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A long-lasting challenge in neuroscience has been to find a set of
principles that could be used to organize the brain into distinct
areas with specific functions. Recent studies have proposed the
orderly progression in the time constants of neural dynamics as
an organizational principle of cortical computations. However, re-
lationships between these timescales and their dependence on
response properties of individual neurons are unknown, making
it impossible to determine how mechanisms underlying such a
computational principle are related to other aspects of neural pro-
cessing. Here, we developed a comprehensive method to simulta-
neously estimate multiple timescales in neuronal dynamics and
integration of task-relevant signals along with selectivity to those
signals. By applying our method to neural and behavioral data
during a dynamic decision-making task, we found that most neurons
exhibited multiple timescales in their response, which consistently
increased from parietal to prefrontal and cingulate cortex. While pre-
dicting rates of behavioral adjustments, these timescales were not
correlated across individual neurons in any cortical area, resulting in
independent parallel hierarchies of timescales. Additionally, none of
these timescales depended on selectivity to task-relevant signals. Our
results not only suggest the existence of multiple canonical mecha-
nisms for increasing timescales of neural dynamics across cortex but
also point to additional mechanisms that allow decorrelation of these
timescales to enable more flexibility.

neural heterogeneity | reward integration | prefrontal cortex

Despite the tremendous heterogeneity in terms of cell types,
connectivity patterns, and neural response across the brain,

neuroscientists have long entertained various ideas about parsi-
monious organizational principles that could be used to parcel-
late mammalian brains into distinct areas with specific functions
(1–6). For example, regularities in cyto- and myeloarchitecture
have been successfully used for anatomical parcellation of cortex
(4, 5). This and other anatomical regularities have also inspired
the idea of a canonical microcircuit (7), a unit dedicated to a
specific computation in the brain. Consequently, computational
neuroscientists have explored how heterogeneity in such a circuit
contributes to multiple brain computations (8–11).
Functionally, although neurons in different cortical areas

display a vast range of response properties, activity of individual
cortical neurons commonly displays specific temporal correla-
tions. This raises the possibility that timescales of neural activity
might reflect an important organizational principle of cortical
computations. For example, dynamic properties of neurons in
the primary sensory cortical areas might be tuned for rapidly
changing sensory stimuli and moment-to-moment fluctuations in
their ongoing activity might show shorter intrinsic timescales
than those of neurons in the association cortex. Indeed, recent
studies have demonstrated that the intrinsic timescales of on-
going neural activity across the brain follow the anatomical hi-
erarchy determined by tract-tracing studies (12–15). Whereas the
exact role of these intrinsic timescales is currently unknown, time
constants of modulations by reward, presumably contributing to

reward memory, also increase in tandem with intrinsic timescales
across cortical areas (15, 16), pointing to specialization of brain
areas for integration of reward information on specific timescales.
These parallel hierarchies of timescales in intrinsic fluctua-

tions and reward memory, however, were estimated previously
with different methods. Intrinsic timescales were estimated using
the decay rate of autocorrelation in neural response across the
population of neurons in a given area (15), whereas reward-
memory timescales were obtained using activity profiles of in-
dividual neurons across multiple trials (16). Therefore, it is un-
clear whether the presumed relationship between intrinsic and
reward-memory timescales holds at the level of individual neu-
rons. If these timescales are correlated across individual neurons,
it would suggest that mechanisms involved in intrinsic fluctua-
tions might also contribute to the persistence of task-relevant
signals. By contrast, the absence of such a relationship among
individual neurons could indicate that multiple mechanisms un-
derlie the generations of these timescales. Therefore, exploring
the relationship between intrinsic and reward-memory timescales
at the level of individual neurons could address the specificity of
computations in a canonical microcircuit. Moreover, such neural
dynamics could be linked to timescales of adjustments in behav-
ioral response in order to provide an insight into how neural
dynamics contribute to behavioral adjustments.
Finally, it is also unknown whether the observed behaviorally

