempts to predict and

cancel (at the level of the olive) the activity in a specific region
of the superior colliculus. However, the collicular activity is not
simply the location of the stimulus in the visual field but also a
reflection of its utility as evaluated by the frontal eye fields and
the basal ganglia. Thus an error in the activity of a DCN neuron
is reflected in complex spikes that carry information about both
the location of the stimulus, and its utility.

IMPLICATION: MULTIPLE TIMESCALES OF ADAPTATION

Let us broaden our scope and ask whether the conjecture
regarding population coding might provide clues as to why
behavior during learning exhibits certain remarkable features,
namely multiple timescales, resistance to erasure, and spontane-
ous recovery.
We noted that presence of a complex spike in a P-cell was

followed by a change in behavior, but the absence of a complex
spike was also followed by a change, one that was much smaller
and in the opposite direction (Fig. 11D). This is because both
the presence and absence of a complex spike leads to P-cell
plasticity, but in different directions, and with different amounts.
For example, Yang and Lisberger (2014a) trained monkeys to
pursue a visual target and induced an unexpected change in the
motion of the target. Sometimes the error was in direction CS-
on for the P-cell, and sometimes it was in direction CS-on +
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180. If the error took place and a complex spike occurred, on
the next trial the simple spike rate during pursuit exhibited a
decrease (Fig. 13A, pursuit). If the complex spike did not occur,
the simple spike rate during the subsequent trial exhibited a
small increase. We observed roughly the same pattern during
saccades (Herzfeld et al. 2018): if at saccade completion a com-
plex spike was present, on the next trial the P-cell showed a
reduced rate of simple spikes (Fig. 13A, saccade). (The effect of
complex spike absence on the simple spikes was less clear in
the saccade data.)
These changes in simple spike response of P-cells were likely

due to the influence that climbing fiber activity had on induction
of plasticity in the parallel fiber synapses on P-cells, as well as
parallel fiber synapses on molecular layer interneurons [Fig.
13C, for a comprehensive review, see (Gao et al. 2012)].
Parallel fiber synapses on P-cells undergo postsynaptic LTD fol-
lowing paired stimulation of parallel fiber and climbing fibers
(Hansel et al. 2006; J€orntell and Ekerot 2002). In contrast, post-
synaptic LTP takes place when the parallel fibers are stimulated
without climbing fiber activity (Coesmans et al. 2004). Thus
direction of plasticity at the parallel fiber P-cell synapse depends
on presence or absence of complex spikes. In addition, stimula-
tion of parallel fibers without climbing fiber stimulation can
increase the intrinsic excitability of P-cell dendrites, reducing
the simple spike pause duration that follows production of a
complex spike (Grasselli et al. 2016, 2020).

Climbing fiber activity also influences the strength of the par-
allel fiber synapses onto molecular layer interneurons. These
synapses undergo postsynaptic LTP when parallel fiber stimula-
tion is coincident with depolarization of stellate cells, which is
thought to be naturally occurring through spillover from activity
in climbing fibers (Szapiro and Barbour 2007). In contrast, post-
synaptic LTD takes place in these synapses in response to low-
frequency parallel fiber activity without climbing fiber stimula-
tion (Piochon et al. 2010).
In summary, the presence of a complex spike is likely to reduce

P-cell activity via induction of LTD at the parallel fiber P-cell syn-
apse, and LTP at the parallel fiber molecular layer interneuron
synapse. The absence of a complex spike is likely to increase P-
cell activity via induction of LTP at the parallel fiber P-cell syn-
apse, increase LTD at parallel fiber molecular layer interneuron
synapse, and increase in the intrinsic excitability of the P-cell.
Yang and Lisberger (2014a) measured simple spike changes

in P-cells over the course of 100 trials. They found that if the
error was consistently in the CS-on direction of the P-cell, the
simple spike rate during the pursuit declined steadily (Fig. 13B,
pursuit). If the error was consistently in the CS-on + 180 direc-
tion, the simple spike rate increased. Notably, the rate of
increase in the simple spikes was slower than the rate of
decrease during pursuit. We observed a similar pattern during
saccades (Herzfeld et al. 2018): the simple spikes produced by
the population of P-cells decreased for CS-on errors, and
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increased for CS-on + 180 errors. However, the decrease
occurred faster than the increase (Fig. 13B, saccade).
The differing sensitivity of simple spikes to presence or ab-

sence of a complex spike is an important feature because it sug-
gests that a single error engages mechanisms that naturally
exhibit multiple timescales, some fast (CS-on), others slow (CS-
on + 180). Let us show how this fact can contribute to the multi-
ple timescales of behavior during adaptation.
Suppose we have two P-cell populations, one with a complex

spike tuning to the left, and the other to the right (as in Fig. 10).
Imagine that these P-cells are distinct populations that projects
onto two different DCN neurons. On trial n we make a saccade
and during that saccade population 1 produces simple spike
response x

ðnÞ
1 . On the same trial population 2 produces response

x
ðnÞ
2 . Following saccade completion, we experience a postsacca-
dic error e(n): the target is to the left of our fovea. This error is in
direction CS-on for population 1, and CS-on + 180 for popula-
tion 2. The error produces plasticity in our two populations (and
perhaps in their DCN daughters). On the next trial, the responses
in the two populations are as follows:

x
ðnþ1Þ
1 ¼ aonx

ðnÞ
1 þ bone

ðnÞ

x
ðnþ1Þ
2 ¼ aoff x

ðnÞ
2 þ boff e

ðnÞ ð9Þ

The term bon refers to the trial-to-trial change in the simple
spike response when the error is in direction CS-on. The term
aon refers to the trial-to-trial change due to passage of time
between the two trials (decay toward baseline).
Equation 9 has parameters that can be inferred from the avail-

able data. Following experience of error e(n), the saccade is cor-
rected by a small amount q on the subsequent trial. The adaptive
response q is due to the contributions of these two populations.
Suppose that if a population produced a complex spike in
response to error, it affected behavior on the next trial in the
direction of its CS-on by amount y1. If it did not produce a com-
plex spike, it affected behavior in the direction CS-on + 180 by
amount y0. Figure 8C provides the probabilities associated with
production of a complex spike. From these probabilities, we
form the following two equations:

q ¼ Pr CS ¼ 1jCSon ¼ ; err ¼ ð Þy1
�Pr CS ¼ 0jCSon ¼ ; err ¼ ð Þy0
�Pr CS ¼ 1jCSon ¼!; err ¼ ð Þy1
þPr CS ¼ 0jCSon ¼!; err ¼ ð Þy0

0 ¼ Pr CS ¼ 1ð Þy1 � Pr CS ¼ 0ð Þy0 ð10Þ
The first equation provides the probabilistic contributions of the

two populations to learning from error. For example, the term Pr
(CS = 1|Cson =/,err=/) specifies the probability of a complex
spike in population 1, given that the CS-on direction is leftward,
and error direction is leftward as well. The term Pr(CS = 1|
Cson =!,err=/) specifies the probability of a complex spike in
population 2, given that the CS-on direction is rightward, but the
error direction is leftward. The values for each probability term can
be acquired from Fig. 8C. The second equation provides the con-
straint associated with homeostatic regulation; sum total of plastic-
ity, weighted by the overall probability of complex spikes, is zero.
The solution to Eq. 10 is y1 = 5.6q and y0 = 0.6q. This means

that following an error, the population with a CS-on is responsi-
ble for 79% of the adaptive response, whereas the population

with CS-on + 180 is responsible for 21%. Therefore, given the
leftward error, both populations learn from it: in one population
this error produces an increase in the simple spike rate, whereas
in the other population the same error produces a decrease.
However, because population 1 prefers the error (CS-on), it will
contribute roughly 3.5 times more to the adaptive response than
population 2.
The next critical feature of the P-cell response to error is that

between the trial in which the error is experienced and the sub-
sequent trial, the error induced adaptation decays with passage
of time. Yang and Lisberger (2014a) found that the trial-to-trial
change in a P-cell adaptive response depended not only on pro-
duction of a complex spike but also on the passage of time
between trials. The passage of time produced decay in the error
induced change in the simple spike response.
We do not know whether the plasticity induced by production

of a complex spike decays differently than the plasticity induced
by lack of a complex spike. However, we can make a guess by
examining the data in Fig. 13B. After a long series of trials, the
change in simple spikes reaches an asymptote. Remarkably, this
asymptote is not different for CS-on errors that encourage pro-
duction of complex spikes, and CS-on + 180 errors that decrease
it. However, the trial-to-trial rate of change is faster when the
errors are in direction CS-on.
A constant asymptote but differing rates of convergence require

that trial-by-trial amount of forgetting be larger for the process that
learns more rapidly (Albert and Shadmehr 2018; van der Kooij et
al. 2015; Vaswani et al. 2015; Vaswani and Shadmehr 2013). To
see this, consider that a process that learns from error e by amount
b but suffers from forgetting between trials by amount a (as in Eq.
9), exhibits a steady state x(ss) that at asymptote is defined by:

xðssÞ ¼ beðssÞ

1� a
ð11Þ

Equation 10 and the data in Fig. 13B imply that when the
error is in direction CS-on, the P-cell population that prefers this
error will exhibit an error sensitivity that is larger than the popu-
lation for which this error is in direction CS-on + 180. That is,
bon > boff. The data in Fig. 12B imply that x

ðssÞ
1 ¼ x

ðssÞ
2 . Hence,

we infer that aon > aoff and bon > boff.
This means that when an error is aligned with CS-on, sensitiv-

ity to that error in the P-cells and their downstream DCN neurons
is greater than when the same error is aligned with CS-on + 180.
However, if the error is aligned to CS-on, the resulting adapta-
tion decays at a faster rate as time passes from one trial to the
next, as compared with when error is aligned to CS-on + 180.
Thus, given a single error, one population of P-cells learns a
great deal (CS-on) but also forgets at a faster pace, whereas
another population of P-cells learns less (CS-on + 180) but
retains a greater amount.
Behavior during learning of tasks that depend on the cerebel-

lum has hinted that the change in the motor output appears to be a
sum of two or more adaptive states: some that learn slow but
retain what they learned, and others that learn rapidly but are
more susceptible to forgetting (Kording et al. 2007). It is curious
that P-cell populations with CS-on and CS-on + 180 error prefer-
ence exhibit some of the properties of these theoretical states.
Whether error-dependent adaptation in these two populations
plays a causal role in the multiple timescales of behavior remains
an open question.
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IMPLICATION: RESISTANCE TO ERASURE AND SPONTANEOUS

RECOVERY OF MEMORY

In numerous paradigms, from fear conditioning to motor ad-
aptation, learning exhibits a remarkable property: acquisition of
a novel behavior followed by its extinction does not erase the
acquired memory. Rather, following passage of time, behavior
reverts toward the originally learned pattern. That is, unlike an
artificial neural network, in many biological systems one cannot
unlearn a behavior by reversing the sign of the error vector
(Pekny et al. 2011). Our framework provides clues as to what
may be the cause of this ubiquitous feature of learning.
In the field of classical conditioning, bees can learn to associ-

ate an odor with nectar, extending their proboscis upon presen-
tation of the odor (Stollhoff et al. 2005). They will extinguish
this response if the odor is presented without the nectar.
However, following passage of time, the bees once again extend
their proboscis when they are presented with the odor. In the
field of fear conditioning, a stimulus can be associated with a
shock, inducing fear. This fear can be extinguished if the stimu-
lus is presented without the shock (Schiller et al. 2010).
However, fear of the stimulus returns following passage of time.
In the field of motor learning, people and other animals respond
to a perturbation by modifying their motor commands
through learning from error. If the perturbation changes
direction, reversing the error vector, behavior returns to base-
line. However, with passage of time the behavior spontane-
ously reverts back and they once again produce the motor
commands that they had originally learned (Criscimagna-
Hemminger and Shadmehr 2008; Kojima et al. 2004; Sarwary
et al. 2018; Smith et al. 2006).
The central theme in these experiments is resistance to era-

sure, leading to spontaneous recovery. A mathematical model
(Kording et al. 2007; Smith et al. 2006) had suggested that dur-
ing learning, changes in behavior may be supported by two
adaptive processes: a fast adaptive process that has high sensi-
tivity to error along with poor retention, and a slow adaptive
process that has poor sensitivity to error along with robust reten-
tion. In this model, learning is due to changes in both the fast
and the slow processes. When error reverses direction, behavior
returns to baseline, but the memory is not erased. Rather, the
slow process retains what it had learned, but that learning is
masked by learning in the fast process. With passage of time,
the fast process decays, inducing spontaneous recovery of the
previously learned behavior.
In our model of the cerebellum, training starts with errors that

are in a constant direction, thus producing rapid changes in a
specific P-cell population with CS-on aligned with that error
and slower change in other populations. During extinction train-
ing, the error reverses direction. This reversal of the error vector
now produces complex spikes in a different population of P-
cells. That is, because of preference for direction of error, train-
ing engages primarily one olivocerebellar module, whereas
extinction is likely to engage a different olivocerebellar module.
The populations that had learned slowly now learn rapidly
because the error is aligned with their CS-on. In contrast, the
populations that had learned rapidly now learn slowly because
the error is aligned with their CS-on + 180. Critically, reversal
of error direction produces adaptation that is �3.5 times slower
in the CS-on + 180 direction as compared with CS-on. Thus re-
versal of error cannot easily erase the history of past trials.

In summary, in this framework behavior exhibits apparent
extinction not because P-cells have returned their activities to
their baseline state but because of a balance that has been
reached between the changes in the CS-on and CS-on + 180
populations of P-cells. With passage of time, the previously rap-
idly adapting population exhibits decay toward baseline, result-
ing in the spontaneous recovery of behavior.
Thus a consequence of preference for error in the cerebellum

may be that behavior is more easily learned than unlearned:
unlearning requires four or more times the amount of training
than the amount that it took to acquire the original behavior.
However, this potential link between spontaneous recovery and
the rates of decay in the error-induced adaptation of the CS-on
and CS-on + 180 populations of P-cells is still a conjecture,
waiting to be tested.

DISCUSSION

Activity of single neurons in the cerebral cortex and the cere-
bellum is often difficult to interpret as a function of the ongoing
behavior. In the cerebral cortex, the current approach is to pool
the neurons into pseudopopulations in which a weight is associ-
ated with each neuron’s response based on a statistical measure
of its activity (e.g., principal components), and the weighted
activities are summed to produce a population response. In the
cerebellum, however, P-cells organize into small groups that
converge onto a single DCN neuron (Person and Raman 2012a).
Thus, in the cerebellum there is an anatomical meaning to the
term “population response.” Why do P-cells form populations,
and what is the criterion for membership?
To consider these questions, we applied ideas from machine

learning: we viewed the cerebellum as a three-layer network in
which simple spikes of P-cells carried information from the
middle layer to the output layer. The inferior olive compared the
cerebellar output with a desired one and thus produced an error
signal. We derived how this error signal must guide learning in
the DCN neurons that produced the erroneous output, and the P-
cells that projected to them. The theory highlighted a major
problem: while olivary inputs to P-cells are remarkably strong,
the same inputs to the DCN neurons are quite weak (Lu et al.
2016). Thus, to understand population coding, we first had to
consider how the error signal might reach the DCN neurons and
produce learning.
The anatomy suggested that the error associated with a DCN

neuron’s output was computed by an olive cell and then sent via
climbing fibers to a few P-cells that then projected back to that
specific DCN neuron (Chaumont et al. 2013). Perhaps the error
in the output of a DCN neuron was conveyed to it indirectly
through the complex spike that was produced by its parent P-
cells (Heck et al. 2013). However, a complex spike is effective
in influencing a DCN neuron’s activity only if it is synchronized
with complex spikes that are generated in other P-cells in the
same population (Tang et al. 2019). While this observation
remains to be confirmed in other preparations, it suggests that
the error in the output of a DCN neuron may be communicated
to it via synchronous complex spikes in the parent P-cells. This
requirement for complex spike synchrony implied that the par-
ent P-cells of a DCN neuron could not be selected randomly.
Rather, the olive must select the P-cells that form a population
so that they share the same preference for error.
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Thus the idea is that the role of olivary input may be twofold:
1) provide complex spikes that act as a teaching signal to P-
cells, and 2) through complex spike synchrony among a small
group of “parent P-cells” provide a teaching signal for the DCN
neuron that was responsible for generating the erroneous output.
This framework made two predictions. The population of P-

cells that projected onto a nucleus neuron was likely composed
of those P-cells that received climbing fibers from the olivary
neurons that also projected to that nucleus neuron (Fig. 6A).
Furthermore, efficient learning in a P-cell required that its single
climbing fiber should come from a specific olivary neuron: the
olivary neuron that computed the errors associated with the
DCN neurons that this specific P-cell projected to (Fig. 6B).
Many aspects of this framework remain untested. Yet, in one

respect the framework has proven useful: decoding simple spike
activity of P-cells as a population during voluntary movements
(Herzfeld et al. 2015, 2018). During a saccade, individual P-cells
exhibited simple spikes that burst, paused, or did both, with a mod-
ulation that outlasted the movement by 50 ms or more (Kojima et
al. 2010b; Thier et al. 2000). However, when the P-cells were
organized into populations based on their complex spike response
to error, the sum total of simple spikes of the member P-cells pre-
sented a clear pattern: in direction CS-on + 180, simple spikes
increased before the eyes accelerated and then decreased as the
eyes decelerated. In direction CS-on, simple spikes increased by a
smaller amount during acceleration but returned to near baseline
during deceleration. Thus population response of P-cells during
saccades appeared related to the acceleration needed to move the
eyes and the deceleration needed to stop it. These patterns were not
present in any single P-cell, but unmasked when P-cells were
grouped into a population in which membership was defined based
on olivary input, i.e., preference for error.
Because P-cells are not the output of the cerebellum, they do

not directly control any aspect of behavior. To understand their
contributions to behavior, it is useful to ask where the DCN neu-
rons of a given population of P-cells project to. Trial-by-trial
analysis of complex spikes (Herzfeld et al. 2018; Yang and
Lisberger 2014a) has provided evidence for the conjecture that
there is a correspondence between the complex spike tuning of
a P-cell and the direction of action of the DCN neuron it projects
to (Apps and Garwicz 2005; Ekerot et al. 1995). It appears that
the direction of error that a P-cell is concerned with (CS-on) is
aligned with the direction of action of its DCN neuron. Thus we
have a simple heuristic: the output if a DCN neuron influences
actions that are aligned with the specific errors that its parent P-
cell is concerned with.
There may be a consequence of this anatomy on how the cere-

bellum learns from error. During the past two decades, numerous
paradigms have quantified behavior during motor adaptation and
noted a few consistencies. First, during a single session, errors
decline as training proceeds, but there are at least two rates of
learning, one fast, and the other slow. Second, if the errors reverse
direction, thus causing “unlearning,” behavior returns to baseline
(termed extinction training). However, reversal of error does not
erase the memory, as evidenced by the fact that with passage of
time, behavior spontaneously reverts back toward the initially
learned behavior.
It is possible that the multiple timescales of learning arise

from the fact that a single error engages multiple P-cell popula-
tions, some that produce a complex spike in response to that
error and others that suppress this production. Both induce

plasticity that affects behavior, but the effects are asymmetric:
simple spike rates change more after experience of a complex
spike (as compared with when the complex spike is missing)
and may also decay more with passage of time. In addition, the
conjecture that P-cells act as surrogate teachers for their DCN
neurons (Medina and Mauk 1999) raises the possibility that
even slower timescales of adaptation arise from plasticity in the
DCN neurons (Herzfeld et al. 2020), although this conjecture
also remains to be tested. The asymmetric response of a P-cell
to presence or absence of a complex spike may be responsible
for the fact that reversal of error during extinction training does
not reverse the effects of past learning. Instead, it produces
spontaneous recovery with passage of time.
To be sure, there are numerous limitations in our framework.