relevant hierarchy of reward-memory timescales (16) depends on
the selectivity of individual neurons to external or task-relevant
signals. For example, long reward-memory timescales might also
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require strong reward selectivity. If so, heterogeneity in response
selectivity might decorrelate reward-memory timescales from
intrinsic timescales across different neurons, even if they were
generated via a single mechanism in a canonical microcircuit.
Interestingly, a few recent studies have demonstrated that in-
trinsic timescales during the fixation period––presumably before
strong task-relevant signals emerge in the cortical activity––can
predict encoding of task-relevant signals later in the trial for
some cortical areas (17–22). By contrast, independence of
timescales and response selectivity could indicate that reward-
memory and intrinsic timescales might be generated via separate
mechanisms. This would challenge the idea that the hierarchies
of timescales occur due to similar processing of information by
canonical microcircuits across the brain (23, 24) and instead points to
the importance of the heterogeneity of local circuits (9). Nonetheless,
understanding the relationships between timescales of neural dy-
namics and response selectivity would enable us to determine how
mechanisms underlying the generation of those timescales are re-
lated to other aspects of neural processing.
Here, we developed a general and robust method to simulta-

neously estimate four distinct timescales from the activity of
individual neurons along with their selectivity to task-relevant
signals. This was done to ensure that dynamics associated with
these timescales and selectivity to task-relevant signals capture
unique variability in neural response. By doing so, we aimed to
address the following questions. 1) Is there any relationship be-
tween intrinsic timescales and behaviorally relevant timescales
within individual neurons? 2) Do these timescales depend on the
selectivity of individual neurons to task-relevant signals? 3) Does
any of these timescales predict behavioral flexibility? We applied
our method to single-cell recordings in four cortical areas shown
to be involved in decision making and reward processing.

Results
Reinforcement Learning during a Matching-Pennies Task. We ana-
lyzed the activity of 866 single neurons in four cortical areas
(lateral intraparietal cortex, LIP; dorsomedial prefrontal cortex,
dmPFC; dorsolateral prefrontal cortex, dlPFC; and anterior
cingulate cortex, ACC) commonly implicated in decision making
and reinforcement learning (25, 26) from six monkeys perform-
ing the same competitive game of matching pennies (Fig. 1). On
each trial of this task, monkeys chose one of two color targets by
shifting their gaze while the computer made its choice by simu-
lating a competitive opponent that tried to predict monkeys’
upcoming choice based on previous choices and reward out-
comes (16). The animal received a reward if its choice matched
that of the computer (see Methods for more details). Animals
adjusted their choices during this task according to their choice
and reward outcomes over multiple trials (27). This feature
makes the game of matching pennies unique for addressing our

questions as it allows us to estimate timescales of such integra-
tions at neural as well as behavioral levels.

Presence of Multiple Timescales in Neural Response. Based on pre-
vious studies, we assumed that neural response at any time point
in a trial could depend on activity during earlier epochs in the
same trial and similar epochs in the preceding trials, as well as on
reward outcome (reward vs. no reward) and choice (left vs. right)
on the preceding trials (Fig. 2 A–C). This resulted in a general
method for estimating timescales while capturing heterogeneity
in neural response.
The first type of dependence—activity from epochs in the

same trial—was captured by an autoregressive (AR) component
that predicts spikes in a given 50-ms time bin based on spikes in
the preceding eight time bins (Fig. 2A). In addition, because of

A B

Fig. 1. Experimental paradigm and recording sites. (A) Each trial of the
oculomotor free-choice task starts with a fixation point followed by pre-
sentation pf two identical targets. The animal could select between the two
targets by making a saccade as soon as the fixation point disappeared. The
animal was rewarded with a drop of juice if it selected the same target as the
computer opponent. (B) Recording sites in four cortical areas.