For example, our central conjecture that complex spikes signal a
prediction error is not without problems. Some complex spikes
occur at the onset of salient events that by themselves have no
obvious interpretation as an error (Welsh et al. 1995). A further
complexity is that a single P-cell can produce complex spikes in
response to sudden onset of many types of sensory inputs. For
example, Ju et al. (2019) used 2-photon calcium imaging to
measure complex spike driven responses in crus 1 region of
awake mice and found that a response was elicited following air
puff stimulation of the whiskers, tactile stimulation of the
cheeks and lips, sound of the device that produced the air puff,
and flash of an LED. If complex spikes represent a prediction
error, they seem to lack specificity.
Another problem is that complex spikes, rare events that

occur approximately once per second appear poorly matched to
reflect errors of DCN neurons, neurons that fire at rates of tens
of spikes per second. The key appears to be complex spike tim-
ing. Small errors produce a complex spike that has high tempo-
ral variability, while large errors produce a complex spike that
has low temporal jitter (Herzfeld et al. 2018; Najafi et al. 2014),
synchronized with other P-cells (Najafi et al. 2014). The timing
(Herzfeld et al. 2018; Suvrathan et al. 2016) and the number of
spikelets (Rasmussen et al. 2013; Yang and Lisberger 2014b)
affect not only the amount of plasticity at the P-cell but also the
strength of suppression in the downstream DCN neuron, thus
potentially affecting its plasticity.

A POTENTIAL PROBLEM WITH CONVEYING ERROR

INFORMATION VIA SYNCHRONOUS COMPLEX SPIKES

Our conjecture that synchronous complex spikes among a
population of P-cells may be a method with which to transmit
error information from the olive to a DCN neuron introduces a
new problem: what happens if there is synchrony among the
simple spikes of the parent P-cells? Indeed, we noted that opto-
genetic pulsed stimulation of P-cells induced simple spike syn-
chrony that resulted in DCN plasticity (Lee et al. 2015) as well
as behavioral learning (Nguyen-Vu et al. 2013).
On the one hand, the olive might rely on P-cells to serve as a

substitute teacher for the DCN neuron that they converge upon,
indirectly providing it with error information via its climbing
fiber. On the other hand, the rest of the brain, via mossy fibers
and the granule cells, relies on the P-cells to provide the DCN
with a major source of information about the state of the body,
thus sculpting the output of the DCN neurons. Hence, whereas
most of the brain relies on the P-cells to provide simple spikes
that influence the DCN’s output, the olive relies on the P-cells
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to provide spikes that teach the DCN about the errors of the
same outputs. How can the P-cell serve both masters?
From a learning perspective there is a need to disambiguate

the error signal (complex spike) from other signals (simple
spikes) that the P-cell transmits to the DCN. If error transmis-
sion from the P-cell population to the DCN neuron relies on
complex spike synchrony, then there is a need for suppressing
synchrony among the simple spikes. In this way, if a synchro-
nous event is detected at the DCN neuron, it likely due to the
error signal from the olive.
From a control perspective, if the mossy fiber input via gran-

ule cells to the P-cells are to influence the output of a DCN neu-
ron, then there is a need for synchrony among the simple spikes
(Person and Raman 2012a). For example, P-cells fire at a base-
line rate of around 50 Hz. In a decerebrated cat this background
activity produces little change in the membrane potential of the
downstream DCN neuron (Bengtsson et al. 2011). Through syn-
chrony, simple spikes of P-cells can drive the activity of a DCN
neuron (Person and Raman 2012a). For example, if the simple
spikes are asynchronous, the nucleus cell is inhibited, but if the
simple spikes are briefly synchronous, at 8-ms latency the DCN
neuron can experience a rebound that produces a spike. Thus,
through synchronization of simple spikes, the downstream DCN
neuron can relay the specific timing of the P-cell activity to neu-
rons outside of the cerebellum, thus providing a pathway to
influence behavior.
Indeed in both anesthetized and behaving animals, nearby P-

cells have cross correlations that exhibit a level of synchrony
among complex spikes as well as simple spikes (De Zeeuw et
al. 1997a; Ebner and Bloedel 1981; Heck et al. 2007; Sedaghat-
Nejad et al. 2019; Shin and De Schutter 2006; Wise et al. 2010).
For example, Heck et al. (2007) found that in rats, P-cells within
a few hundred microns fired synchronously during the period of
reach to grasp, but not during the period after grasp completion.
Hong et al. (2016) noted evidence for simple spike synchrony
around saccade onset. Simple spike synchrony exists even when
chemical synapses in the cerebellar cortex are inactivated (Han
et al. 2018), raising the possibility that some neighboring P-cells
are electrically coupled.
However, it is unclear whether in the intact animal control of

DCN output relies on synchrony of simple spikes. Experimental
results and simulations of Payne et al. (2019) suggest that
whereas the mean rate of simple spikes is critical for control of
eye velocity during a pursuit task, the timing of individual
spikes plays a less significant role. Irregular simple spike timing
of a population of P-cells, although produced synchronously
through optogenetic stimulation did not result in eye velocities
that were different than expected from the averaged firing rates
of the P-cells. If synchronous simple spikes are present during
pursuit eye movements, they do not appear to provide an
advantage for control of DCN output.
What about the idea that unambiguous transmission of error

information via synchronous complex spikes might require a
mechanism to suppress simple spike synchrony? Intriguingly, in
the cerebellar cortex, one function of interneurons may be to
reduce the synchrony of simple spikes. P-cells receive excita-
tory inputs from granule cells and inhibitory inputs from small
interneurons in the molecular layer, as well as Golgi cells.
Ha€usser and Clark (1997) measured activity in P-cells and mo-
lecular layer interneurons in cerebellar slices, thus removing the
influence of excitatory inputs. Without their external excitation,

P-cells and the interneurons nevertheless produced spontaneous
activity. Critically, the spontaneous activity of individual P-cells
was highly irregular: interspike intervals (ISI) exhibited a long
tail, indicating that the coefficient of variation of ISI was large.
To measure the effect of the inhibitory interneurons on the P-
cells, Ha€usser and Clark (1997) blocked inhibitory synapses and
found that mean firing rates increased in both P-cell and the
interneurons. Removal of inhibition transformed the ISI histo-
gram into a pattern that exhibited a single narrow peak without
a tail. That is, removal of inhibitory inputs to the P-cells
increased their regularity.
Do the inhibitory interneurons play a role in reducing simple

spike synchrony in the intact animal? Brown et al. (2019) made
mutant mice that lacked stellate and basket cells, the principal
interneurons in the cerebellar cortex. They recorded P-cell activ-
ity in the awake mice and found that despite loss of stellate cells,
there was little or no change in the mean firing rate of P-cells.
Rather, the mutation affected the variability of simple spikes:
without the stellate cells, the P-cell simple spike ISI histogram
had a reduced tail. This argument is admittedly weak because
the pattern of irregularity may be shared among P-cells, and
thus irregularity by itself is not an indicator of reduced syn-
chrony. Regardless, the available results raise the possibility
that a function of the interneurons in the cerebellar cortex may
be to reduce simple spike synchrony.
We might imagine that by reducing simple spike synchrony,

the molecular layer interneurons allow synchronous complex
spikes to reliably convey error information to the DCN. If so,
then removal of this inhibition might prevent normal learning in
the DCN. Results of Wulff et al. (2009) are consistent with this.
The authors produced mice in which P-cells lacked GABA
receptors and observed an increase in the regularity of the sim-
ple spikes. These mice learned a gain-down VOR task normally
on day 1, but when tested on day 2, they showed a deficit in the
ability to retain what they had learned.
In summary, in the framework that we have described, P-cells

face a conflict in the two roles that they are asked to play. On
the one hand, given the objective of transmitting error informa-
tion from the middle layer (P-cells) to the output layer (DCN
neurons), we need to encourage complex spike synchrony but
avoid simple spike synchrony among the P-cells that converge
upon a single DCN neuron. On the other hand, given the objec-
tive of driving activity of the output layer neurons, it is useful to
encourage simple spike synchrony. Curiously, a function of the
inhibitory interneurons in the molecular layer may be to trans-
form the spontaneous simple spike activity of P-cells into an
irregular pattern (less synchrony), which in turn may be required
for normal learning in the DCN. However, synchrony of simple
spikes has the advantage of allowing the P-cells to drive the ac-
tivity of DCN neurons, thus affecting behavior. Whether simple
spikes are synchronous among the P-cells that form a population
(as predicted by the control hypothesis), or asynchronous (as
predicted by the error signal hypothesis), remains unknown.

OTHER LIMITATIONS

Despite our focus on the theoretical problem of learning in
the DCN neurons, we did not consider the question of what the
cerebellum’s output is specifying. For example, we focused on
P-cell activity during saccades, which arguably is the one volun-
tary movement for which there is excellent information
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regarding the role of the various noncerebellar structures (supe-
rior colliculus, brainstem burst generators, etc.). Yet, we did not
discuss the activity of neurons in the DCN during saccades.
There are two reasons for this. First, activity of individual DCN
neurons are difficult to interpret. In the caudal fastigial nucleus,
neurons burst (Fuchs et al. 1993; Helmchen et al. 1994; Sun et
al. 2016), pause (Kleine et al. 2003), or do both, with a timing
that may differ as a function of direction and speed of saccades.
A second reason is that there is significant anatomical diversity
in the projections of fastigial neurons: some project to the brain-
stem burst generators (Noda et al. 1990), while some project to
the rostral region of the superior colliculus (May et al. 1990).
This may account for the fact that disruption of caudal fastigial
nucleus not only affects the saccade component of gaze shift
(Quinet and Goffart 2005, 2007), it also affects the equilibrium
position of the eyes and head during fixation (Goffart et al.
2004; Guerrasio et al. 2010).
One path forward is to try and extend population coding of P-

cells via their complex spike tuning into a method to infer popula-
tion coding in the DCN. Because complex spikes tend to produce
suppression of DCN activity, one may be able to use this error-de-
pendent suppression to quantify tuning of a DCN neuron’s activ-
ity with respect to complex spikes in the parent P-cells. This
error-dependent tuning may be a useful way to assign member-
ship to DCN neurons that belong to the same population.
We focused on an elementary movement (saccades), but even

simple gaze shifts involve coordination of motion between the
eyes and the head. Visual errors that follow a head-free gaze
shift produce adaptation of both saccades and head movements
(Cecala and Freedman 2009). In the framework presented here,
these visual errors would engage P-cells that in turn influence
DCN neurons that can produce an action that can remedy that
error. Yet, stimulation of caudal fastigial nucleus produces eye
saccades without significant motion of the head (Quinet and
Goffart 2009). At this writing it is unclear whether head-free
and head-fixed gaze errors engage distinct populations of P-
cells.
There is no denying that the vast majority of cerebellar output

is destined to the cerebral cortex, where activity affects many
aspects of behavior, including decision-making. For example,
fastigial (Gao et al. 2018) or dentate nucleus (Chabrol et al.
2019) stimulation biases the delay period activity in the motor
cortex as an animal evaluates the evidence associated with
choosing a movement. Disruption of the interpositus nucleus
eliminates working memory related activity in the prefrontal
cortex (Siegel and Mauk 2013). In humans, damage along the
vermis has been associated with autism. Children who suffer
from autism spectrum disorder, a developmental disorder that
leads to impairments in social and communication skills, exhibit
anatomic abnormalities in their cerebellum, including reduced
number of P-cells (Whitney et al. 2008), particularly along the
vermis (Marko et al. 2015; Scott et al. 2009).
How are P-cells contributing to social and communication

skills? How are the activities in the DCN neurons supporting
delay period activity of cortical cells during decision-making?
These are some of the many unknown aspects of cerebellar
function. It seems likely that some of the answers will be
revealed once we better understand how the teacher (inferior
olive) organizes the middle layer neurons (the P-cells) into pop-
ulations that may serve as surrogate teachers for the actors
(DCN neurons) that convey the output of the cerebellum.
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Vries S, Boele HJ, Canto CB, De Zeeuw CI, Verhaagen J. Cerebellar plas-
ticity and associative memories are controlled by perineuronal nets. Proc Natl
Acad Sci USA 117: 6855–6865, 2020. doi:10.1073/pnas.1916163117.

Catz N, Dicke PW, Thier P. Cerebellar complex spike firing is suitable to
induce as well as to stabilize motor learning. Curr Biol 15: 2179–2189, 2005.
doi:10.1016/j.cub.2005.11.037.

Catz N, Dicke PW, Thier P. Cerebellar-dependent motor learning is based on
pruning a Purkinje cell population response. Proc Natl Acad Sci USA 105:
7309–7314, 2008 [Erratum in Proc Natl Acad Sci USA 105: 10269, 2008].
doi:10.1073/pnas.0706032105.

Cecala AL, Freedman EG. Head-unrestrained gaze adaptation in the rhesus
macaque. J Neurophysiol 101: 164–183, 2009. doi:10.1152/jn.90735.2008.

Chabrol FP, Blot A, Mrsic-Flogel TD. Cerebellar contribution to preparatory
activity in motor neocortex. Neuron 103: 506–519.e4, 2019. doi:10.1016/j.
neuron.2019.05.022.

Chaumont J, Guyon N, Valera AM, Dugu�e GP, Popa D, Marcaggi P,
Gautheron V, Reibel-Foisset S, Dieudonn�e S, Stephan A, Barrot M,
Cassel JC, Dupont JL, Doussau F, Poulain B, Selimi F, L�ena C, Isope P.
Clusters of cerebellar Purkinje cells control their afferent climbing fiber dis-
charge. Proc Natl Acad Sci USA 110: 16223–16228, 2013. doi:10.1073/
pnas.1302310110.

Chen H, Hua SE, Smith MA, Lenz FA, Shadmehr R. Effects of human cere-
bellar thalamus disruption on adaptive control of reaching. Cereb Cortex 16:
1462–1473, 2006. doi:10.1093/cercor/bhj087.

Churchland MM, Cunningham JP, Kaufman MT, Ryu SI, Shenoy KV.

Cortical preparatory activity: representation of movement or first cog in a
dynamical machine? Neuron 68: 387–400, 2010. doi:10.1016/j.neuron.
2010.09.015.

Coesmans M, Weber JT, De Zeeuw CI, Hansel C. Bidirectional parallel fiber
plasticity in the cerebellum under climbing fiber control. Neuron 44: 691–
700, 2004. doi:10.1016/j.neuron.2004.10.031.

Criscimagna-Hemminger SE, Shadmehr R. Consolidation patterns of human
motor memory. J Neurosci 28: 9610–9618, 2008. doi:10.1523/JNEUROSCI.
3071-08.2008.

Dash S, Catz N, Dicke PW, Thier P. Encoding of smooth-pursuit eye move-
ment initiation by a population of vermal Purkinje cells. Cereb Cortex 22:
877–891, 2012. doi:10.1093/cercor/bhr153.

Davie JT, Clark BA,H€ausser M. The origin of the complex spike in cerebellar
Purkinje cells. J Neurosci 28: 7599–7609, 2008. doi:10.1523/JNEUROSCI.
0559-08.2008.

De Gruijl JR, Hoogland TM, De Zeeuw CI. Behavioral correlates of complex
spike synchrony in cerebellar microzones. J Neurosci 34: 8937–8947, 2014.
doi:10.1523/JNEUROSCI.5064-13.2014.

De Schutter E. Cerebellar long-term depression might normalize excitation of
Purkinje cells: a hypothesis. Trends Neurosci 18: 291–295, 1995. doi:10.
1016/0166-2236(95)93916-L.

De Zeeuw CI, Berrebi AS. Postsynaptic targets of Purkinje cell terminals in the
cerebellar and vestibular nuclei of the rat. Eur J Neurosci 7: 2322–2333,
1995. doi:10.1111/j.1460-9568.1995.tb00653.x.

De Zeeuw CI, Chorev E, Devor A, Manor Y, Van Der Giessen RS, De Jeu
MT, Hoogenraad CC, Bijman J, Ruigrok TJ, French P, Jaarsma D,
Kistler WM, Meier C, Petrasch-Parwez E, Dermietzel R, Sohl G,
Gueldenagel M, Willecke K, Yarom Y. Deformation of network connectiv-
ity in the inferior olive of connexin 36-deficient mice is compensated by mor-
phological and electrophysiological changes at the single neuron level. J
Neurosci 23: 4700–4711, 2003. doi:10.1523/JNEUROSCI.23-11-04700.2003.

De Zeeuw CI, Hoebeek FE, Bosman LW, Schonewille M, Witter L,
Koekkoek SK. Spatiotemporal firing patterns in the cerebellum. Nat Rev
Neurosci 12: 327–344, 2011. doi:10.1038/nrn3011.

de Zeeuw CI, Holstege JC, Calkoen F, Ruigrok TJ, Voogd J. A new combi-
nation of WGA-HRP anterograde tracing and GABA immunocytochemistry
applied to afferents of the cat inferior olive at the ultrastructural level. Brain
Res 447: 369–375, 1988. doi:10.1016/0006-8993(88)91142-0.

De Zeeuw CI, Koekkoek SK, Wylie DR, Simpson JI. Association between
dendritic lamellar bodies and complex spike synchrony in the olivocerebellar
system. J Neurophysiol 77: 1747–1758, 1997a. doi:10.1152/jn.1997.77.
c4.1747.

De Zeeuw CI, Simpson JI, Hoogenraad CC, Galjart N, Koekkoek SK,
Ruigrok TJ. Microcircuitry and function of the inferior olive. Trends
Neurosci 21: 391–400, 1998. doi:10.1016/S0166-2236(98)01310-1.

De Zeeuw CI, Van Alphen AM, Hawkins RK, Ruigrok TJ. Climbing fibre
collaterals contact neurons in the cerebellar nuclei that provide a GABAergic
feedback to the inferior olive. Neuroscience 80: 981–986, 1997b. doi:doi:
10.1016/s0306-4522(97)00249-2.

Doya K.What are the computations of the cerebellum, the basal ganglia and the
cerebral cortex? Neural Netw 12: 961–974, 1999. doi:10.1016/S0893-6080
(99)00046-5.

Ebner TJ, Bloedel JR. Correlation between activity of Purkinje cells and its
modification by natural peripheral stimuli. J Neurophysiol 45: 948–961, 1981.
doi:10.1152/jn.1981.45.5.948.

Eccles JC, Llinás R, Sasaki K. The excitatory synaptic action of climbing fibres
on the Purkinje cells of the cerebellum. J Physiol 182: 268–296, 1966.
doi:10.1113/jphysiol.1966.sp007824.

Ekerot CF, J€orntell H,Garwicz M. Functional relation between corticonuclear
input and movements evoked on microstimulation in cerebellar nucleus inter-
positus anterior in the cat. Exp Brain Res 106: 365–376, 1995. doi:10.1007/
BF00231060.

El-Shamayleh Y, Kojima Y, Soetedjo R, Horwitz GD. Selective optogenetic
control of purkinje cells in monkey cerebellum. Neuron 95: 51–62.e4, 2017.
doi:10.1016/j.neuron.2017.06.002.

Fuchs AF, Robinson FR, Straube A. Role of the caudal fastigial nucleus in
saccade generation. I. Neuronal discharge pattern. J Neurophysiol 70: 1723–
1740, 1993. doi:10.1152/jn.1993.70.5.1723.

Gao Z, Davis C, Thomas AM, Economo MN, Abrego AM, Svoboda K, De
Zeeuw CI, Li N. A cortico-cerebellar loop for motor planning. Nature 563:
113–116, 2018. doi:10.1038/s41586-018-0633-x.