A

B
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D E F G

Fig. 2. Multiple hierarchies of timescales of neural fluctuations and inte-
gration of task-relevant signals across cortex. (A–C) Simultaneous estimation
of four types of timescales in neural response, illustrated for activity of an
example ACC neuron. Activity in a given time epoch is related to response
during previous epochs in the same trial (intrinsic timescale: τintrinsic; A), re-
sponse during the same epoch in the preceding trials (seasonal timescale:
τseasonal; A), reward outcome on previous trials (reward-memory timescale:
τreward; B), and monkeys’ choice (left vs. right) in the preceding trials
(choice-memory timescale: τchoice; C). (D–G) Hierarchies of the four types of
timescales across the cortex. Plots show the median of intrinsic (D), seasonal
(E), reward-memory (F), and choice-memory (G) timescales in four cortical
areas estimated using the best model for fitting response of each neuron.
Error bars indicate SEM. Only neurons that showed significant timescales are
included in each panel. Bar graphs show the fraction of neurons with a
significant timescale in each area.
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the structured nature of the task with specific time epochs, we
hypothesized that neural response on a given epoch could be
influenced by the activity in the same epoch in the previous trials,
and thus we included a second AR component to estimate a
“seasonal” timescale for each neuron. In order to estimate
timescales associated with the intrinsic and seasonal AR com-
ponents, we then solved a fifth-order difference equation sepa-
rately for coefficients obtained from each AR component (see
Methods for more details). Intrinsic timescales based on this
method closely match timescales based on autocorrelation
(discussed below).
The third and fourth types of dependence were captured by

two exponential memory-trace components (filters) to describe
fluctuations of each neuron’s response around its average activity
profile in a given time bin based on reward feedback and choice
on the previous trials, respectively. The corresponding expo-
nential coefficients were then used to estimate a single timescale
of “reward memory” (Fig. 2B) and “choice memory” (Fig. 2C) for
each neuron (16). Finally, we also included multiple exogenous
terms to capture selectivity to reward outcome and choice in the
current trial, and their interactions. We used all possible combina-
tions of the two AR and two memory-trace components as well as
the presence or absence of exogenous terms (task-relevant signals)
to generate 32(= 25) models (SI Appendix, Table S1).
Considering the complexity of our method, we first tested

whether it could identify the correct model by fitting data gen-
erated with one model using all of the 32 models (Model Re-
covery). We found that our method could identify the correct
model most of the time despite the large number of models
considered (SI Appendix, Fig. S1). Moreover, we also tested how
reliably our method can identify the best model for each neuron
by computing the coefficient of determination (R-squared) for
best models and comparing them with those of the second-best
models as well as models that only include exogenous terms and
thus no timescales.
We found that the best model for each neuron, which often

involved about three types of timescales (SI Appendix, Fig. S2),
captured larger variances of neural activity than the second-best
model and the model that did not include any timescales (SI
Appendix, Fig. S3). These results show that dynamics associated
with these timescales indeed capture unique variability in neural
response beyond what is predicted by task-relevant signals. In-
terestingly, the best model for most neurons (∼99.5%) in all four
cortical areas included an intrinsic AR component (Fig. 2 D,
Inset), illustrating the importance of intrinsic fluctuations in
explaining neural variability across cortex. Together, these re-
sults demonstrate the robustness of our method in estimating
multiple timescales related to dynamics of neural response.

Parallel but Independent Hierarchies of Timescales. After validating
our estimation method and fitting procedure, we used all 32
models to fit individual neurons’ response to identify the best
model for each neuron based on cross-validation and to simul-
taneously estimate selectivity to task-relevant signals as well as
intrinsic, seasonal, choice-memory, and reward-memory time-
scales. We observed hierarchies for all of the estimated timescales
across the four cortical areas, from the LIP and the dmPFC to the
dlPFC and the ACC.
The median value of intrinsic timescales increased from

∼70 ms in LIP to ∼125 ms in ACC, with the dmPFC and dlPFC
exhibiting intermediate values (Fig. 2D). These intrinsic time-
scales, however, were smaller than those reported in Murray
et al. (15), which could be due to using the decay on autocor-
relations between spikes during the fixation period in that study.
To test this possibility, we applied the autocorrelation method
and our method to neural response during the fixation period
only and found the median intrinsic timescales to be significantly

larger for the activity during this epoch compared with the entire
trial (SI Appendix, Fig. S4 A and B). Nonetheless, by applying our
method to neural response during the fixation period, we ob-
served a range of intrinsic timescales similar to those reported
based on autocorrelation.
Similar to intrinsic timescales, our seasonal timescales also

increased from LIP to ACC (Fig. 2E). However, seasonal time-
scales were one to two orders of magnitude larger than intrinsic
timescales and significantly smaller fractions of neurons exhibi-
ted these timescales. Similarly, reward- and choice-memory
timescales increased from parietal to prefrontal to cingulate
cortex; these timescales assumed values between intrinsic and
seasonal timescales (Fig. 2 F and G). Overall, we found that LIP
and ACC consistently exhibited the shortest and longest time-
scales, whereas the two prefrontal areas showed intermediate
values. Therefore, our method extended previous findings about
intrinsic and reward-memory timescales to the single-cell level
and, moreover, revealed two additional hierarchies of seasonal
and choice-memory timescales.
To examine the relationship among different timescales more

closely, we computed the correlations between timescales within
individual neurons across all cortical areas (cortexwise correla-
tions) based on simultaneously estimated timescales for each
neuron. As expected from the similar hierarchies of different
timescales, we found significant correlations between most pairs
of timescales except between seasonal and reward-memory
timescales and between seasonal and choice-memory time-
scales (Fig. 3). Similar correlation between intrinsic and reward-
memory timescales has been reported before but using only
population-level estimates (15).
The observed cortexwise correlation between timescales,

however, could be driven simply by the gradual increase in all
timescales across the four cortical areas. Therefore, we tested
whether these timescales are correlated across neurons within a
given brain area. As mentioned earlier, the presence or lack of
correlation between timescales within individual neurons would
suggest similar or separate mechanisms for generations of these
timescales, respectively. Indeed, we did not find any evidence for
correlation between any pairs of timescales in any cortical areas
(Fig. 4). The only evidence for such correlation, which did not
survive the Bonferroni correction, was observed between choice-
and reward-memory timescales in LIP and dlPFC. Results from
additional control analysis demonstrated that this lack of sig-
nificant correlation was not due to poor sensitivity of our method
to detect such correlation (SI Appendix, Fig. S5).
Overall, we found that although all four types of timescales

consistently increased across cortex in tandem, there was no
relationship between them across individual neurons in a given
brain area. This indicates that the previously reported correla-
tion between intrinsic and reward-memory timescales was mostly
driven by between-region differences and suggests there are
separate mechanisms underlying the generations of multiple
timescales.

Behavioral Relevance of Estimated Timescales. To estimate the four
types of timescales, we fit neural response considering all task-
relevant signals. This method guarantees that the estimated
timescales capture unique variability in neural response and thus
truly reflect multiple neural dynamics and integrations of task-
relevant signals over time. However, it is still unclear whether
these timescales are relevant and contribute to choice behavior.
To examine whether any of the four neural timescales are rele-
vant for choice behavior during the game of matching pennies,
we estimated timescales at which monkeys’ choice behavior on
the current trial is influenced by previous reward and choice for each
session of the experiment (Estimation of Behavioral Timescales). The
dependence on previous reward captures how reward feedback on
preceding trials was integrated into reward value to influence choice.
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The dependence on previous choice captures how choice on
preceding trials was integrated into a “choice” value to alter future
choices. We then calculated the correlations between these two
behavioral timescales and each of the four neural timescales.
We found significant correlations between the behavioral re-

ward timescales, which is directly related to the learning rate in
the reinforcement learning model, and reward-memory time-
scales in all cortical areas (Fig. 5 A–D). A similar relationship has
been reported previously but by considering behavioral and
neural timescales from three of these cortical areas (LIP, dlPFC,
and ACC) together and not individually (16). In addition,
we also found significant correlations between behavioral choice
timescales and choice-memory timescales of neurons in all
cortical areas (Fig. 5 E–H). Importantly, there was no significant
correlation between the behavioral reward timescales and choice-
memory timescales (Spearman correlation; LIP: r = 0.16, P = 0.052;
dmPFC: r = −0.05, P = 0.60; dlPFC: r = −0.06, P = 0.37; ACC:
r = −0.03, P = 0.83) or between behavioral choice timescales and
reward-memory timescales (Spearman correlation; LIP: r = −0.04,
P = 0.63; dmPFC: r = −0.05, P = 0.63; dlPFC: r = −0.09, P = 0.21;
ACC: r = 0.09, P = 0.34). These results illustrate that reward- and
choice-memory timescales in all cortical areas were specifically pre-
dictive of behavior in terms of how previous reward and choice
outcomes were integrated into reward and choice values to influence
future choices.
In contrast to these links between behavioral timescales