Gao Z, van Beugen BJ, De Zeeuw CI. Distributed synergistic plasticity and
cerebellar learning. Nat Rev Neurosci 13: 619–635, 2012. doi:10.1038/
nrn3312.

Glaser JI, Wood DK, Lawlor PN, Ramkumar P, Kording KP, Segraves
MA. Role of expected reward in frontal eye field during natural scene search.
J Neurophysiol 116: 645–657, 2016. doi:10.1152/jn.00119.2016.

Goffart L, Chen LL, Sparks DL. Deficits in saccades and fixation during mus-
cimol inactivation of the caudal fastigial nucleus in the rhesus monkey. J
Neurophysiol 92: 3351–3367, 2004. doi:10.1152/jn.01199.2003.

Grasselli G, Boele HJ, Titley HK, Bradford N, van Beers L, Jay L, Beekhof
GC, Busch SE, De Zeeuw CI, Schonewille M, Hansel C. SK2 channels in
cerebellar Purkinje cells contribute to excitability modulation in motor-learn-
ing-specific memory traces. PLoS Biol 18: e3000596, 2020. doi:10.1371/
journal.pbio.3000596.

Grasselli G, He Q, Wan V, Adelman JP, Ohtsuki G, Hansel C. Activity-de-
pendent plasticity of spike pauses in cerebellar Purkinje cells. Cell Reports
14: 2546–2553, 2016. doi:10.1016/j.celrep.2016.02.054.

Guerrasio L, Quinet J, B€uttner U,Goffart L. Fastigial oculomotor region and
the control of foveation during fixation. J Neurophysiol 103: 1988–2001,
2010. doi:10.1152/jn.00771.2009.

Guo C, Witter L, Rudolph S, Elliott HL, Ennis KA, Regehr WG. Purkinje
cells directly inhibit granule cells in specialized regions of the cerebellar cor-
tex. Neuron 91: 1330–1341, 2016. doi:10.1016/j.neuron.2016.08.011.

Han KS, Guo C, Chen CH, Witter L, Osorno T, Regehr WG. Ephaptic cou-
pling promotes synchronous firing of cerebellar Purkinje cells. Neuron 100:
564–578.e3, 2018. doi:10.1016/j.neuron.2018.09.018.

Hansel C, de Jeu M, Belmeguenai A, Houtman SH, Buitendijk GH,
Andreev D, De Zeeuw CI, Elgersma Y. alphaCaMKII Is essential for cere-
bellar LTD and motor learning. Neuron 51: 835–843, 2006. doi:10.1016/j.
neuron.2006.08.013.

H€ausser M, Clark BA. Tonic synaptic inhibition modulates neuronal output
pattern and spatiotemporal synaptic integration. Neuron 19: 665–678, 1997.
doi:10.1016/S0896-6273(00)80379-7.

Heck DH, De Zeeuw CI, Jaeger D, Khodakhah K, Person AL. The neuronal
code(s) of the cerebellum. J Neurosci 33: 17603–17609, 2013. doi:10.1523/
JNEUROSCI.2759-13.2013.

Heck DH, Thach WT, Keating JG. On-beam synchrony in the cerebellum as
the mechanism for the timing and coordination of movement. Proc Natl Acad
Sci USA 104: 7658–7663, 2007. doi:10.1073/pnas.0609966104.

Heffley W, Hull C. Classical conditioning drives learned reward prediction sig-
nals in climbing fibers across the lateral cerebellum. eLife 8: e46764, 2019.
doi:10.7554/eLife.46764.

Heffley W, Song EY, Xu Z, Taylor BN, Hughes MA, McKinney A, Joshua
M, Hull C. Coordinated cerebellar climbing fiber activity signals learned

2048 POPULATION CODING IN THE CEREBELLUM

J Neurophysiol � doi:10.1152/jn.00449.2020 � www.jn.org

Downloaded from journals.physiology.org/journal/jn at SUNY Stony Brook (129.049.104.060) on March 5, 2021.



sensorimotor predictions. Nat Neurosci 21: 1431–1441, 2018. doi:10.1038/
s41593-018-0228-8.

Helmchen C, B€uttner U. Saccade-related Purkinje cell activity in the oculomo-
tor vermis during spontaneous eye movements in light and darkness. Exp
Brain Res 103: 198–208, 1995. doi:10.1007/BF00231706.

Helmchen C, Straube A, B€uttner U. Saccade-related activity in the fastigial
oculomotor region of the macaque monkey during spontaneous eye move-
ments in light and darkness. Exp Brain Res 98: 474–482, 1994. doi:10.1007/
BF00233984.

Herzfeld DJ, Hall NJ, Tringides M, Lisberger SG. Principles of operation of
a cerebellar learning circuit. eLife 9: e55217, 2020. doi:10.7554/eLife.55217.

Herzfeld DJ, Kojima Y, Soetedjo R, Shadmehr R. Encoding of action by the
Purkinje cells of the cerebellum. Nature 526: 439–442, 2015. doi:10.1038/
nature15693.

Herzfeld DJ, Kojima Y, Soetedjo R, Shadmehr R. Encoding of error and
learning to correct that error by the Purkinje cells of the cerebellum. Nat
Neurosci 21: 736–743, 2018. doi:10.1038/s41593-018-0136-y.

Hewitt AL, Popa LS, Ebner TJ. Changes in Purkinje cell simple spike encod-
ing of reach kinematics during adaption to a mechanical perturbation. J
Neurosci 35: 1106–1124, 2015. doi:10.1523/JNEUROSCI.2579-14.2015.

Hewitt AL, Popa LS, Pasalar S, Hendrix CM, Ebner TJ. Representation of
limb kinematics in Purkinje cell simple spike discharge is conserved across
multiple tasks. J Neurophysiol 106: 2232–2247, 2011. doi:10.1152/jn.00886.
2010.

Hoebeek FE,Witter L, Ruigrok TJ, De Zeeuw CI. Differential olivo-cerebel-
lar cortical control of rebound activity in the cerebellar nuclei. Proc Natl Acad
Sci USA 107: 8410–8415, 2010. doi:10.1073/pnas.0907118107.

Hong S, Negrello M, Junker M, Smilgin A, Thier P, De Schutter E.

Multiplexed coding by cerebellar Purkinje neurons. eLife 5: e13810, 2016.
doi:10.7554/eLife.13810.

Horn KM, Pong M,Gibson AR. Discharge of inferior olive cells during reach-
ing errors and perturbations. Brain Res 996: 148–158, 2004. doi:10.1016/j.
brainres.2003.10.021.

Ikeda T, Hikosaka O. Reward-dependent gain and bias of visual responses in
primate superior colliculus. Neuron 39: 693–700, 2003. doi:10.1016/S0896-
6273(03)00464-1.

Ishikawa T, Tomatsu S, Tsunoda Y, Lee J, Hoffman DS, Kakei S. Releasing
dentate nucleus cells from Purkinje cell inhibition generates output from the
cerebrocerebellum. PLoS One 9: e108774, 2014. doi:10.1371/journal.pone.
0108774.

Ito M, Simpson JI. Discharges in Purkinje cell axons during climbing fiber acti-
vation. Brain Res 31: 215–219, 1971. doi:10.1016/0006-8993(71)90648-2.

Jirenhed DA, Hesslow G. Are Purkinje cell pauses drivers of classically condi-
tioned blink responses? Cerebellum 15: 526–534, 2016. doi:10.1007/s12311-
015-0722-4.

J€orntell H, Ekerot CF. Reciprocal bidirectional plasticity of parallel fiber
receptive fields in cerebellar Purkinje cells and their afferent interneurons.
Neuron 34: 797–806, 2002. doi:10.1016/S0896-6273(02)00713-4.

Ju C, Bosman LW, Hoogland TM, Velauthapillai A, Murugesan P,
Warnaar P, van Genderen RM, Negrello M, De Zeeuw CI. Neurons of the
inferior olive respond to broad classes of sensory input while subject to
homeostatic control. J Physiol 597: 2483–2514, 2019. doi:10.1113/JP277413.

Junker M, Endres D, Sun ZP, Dicke PW, Giese M, Thier P. Learning from
the past: A reverberation of past errors in the cerebellar climbing fiber signal.
PLoS Biol 16: e2004344, 2018. doi:10.1371/journal.pbio.2004344.

Kaku Y, Yoshida K, Iwamoto Y. Learning signals from the superior colliculus
for adaptation of saccadic eye movements in the monkey. J Neurosci 29:
5266–5275, 2009. doi:10.1523/JNEUROSCI.0661-09.2009.

Kase M, Noda H, Suzuki DA, Miller DC. Target velocity signals of visual
tracking in vermal Purkinje cells of the monkey. Science 205: 717–720, 1979.
doi:10.1126/science.111350.

Ke MC, Guo CC, Raymond JL. Elimination of climbing fiber instructive signals
during motor learning.Nat Neurosci 12: 1171–1179, 2009. doi:10.1038/nn.2366.

Keating JG, Thach WT. Nonclock behavior of inferior olive neurons: interspike
interval of Purkinje cell complex spike discharge in the awake behaving monkey
is random. J Neurophysiol 73: 1329–1340, 1995. doi:10.1152/jn.1995.73.4.1329.

Keller EL, Slakey DP, Crandall WF.Microstimulation of the primate cerebel-
lar vermis during saccadic eye movements. Brain Res 288: 131–143, 1983.
doi:10.1016/0006-8993(83)90087-2.

Khaliq ZM, Raman IM. Axonal propagation of simple and complex spikes in
cerebellar Purkinje neurons. J Neurosci 25: 454–463, 2005. doi:10.1523/
JNEUROSCI.3045-04.2005.

Khosrovani S, Van Der Giessen RS, De Zeeuw CI, De Jeu MT. In vivo
mouse inferior olive neurons exhibit heterogeneous subthreshold oscillations

and spiking patterns. Proc Natl Acad Sci USA 104: 15911–15916, 2007.
doi:10.1073/pnas.0702727104.