measuring the decays in the effect of previous reward and choice
and corresponding neural timescales, there was no correlation
between the behavioral timescales and intrinsic or seasonal time-
scales (SI Appendix, Fig. S6). Altogether, these results demon-
strate that not only our estimated reward- and choice-memory
timescales are linked to the integration of reward and choice
outcomes over time (trials) but, more importantly, intrinsic time-
scales may not directly contribute to behavior as previously hy-
pothesized (15, 16).

Dependence of Neural Timescales on Response Selectivity. Our
finding that four estimated timescales are independent of each
other suggests that multiple mechanisms underlie the generation
of these timescales. However, if all or some of the estimated
timescales depend on response selectivity of individual neurons,
inherent heterogeneity in response selectivity could render these
timescales decorrelated across individual neurons even if they
were generated via a single mechanism. Therefore, we per-
formed additional analyses to examine whether the observed
hierarchies of timescales and their relationships depend on the
selectivity to task-relevant signals (reward outcome, choice, and
their interaction). This was possible because in addition to en-
suring that estimated timescales actually captured unique vari-
ability in neural response, our method also allowed us to measure
the selectivity of individual neurons to task-relevant signals.
First, we found that a significant fraction of neurons in all

cortical areas were selective to task-relevant signals, as reflected in
the majority of best models to include the exogenous terms (LIP:
66%, χ2 = 11.6,   P = 9.2 × 10−5; dmPFC: 70%, χ2 = 17.6,   P =
4.7 × 10−5; dlPFC: 59%, χ2 = 6.7,   P = 2.9 × 10−3; ACC: 60%,
χ2 = 7.7,   P = 5.2 × 10−3). Similar to previous findings based
on fits of neural response with regression models (27, 28), we
found significant fractions of neurons in all cortical areas to
show selectivity to reward outcome right after reward feedback
and selectivity to choice after target onset (SI Appendix, Fig.
S7). Similar fractions of neurons encoded reward outcome across
the four cortical areas χ2 3( ) = 3.5,(   P = 0.06), whereas the frac-
tion of neurons selective to choice decreased from LIP to
ACC χ2 3( ) = 23.6,   P = 1.2 × 10−6( ).
Second, we did not find any significant difference between

timescales of neurons with and without selectivity to task-
relevant signals (Fig. 6 and SI Appendix, Table S2). We further
examined whether estimated timescales depend on specific se-
lectivity to reward outcome but did not find any evidence for this
in any cortical area (SI Appendix, Fig. S8 and Table S3). Simi-
larly, we did not find evidence for the dependence of timescales

A B C

D E F

Fig. 3. Relationship between different types of timescales across all cortical areas (cortexwise correlation). Plots show estimated timescales for individual
neurons (color dots) and median timescales (symbols) against one another across four cortical areas as indicated in the legend: seasonal vs. intrinsic timescales
(A), reward-memory vs. intrinsic timescales (B), choice-memory vs. intrinsic timescales (C), reward-memory vs. seasonal timescales (D), choice-memory vs.
seasonal timescales (E), and choice-memory vs. reward-memory timescales (F). Error bars indicate SEM. The cortexwise correlation was significant between
most pairs of timescales: intrinsic and seasonal (Spearman correlation, r = 0.19, P = 0.0009), intrinsic and reward-memory (Spearman correlation, r = 0.52,
P = 0), intrinsic and choice-memory (Spearman correlation, r = 0.48, P = 7.1310−15), and reward-memory and choice-memory (Spearman correlation, r = 0.51,
P = 1.9310−29). There was no significant correlation between seasonal and reward-memory timescales (Spearman correlation, r = 0.11, P = 0.15) and between
seasonal and choice-memory timescales (Spearman correlation, r = 0.10, P = 0.11).
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on specific selectivity to choice in any cortical areas. Nonethe-
less, the overall reward-memory timescales were significantly
larger for neurons that were not selective to choice signal (SI
Appendix, Fig. S9 and Table S4). This suggests a tendency for
neurons with no choice selectivity to integrate reward feedback
over longer timescales.
Recent studies have shown that the timescales for the decay of