Kim JJ, Krupa DJ, Thompson RF. Inhibitory cerebello-olivary projections
and blocking effect in classical conditioning. Science 279: 570–573, 1998.
doi:10.1126/science.279.5350.570.

Kitazawa S, Kimura T, Yin PB. Cerebellar complex spikes encode both
destinations and errors in arm movements. Nature 392: 494–497, 1998.
doi:10.1038/33141.

Kleine JF,Guan Y, Buttner U. Saccade-related neurons in the primate fastigial
nucleus: what do they encode? J Neurophysiol 90: 3137–3154, 2003.
doi:10.1152/jn.00021.2003.

Kojima Y, Iwamoto Y, Yoshida K.Memory of learning facilitates saccadic ad-
aptation in the monkey. J Neurosci 24: 7531–7539, 2004. doi:10.1523/
JNEUROSCI.1741-04.2004.

Kojima Y, Robinson FR, Soetedjo R. Cerebellar fastigial nucleus influence on
ipsilateral abducens activity during saccades. J Neurophysiol 111: 1553–
1563, 2014. doi:10.1152/jn.00567.2013.

Kojima Y, Soetedjo R. Change in sensitivity to visual error in superior collicu-
lus during saccade adaptation. Sci Rep 7: 9566, 2017. doi:10.1038/s41598-
017-10242-z.

Kojima Y, Soetedjo R. Elimination of the error signal in the superior colliculus
impairs saccade motor learning. Proc Natl Acad Sci USA 115: E8987–E8995,
2018. doi:10.1073/pnas.1806215115.

Kojima Y, Soetedjo R, Fuchs AF. Effects of GABA agonist and antagonist
injections into the oculomotor vermis on horizontal saccades. Brain Res 1366:
93–100, 2010a. doi:10.1016/j.brainres.2010.10.027.

Kojima Y, Soetedjo R, Fuchs AF. Changes in simple spike activity of some
Purkinje cells in the oculomotor vermis during saccade adaptation are appro-
priate to participate in motor learning. J Neurosci 30: 3715–3727, 2010b.
doi:10.1523/JNEUROSCI.4953-09.2010.

Kording KP, Tenenbaum JB, Shadmehr R. The dynamics of memory as a
consequence of optimal adaptation to a changing body. Nat Neurosci 10:
779–786, 2007. doi:10.1038/nn1901.

Kostadinov D, Beau M, Blanco-Pozo M, H€ausser M. Predictive and reactive
reward signals conveyed by climbing fiber inputs to cerebellar Purkinje cells.
Nat Neurosci 22: 950–962, 2019 [Erratum in Nat Neurosci 23: 468, 2020].
doi:10.1038/s41593-019-0381-8.

Lang EJ, Apps R, Bengtsson F, Cerminara NL, De Zeeuw CI, Ebner TJ,
Heck DH, Jaeger D, J€orntell H, Kawato M, Otis TS, Ozyildirim O, Popa
LS,Reeves AM, Schweighofer N, Sugihara I,Xiao J. The roles of the olivo-
cerebellar pathway in motor learning and motor control. A consensus paper.
Cerebellum 16: 230–252, 2017. doi:10.1007/s12311-016-0787-8.

Larry N, Yarkoni M, Lixenberg A, Joshua M. Cerebellar climbing fibers
encode expected reward size. eLife 8: e46870, 2019. doi:10.7554/eLife.46870.

Lee KH, Mathews PJ, Reeves AM, Choe KY, Jami SA, Serrano RE, Otis

TS. Circuit mechanisms underlying motor memory formation in the cerebel-
lum. Neuron 86: 529–540, 2015. doi:10.1016/j.neuron.2015.03.010.

Lee KH, Tran A, Turan Z,Meister M. The sifting of visual information in the
superior colliculus. eLife 9: e50678, 2020. doi:10.7554/eLife.50678.

Lefler Y, Yarom Y, Uusisaari MY. Cerebellar inhibitory input to the inferior
olive decreases electrical coupling and blocks subthreshold oscillations.
Neuron 81: 1389–1400, 2014. doi:10.1016/j.neuron.2014.02.032.

Leigh RJ, Zee DS. The Neurology of Eye Movements. Oxford, UK: Oxford
University Press, 2015.

Lu H, Yang B, Jaeger D. Cerebellar nuclei neurons show only small excitatory
responses to optogenetic olivary stimulation in transgenic mice: in vivo and in
vitro studies. Front Neural Circuits 10: 21, 2016. doi:10.3389/fncir.2016.00021.

Mano N, Yamamoto K. Simple-spike activity of cerebellar Purkinje cells
related to visually guided wrist tracking movement in the monkey. J
Neurophysiol 43: 713–728, 1980. doi:10.1152/jn.1980.43.3.713.

Marko MK, Crocetti D, Hulst T, Donchin O, Shadmehr R, Mostofsky SH.

Behavioural and neural basis of anomalous motor learning in children with
autism. Brain 138: 784–797, 2015. doi:10.1093/brain/awu394.

Mascetti GG, Arriagada JR. Tectotectal interactions through the commissure
of the superior colliculi: an electrophysiological study. Exp Neurol 71: 122–
133, 1981. doi:10.1016/0014-4886(81)90075-3.

Mauk MD, Donegan NH. A model of Pavlovian eyelid conditioning based on
the synaptic organization of the cerebellum. Learn Mem 4: 130–158, 1997.
doi:10.1101/lm.4.1.130.

May PJ, Hartwich-Young R, Nelson J, Sparks DL, Porter JD.

Cerebellotectal pathways in the macaque: implications for collicular genera-
tion of saccades. Neuroscience 36: 305–324, 1990. doi:10.1016/0306-4522
(90)90428-7.

POPULATION CODING IN THE CEREBELLUM 2049

J Neurophysiol � doi:10.1152/jn.00449.2020 � www.jn.org

Downloaded from journals.physiology.org/journal/jn at SUNY Stony Brook (129.049.104.060) on March 5, 2021.



Mays LE, Sparks DL. Dissociation of visual and saccade-related responses in
superior colliculus neurons. J Neurophysiol 43: 207–232, 1980. doi:10.1152/
jn.1980.43.1.207.

McElvain LE, Bagnall MW, Sakatos A, du Lac S. Bidirectional plasticity
gated by hyperpolarization controls the gain of postsynaptic firing responses
at central vestibular nerve synapses. Neuron 68: 763–775, 2010. doi:10.1016/
j.neuron.2010.09.025.

Medina JF. The multiple roles of Purkinje cells in sensori-motor calibration: to
predict, teach and command. Curr Opin Neurobiol 21: 616–622, 2011.
doi:10.1016/j.conb.2011.05.025.

Medina JF,Garcia KS,Mauk MD. A mechanism for savings in the cerebel-
lum. J Neurosci 21: 4081–4089, 2001. doi:10.1523/JNEUROSCI.21-11-
04081.2001.

Medina JF, Lisberger SG. Links from complex spikes to local plasticity and
motor learning in the cerebellum of awake-behaving monkeys. Nat Neurosci
11: 1185–1192, 2008. doi:10.1038/nn.2197.

Medina JF, Mauk MD. Simulations of cerebellar motor learning: computa-
tional analysis of plasticity at the mossy fiber to deep nucleus synapse. J
Neurosci 19: 7140–7151, 1999. doi:10.1523/JNEUROSCI.19-16-07140.1999.

Medina JF,MaukMD. Computer simulation of cerebellar information process-
ing. Nat Neurosci 3: 1205–1211, 2000. doi:10.1038/81486.

Miles FA, Lisberger SG. Plasticity in the vestibulo-ocular reflex: a new hypoth-
esis. Annu Rev Neurosci 4: 273–299, 1981. doi:10.1146/annurev.ne.04.
030181.001421.

Monsivais P, Clark BA, Roth A, H€ausser M. Determinants of action potential
propagation in cerebellar Purkinje cell axons. J Neurosci 25: 464–472, 2005.
doi:10.1523/JNEUROSCI.3871-04.2005.

Muller SZ, Zadina AN, Abbott LF, Sawtell NB. Continual learning in a multi-
layer network of an electric fish. Cell 179: 1382–1392.e10, 2019.
doi:10.1016/j.cell.2019.10.020.

Munoz DP, Istvan PJ. Lateral inhibitory interactions in the intermediate layers
of the monkey superior colliculus. J Neurophysiol 79: 1193–1209, 1998.
doi:10.1152/jn.1998.79.3.1193.

Najac M, Raman IM. Synaptic excitation by climbing fibre collaterals in the
cerebellar nuclei of juvenile and adult mice. J Physiol 595: 6703–6718, 2017.
doi:10.1113/JP274598.

Najafi F, Giovannucci A, Wang SS, Medina JF. Coding of stimulus strength
via analog calcium signals in Purkinje cell dendrites of awake mice. eLife 3:
e03663, 2014. doi:10.7554/eLife.03663.

Negrello M, Warnaar P, Romano V, Owens CB, Lindeman S, Iavarone E,
Spanke JK, Bosman LW, De Zeeuw CI. Quasiperiodic rhythms of the infe-
rior olive. PLOS Comput Biol 15: e1006475, 2019. doi:10.1371/journal.
pcbi.1006475.

Nguyen-Vu TD, Kimpo RR, Rinaldi JM, Kohli A, Zeng H, Deisseroth K,
Raymond JL. Cerebellar Purkinje cell activity drives motor learning. Nat
Neurosci 16: 1734–1736, 2013. doi:10.1038/nn.3576.

Noda H, Sugita S, Ikeda Y. Afferent and efferent connections of the oculomo-
tor region of the fastigial nucleus in the macaque monkey. J Comp Neurol
302: 330–348, 1990. doi:10.1002/cne.903020211.

O’Hearn E, Molliver ME. The olivocerebellar projection mediates ibogaine-
induced degeneration of Purkinje cells: a model of indirect, trans-synaptic
excitotoxicity. J Neurosci 17: 8828–8841, 1997. doi:10.1523/JNEUROSCI.
17-22-08828.1997.

Ohmae S,Medina JF. Climbing fibers encode a temporal-difference prediction
error during cerebellar learning in mice. Nat Neurosci 18: 1798–1803, 2015.
doi:10.1038/nn.4167.

Ohtsuka K, Noda H. Discharge properties of Purkinje cells in the oculomotor
vermis during visually guided saccades in the macaque monkey. J
Neurophysiol 74: 1828–1840, 1995. doi:10.1152/jn.1995.74.5.1828.

Ohyama T,MaukM. Latent acquisition of timed responses in cerebellar cortex.
J Neurosci 21: 682–690, 2001. doi:10.1523/JNEUROSCI.21-02-00682.2001.

Ohyama T, Nores WL, Mauk MD. Stimulus generalization of conditioned eye-
lid responses produced without cerebellar cortex: implications for plasticity in
the cerebellar nuclei. Learn Mem 10: 346–354, 2003. doi:10.1101/lm.67103.

Ojakangas CL, Ebner TJ. Purkinje cell complex and simple spike changes dur-
ing a voluntary arm movement learning task in the monkey. J Neurophysiol
68: 2222–2236, 1992. doi:10.1152/jn.1992.68.6.2222.

Payne HL, French RL, Guo CC, Nguyen-Vu TB, Manninen T, Raymond

JL. Cerebellar Purkinje cells control eye movements with a rapid rate code
that is invariant to spike irregularity. eLife 8: e37102, 2019. doi:10.7554/
eLife.37102.

Pekny SE,Criscimagna-Hemminger SE, Shadmehr R. Protection and expres-
sion of human motor memories. J Neurosci 31: 13829–13839, 2011.
doi:10.1523/JNEUROSCI.1704-11.2011.

Person AL, Raman IM. Deactivation of L-type Ca current by inhibition con-
trols LTP at excitatory synapses in the cerebellar nuclei. Neuron 66: 550–559,
2010. doi:10.1016/j.neuron.2010.04.024.

Person AL, Raman IM. Purkinje neuron synchrony elicits time-locked spik-
ing in the cerebellar nuclei. Nature 481: 502–505, 2012a. doi:10.1038/
nature10732.

Person AL, Raman IM. Synchrony and neural coding in cerebellar circuits.
Front Neural Circuits 6: 97, 2012b. doi:10.3389/fncir.2012.00097.

Piochon C, Levenes C, Ohtsuki G, Hansel C. Purkinje cell NMDA receptors
assume a key role in synaptic gain control in the mature cerebellum. J
Neurosci 30: 15330–15335, 2010. doi:10.1523/JNEUROSCI.4344-10.2010.

Popa LS, Hewitt AL, Ebner TJ. Predictive and feedback performance errors
are signaled in the simple spike discharge of individual Purkinje cells. J
Neurosci 32: 15345–15358, 2012. doi:10.1523/JNEUROSCI.2151-12.2012.

Popa LS, Streng ML, Ebner TJ. Long-term predictive and feedback encoding
of motor signals in the simple spike discharge of Purkinje cells. eNeuro 4:
ENEURO.0036-17.2017, 2017. doi:10.1523/ENEURO.0036-17.2017.

Pugh JR, Raman IM.Mechanisms of potentiation of mossy fiber EPSCs in the
cerebellar nuclei by coincident synaptic excitation and inhibition. J Neurosci
28: 10549–10560, 2008. doi:10.1523/JNEUROSCI.2061-08.2008.

Quinet J, Goffart L. Saccade dysmetria in head-unrestrained gaze shifts after
muscimol inactivation of the caudal fastigial nucleus in the monkey. J
Neurophysiol 93: 2343–2349, 2005. doi:10.1152/jn.00705.2004.

Quinet J, Goffart L. Head-unrestrained gaze shifts after muscimol injection in
the caudal fastigial nucleus of the monkey. J Neurophysiol 98: 3269–3283,
2007. doi:10.1152/jn.00741.2007.

Quinet J, Goffart L. Electrical microstimulation of the fastigial oculomotor
region in the head-unrestrained monkey. J Neurophysiol 102: 320–336, 2009.
doi:10.1152/jn.90716.2008.

Rasmussen A, Jirenhed DA, Zucca R, Johansson F, Svensson P, Hesslow G.

Number of spikes in climbing fibers determines the direction of cerebellar
learning. J Neurosci 33: 13436–13440, 2013. doi:10.1523/JNEUROSCI.
1527-13.2013.

Raymond JL, Medina JF. Computational principles of supervised learning in
the cerebellum. Annu Rev Neurosci 41: 233–253, 2018. doi:10.1146/annurev-
neuro-080317-061948.

Robinson FR, Straube A, Fuchs AF. Role of the caudal fastigial nucleus in
saccade generation. II. Effects of muscimol inactivation. J Neurophysiol 70:
1741–1758, 1993. doi:10.1152/jn.1993.70.5.1741.

Ruigrok TJ, Voogd J. Organization of projections from the inferior olive to the
cerebellar nuclei in the rat. J Comp Neurol 426: 209–228, 2000. doi:10.1002/
1096-9861(20001016)426:2<209:AID-CNE4>3.0.CO;2-0.

Saint-Cyr JA, Courville J. Descending projections to the inferior olive from
the mesencephalon and superior colliculus in the cat. An autoradiographic
study. Exp Brain Res 45: 333–348, 1982. doi:10.1007/BF01208593.

Sarwary AM, Wischnewski M, Schutter DJ, Selen LP, Medendorp WP.

Corticospinal correlates of fast and slow adaptive processes in motor learning.
J Neurophysiol 120: 2011–2019, 2018. doi:10.1152/jn.00488.2018.

Sato M,Hikosaka O. Role of primate substantia nigra pars reticulata in reward-
oriented saccadic eye movement. J Neurosci 22: 2363–2373, 2002.
doi:10.1523/JNEUROSCI.22-06-02363.2002.

Schiller D, Monfils MH, Raio CM, Johnson DC, Ledoux JE, Phelps EA.

Preventing the return of fear in humans using reconsolidation update mecha-
nisms. Nature 463: 49–53, 2010 [Erratum in Nature 562: E21, 2018].
doi:10.1038/nature08637.

Scott JA, Schumann CM, Goodlin-Jones BL, Amaral DG. A comprehensive
volumetric analysis of the cerebellum in children and adolescents with autism
spectrum disorder. Autism Res 2: 246–257, 2009. doi:10.1002/aur.97.

Sedaghat-Nejad E, Herzfeld DJ, Hage P, Karbasi K, Palin T, Wang X,
Shadmehr R. Behavioral training of marmosets and electrophysiological re-
cording from the cerebellum. J Neurophysiol 122: 1502–1517, 2019.
doi:10.1152/jn.00389.2019.

Shadmehr R, Ahmed AA. Vigor: Neuroeconomics of Movement Control.
Cambridge, MA: MIT Press, 2020.

Shin SL, De Schutter E. Dynamic synchronization of Purkinje cell simple
spikes. J Neurophysiol 96: 3485–3491, 2006. doi:10.1152/jn.00570.2006.

Shutoh F, Ohki M, Kitazawa H, Itohara S, Nagao S. Memory trace of motor
learning shifts transsynaptically from cerebellar cortex to nuclei for consolidation.
Neuroscience 139: 767–777, 2006. doi:10.1016/j.neuroscience.2005.12.035.

Siegel JJ,Mauk MD. Persistent activity in prefrontal cortex during trace eyelid
conditioning: dissociating responses that reflect cerebellar output from those
that do not. J Neurosci 33: 15272–15284, 2013. doi:10.1523/JNEUROSCI.
1238-13.2013.

2050 POPULATION CODING IN THE CEREBELLUM

J Neurophysiol � doi:10.1152/jn.00449.2020 � www.jn.org

Downloaded from journals.physiology.org/journal/jn at SUNY Stony Brook (129.049.104.060) on March 5, 2021.



Simpson JI, Wylie DR, Zeeuw CI. On climbing fiber signals and their
consequence(s). Behav Brain Sci 19: 384–398, 1996. doi:10.1017/
S0140525X00081486.

Slemmer JE, De Zeeuw CI, Weber JT. Don’t get too excited: mechanisms of
glutamate-mediated Purkinje cell death. Prog Brain Res 148: 367–390, 2005.
doi:10.1016/S0079-6123(04)48029-7.

Smith MA, Ghazizadeh A, Shadmehr R. Interacting adaptive processes with
different timescales underlie short-term motor learning. PLoS Biol 4: e179,
2006. doi:10.1371/journal.pbio.0040179.

Soetedjo R, Fuchs AF. Complex spike activity of purkinje cells in the oculomo-
tor vermis during behavioral adaptation of monkey saccades. J Neurosci 26:
7741–7755, 2006. doi:10.1523/JNEUROSCI.4658-05.2006.

Soetedjo R, Fuchs AF,Kojima Y. Subthreshold activation of the superior colli-
culus drives saccade motor learning. J Neurosci 29: 15213–15222, 2009.
doi:10.1523/JNEUROSCI.4296-09.2009.

Soetedjo R, Kojima Y, Fuchs AF. Complex spike activity in the oculomotor
vermis of the cerebellum: a vectorial error signal for saccade motor learning?
J Neurophysiol 100: 1949–1966, 2008. doi:10.1152/jn.90526.2008.

Soetedjo R, Kojima Y, Fuchs AF. How cerebellar motor learning keeps sac-
cades accurate. J Neurophysiol 121: 2153–2162, 2019. doi:10.1152/jn.
00781.2018.

Stollhoff N, Menzel R, Eisenhardt D. Spontaneous recovery from extinction
depends on the reconsolidation of the acquisition memory in an appetitive
learning paradigm in the honeybee (Apis mellifera). J Neurosci 25: 4485–
4492, 2005. doi:10.1523/JNEUROSCI.0117-05.2005.