autocorrelation in the firing response of individual neurons
during the fixation period, namely, intrinsic timescales, are pre-
dictive of encoding of task-relevant signals. Therefore, we also
tested whether intrinsic timescales based on autocorrelation in
activity during fixation depend on selectivity to task-relevant
signals but did not find any difference between the intrinsic
timescales of neuron with and without task-relevant selectivity
(SI Appendix, Fig. S4C). This result indicates that the lack of a
relationship between response selectivity and intrinsic timescales
is not unique to our method.
Third, despite similar hierarchies of timescales for neurons

with different types of selectivity, reward- and choice-memory
timescales might still depend on the strength of modulation
within each type. To test this possibility, we examined correla-
tions between timescales of reward- and choice-memory inte-
gration and the magnitude of selectivity to reward, choice, and
their interactions (quantified by standardized regression coeffi-
cients for the corresponding exogenous signals) but did not find
any significant relationship (SI Appendix, Fig. S10). Furthermore,
we did not find significant correlation between timescales and
neural firing rates in any cortical area except for dlPFC where

more active neurons showed shorter choice-memory timescales
(SI Appendix, Fig. S11). These results illustrate that activity re-
lated to reward and choice memory were mostly independent of
immediate response to these signals within individual neurons in
a given brain area.
Together, results presented above illustrate the independence

of estimated timescales and selectivity to task-relevant signals.
These findings suggest that the four estimated timescales related
to various dynamics of cortical neural response are not generated
via a single mechanism and then modulated and sculpted by
response properties of individual neurons. Instead, multiple
mechanisms must underlie the generation of the four estimated
timescales.

Discussion
We developed a comprehensive and robust method to estimate
multiple timescales related to dynamics of neural response along
with selectivity of individual neurons to important task-relevant
signals. By applying this method to neuronal activity recorded
from four cortical areas, we provide evidence for the presence of
multiple, parallel hierarchies of timescales related to neural re-
sponse modulations by previous reward and choice outcomes
(reward- and choice-memory timescales), ongoing fluctuations in
neural firing (intrinsic timescale), and response during similar
task epochs in the preceding trials (seasonal timescale). Al-
though evidence for hierarchies of intrinsic and reward- and
choice-memory timescales have been provided before (15, 16),
the relationship between these timescales within individual

A B C D E F

G H I J K L

M N O P Q R

S T U V W X

Fig. 4. Independence between different types of timescales within individual neurons within individual cortical areas. (A–X) Each row of panels shows the
estimated timescales within individual neurons against one another for a given cortical area indicated on the left. Reported are the Spearman correlation
coefficients and corresponding P values, and the number of neurons with significant values of a given pair of timescales. The solid lines represent the re-
gression line that was fit to log timescales.
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neurons and their dependence on response selectivity were un-
known. Therefore, using our method, we addressed whether
there is any relationship between intrinsic timescales and be-
haviorally relevant timescales within individual neurons, and
whether these timescales depend on the selectivity of individual
neurons to task-relevant signals and are relevant for behavioral
flexibility.
We found four parallel hierarchies of timescales, from parietal

to prefrontal to cingulate cortex, at the level of individual neu-
rons. However, none of the four timescales depended on the
selectivity of individual neurons to task-relevant signals, and
there was no systematic relationship between these timescales
across individual neurons in a given cortical area. These indicate
that the previously reported correlation between intrinsic and
reward-memory timescales (15) was mostly driven by between-
region differences and was not a property of individual neural
response. More importantly, the observed independence of the
estimated timescales within any of four cortical areas is at odds
with the idea that individual brain areas are specialized for the
integration of task-relevant signals (e.g., reward feedback) at
certain timescales. Compatible with our finding, a recent study