Streng ML, Popa LS, Ebner TJ. Modulation of sensory prediction error in
Purkinje cells during visual feedback manipulations. Nat Commun 9: 1099,
2018. doi:10.1038/s41467-018-03541-0.

Sugihara I. Compartmentalization of the deep cerebellar nuclei based on affer-
ent projections and aldolase C expression. Cerebellum 10: 449–463, 2011.
doi:10.1007/s12311-010-0226-1.

Sugihara I, Fujita H, Na J, Quy PN, Li BY, Ikeda D. Projection of recon-
structed single Purkinje cell axons in relation to the cortical and nuclear aldol-
ase C compartments of the rat cerebellum. J Comp Neurol 512: 282–304,
2009. doi:10.1002/cne.21889.

Sugihara I, Shinoda Y. Molecular, topographic, and functional organization of
the cerebellar nuclei: analysis by three-dimensional mapping of the olivonu-
clear projection and aldolase C labeling. J Neurosci 27: 9696–9710, 2007.
doi:10.1523/JNEUROSCI.1579-07.2007.

Sugihara I,WuH, Shinoda Y.Morphology of single olivocerebellar axons labeled
with biotinylated dextran amine in the rat. J Comp Neurol 414: 131–148, 1999.
doi:10.1002/(SICI)1096-9861(19991115)414:2<131:AID-CNE1>3.0.CO;2-F.

Sugihara I,WuHS, Shinoda Y. The entire trajectories of single olivocerebellar
axons in the cerebellar cortex and their contribution to Cerebellar compart-
mentalization. J Neurosci 21: 7715–7723, 2001. doi:10.1523/JNEUROSCI.
21-19-07715.2001.

Sun Z, Junker M, Dicke PW, Thier P. Individual neurons in the caudal fasti-
gial oculomotor region convey information on both macro- and microsac-
cades. Eur J Neurosci 44: 2531–2542, 2016. doi:10.1111/ejn.13289.

Suvrathan A, Payne HL, Raymond JL. Timing rules for synaptic plasticity
matched to behavioral function. Neuron 92: 959–967, 2016 [Erratum in
Neuron 97: 248–250, 108]. doi:10.1016/j.neuron.2016.10.022.

Szapiro G, Barbour B.Multiple climbing fibers signal to molecular layer inter-
neurons exclusively via glutamate spillover. Nat Neurosci 10: 735–742, 2007.
doi:10.1038/nn1907.

Takagi M, Zee DS, Tamargo RJ. Effects of lesions of the oculomotor vermis
on eye movements in primate: saccades. J Neurophysiol 80: 1911–1931,
1998. doi:10.1152/jn.1998.80.4.1911.

Takahashi M, Sugiuchi Y, Izawa Y, Shinoda Y. Commissural excitation and
inhibition by the superior colliculus in tectoreticular neurons projecting to
omnipause neuron and inhibitory burst neuron regions. J Neurophysiol 94:
1707–1726, 2005. doi:10.1152/jn.00347.2005.

Tang T, Blenkinsop TA, Lang EJ. Complex spike synchrony dependent modu-
lation of rat deep cerebellar nuclear activity. eLife 8: e40101, 2019.
doi:10.7554/eLife.40101.

Tang T, Suh CY, Blenkinsop TA, Lang EJ. Synchrony is key: complex spike in-
hibition of the deep cerebellar nuclei. Cerebellum 15: 10–13, 2016. doi:10.1007/
s12311-015-0743-z.

Telgkamp P, Raman IM. Depression of inhibitory synaptic transmission
between Purkinje cells and neurons of the cerebellar nuclei. J Neurosci 22:
8447–8457, 2002. doi:10.1523/JNEUROSCI.22-19-08447.2002.

Ten Brinke MM, Heiney SA, Wang X, Proietti-Onori M, Boele HJ,
Bakermans J, Medina JF, Gao Z, De Zeeuw CI. Dynamic modulation of

activity in cerebellar nuclei neurons during pavlovian eyeblink conditioning
in mice. eLife 6: e28132, 2017. doi:10.7554/eLife.28132.

Teune TM, van der Burg J, de Zeeuw CI, Voogd J, Ruigrok TJ. Single
Purkinje cell can innervate multiple classes of projection neurons in the cere-
bellar nuclei of the rat: a light microscopic and ultrastructural triple-tracer
study in the rat. J Comp Neurol 392: 164–178, 1998. doi:10.1002/(SICI)1096-
9861(19980309)392:2<164:AID-CNE2>3.0.CO;2-0.

Thach WT Jr. Somatosensory receptive fields of single units in cat cerebellar
cortex. J Neurophysiol 30: 675–696, 1967. doi:10.1152/jn.1967.30.4.675.

Thier P, Dicke PW, Haas R, Barash S. Encoding of movement time by popu-
lations of cerebellar Purkinje cells. Nature 405: 72–76, 2000. doi:10.1038/
35011062.

Tomatsu S, Ishikawa T, Tsunoda Y, Lee J, Hoffman DS, Kakei S.

Information processing in the hemisphere of the cerebellar cortex for control
of wrist movement. J Neurophysiol 115: 255–270, 2016. doi:10.1152/
jn.00530.2015.

Tseng YW, Diedrichsen J, Krakauer JW, Shadmehr R, Bastian AJ. Sensory
prediction errors drive cerebellum-dependent adaptation of reaching. J
Neurophysiol 98: 54–62, 2007. doi:10.1152/jn.00266.2007.

Van Der Giessen RS, Koekkoek SK, van Dorp S, De Gruijl JR, Cupido A,
Khosrovani S, Dortland B, Wellershaus K, Degen J, Deuchars J, Fuchs
EC, Monyer H, Willecke K, De Jeu MT, De Zeeuw CI. Role of olivary
electrical coupling in cerebellar motor learning. Neuron 58: 599–612, 2008.
doi:10.1016/j.neuron.2008.03.016.

van der Kooij K, Brenner E, van Beers RJ, Smeets JB. Visuomotor adapta-
tion: how forgetting keeps us conservative. PLoS One 10: e0117901, 2015.
doi:10.1371/journal.pone.0117901.

Vaswani PA, Shadmehr R. Decay of motor memories in the absence of
error. J Neurosci 33: 7700–7709, 2013. doi:10.1523/JNEUROSCI.0124-
13.2013.

Vaswani PA, Shmuelof L, Haith AM, Delnicki RJ, Huang VS, Mazzoni P,
Shadmehr R, Krakauer JW. Persistent residual errors in motor adaptation
tasks: reversion to baseline and exploratory escape. J Neurosci 35: 6969–
6977, 2015. doi:10.1523/JNEUROSCI.2656-14.2015.

Viaro R, Bonazzi L,Maggiolini E, Franchi G. Cerebellar modulation of corti-
cally evoked complex movements in rats. Cereb Cortex 27: 3525–3541, 2017.
doi:doi:10.1093/cercor/bhw167.

Vilis T, Hore J. Central neural mechanisms contributing to cerebellar tremor
produced by limb perturbations. J Neurophysiol 43: 279–291, 1980. doi:10.
1152/jn.1980.43.2.279.

Wallman J, Fuchs AF. Saccadic gain modification: visual error drives motor
adaptation. J Neurophysiol 80: 2405–2416, 1998. doi:10.1152/jn.1998.
80.5.2405.

Welsh JP, Lang EJ, Suglhara I, Llinás R.Dynamic organization of motor con-
trol within the olivocerebellar system. Nature 374: 453–457, 1995. doi:10.
1038/374453a0.

Whitney ER, Kemper TL, Bauman ML, Rosene DL, Blatt GJ. Cerebellar
Purkinje cells are reduced in a subpopulation of autistic brains: a stereological
experiment using calbindin-D28k. Cerebellum 7: 406–416, 2008. doi:10.
1007/s12311-008-0043-y.

Wise AK, Cerminara NL, Marple-Horvat DE, Apps R. Mechanisms of syn-
chronous activity in cerebellar Purkinje cells. J Physiol 588: 2373–2390,
2010. doi:10.1113/jphysiol.2010.189704.

Witter L, Rudolph S, Pressler RT, Lahlaf SI, Regehr WG. Purkinje cell col-
laterals enable output signals from the cerebellar cortex to feed back to
Purkinje cells and interneurons. Neuron 91: 312–319, 2016. doi:10.1016/j.
neuron.2016.05.037.

Wulff P, Schonewille M, Renzi M, Viltono L, Sasso�e-Pognetto M, Badura A,
Gao Z, Hoebeek FE, van Dorp S, Wisden W, Farrant M, De Zeeuw CI.

Synaptic inhibition of Purkinje cells mediates consolidation of vestibulo-cerebel-
lar motor learning.Nat Neurosci 12: 1042–1049, 2009. doi:10.1038/nn.2348.

Xu-Wilson M, Chen-Harris H, Zee DS, Shadmehr R. Cerebellar contribu-
tions to adaptive control of saccades in humans. J Neurosci 29: 12930–12939,
2009. doi:10.1523/JNEUROSCI.3115-09.2009.

Yang Y, Lisberger SG. Role of plasticity at different sites across the time
course of cerebellar motor learning. J Neurosci 34: 7077–7090, 2014a.
doi:10.1523/JNEUROSCI.0017-14.2014.

Yang Y, Lisberger SG. Purkinje-cell plasticity and cerebellar motor learning
are graded by complex-spike duration. Nature 510: 529–532, 2014b.
doi:10.1038/nature13282.

Zhang W, Linden DJ. Long-term depression at the mossy fiber-deep cerebellar
nucleus synapse. J Neurosci 26: 6935–6944, 2006. doi:10.1523/JNEUROSCI.
0784-06.2006.

POPULATION CODING IN THE CEREBELLUM 2051

J Neurophysiol � doi:10.1152/jn.00449.2020 � www.jn.org

Downloaded from journals.physiology.org/journal/jn at SUNY Stony Brook (129.049.104.060) on March 5, 2021.