has shown that a single brain area such as dorsal ACC can have a
spectrum of value estimates based on different timescales of
reward integration (29).
In addition, our findings contradict a few recent studies

showing that intrinsic timescales based on the decay rate of au-
tocorrelation in the firing response of individual neurons can
predict encoding of task-relevant signals in some cortical areas
(17–22). This could be due to differences in the methods used for
estimations of intrinsic timescales or could simply reflect
reporting bias considering the large number of studies that have
examined the decay in autocorrelation of neural response. More
specifically, intrinsic timescales using the decay in autocorrela-
tion are usually obtained from a fixation period (presumably
before strong task-relevant signals emerge in the cortical activ-
ity). Therefore, it is unclear whether the corresponding dynamics
capture unique variability in neural response beyond task-
relevant signals, which were obtained from other epochs of the
task. This suggests that the relationship between such intrinsic
timescales and encoding of task-relevant signals observed in
previous studies might be spurious.

A B C D

E F G H

Fig. 5. Relationship between reward- and choice-memory timescales and behavioral timescales. (A–D) Plots show behavioral reward timescales vs. reward-
memory timescales of individual neurons recorded during the same sessions, separately for different cortical areas as indicated on the top. Reported are
the Spearman correlation coefficients and corresponding P values and the solid lines represent the regression line that was fit to log values. (E–H) The same as
in A–D but for behavioral choice timescales. There were significant correlations between behavioral and neural timescales in all cortical areas�
P < 0.05

8 = 0.00625
�
.

A B C D

Fig. 6. No evidence for the dependence of timescales on overall selectivity to task-relevant (reward outcome and choice) signals. Plots show the median of
the estimated intrinsic (A), seasonal (B), reward-memory (C), and choice-memory timescales (D) in four cortical areas, separately for neurons with (gold) and
without (purple) any type of selectivity to task-relevant signals. The dashed lines show the median across all four areas, and error bars indicate SEM. (Insets)
The fractions of neurons with and without any task-relevant signals (for all neurons with a significant timescale) in different areas. Detailed statistics for
comparing neurons with and without task-relevant selectivity are provided in SI Appendix, Table S2.
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Our results suggest that the four estimated timescales and
corresponding dynamics are not generated via a single mecha-
nism and modulated by response properties of individual neu-
rons and, instead, are produced by distinct mechanisms. More
specifically, the independence of intrinsic timescales from neural
selectivity and the gradual increase of these timescales across
cortex confirm the previously postulated role of slower synaptic
dynamics (perhaps due to short-term synaptic plasticity) in
higher cortical areas (15, 30). Nonetheless, distinct hierarchies of
timescales can be generated by mechanisms other than those
underlying intrinsic timescales (23, 31). For example, seasonal
timescales could be generated through circuit reverberations
evoked by important task events and top-down signals and thus,
could depend on the dynamics of interactions between neurons
in the circuit. Therefore, independence of intrinsic and seasonal
timescales within individual neurons challenges the idea that
their cortical hierarchies occur due to successive processing of
information (23, 24) and points to the importance of the het-
erogeneity of local circuits to which a neuron belongs (9). This
suggests that multiple computations with distinct dynamics could
be performed within a canonical microcircuit.
The lack of correlation between intrinsic (and seasonal)

timescales and reward- or choice-memory timescales could un-
dermine the proposal that intrinsic dynamics directly contribute
to reward-based and goal-directed behavior (15). Instead, we
speculate that the independence of different timescales within
individual neurons could contribute to behavioral flexibility by
allowing neurons to integrate different types of task-relevant
information independently (32).
We found that reward- and choice-memory timescales selec-

tively predict behavioral timescales related to behavioral inte-
gration of previous reward and choice outcomes, respectively,
and thus are relevant to choice behavior. This indicates that
these timescales are more likely to depend on long-term reward-
and choice-dependent synaptic plasticity as presumed in differ-
ent reinforcement learning models. Assuming Hebbian form of
synaptic plasticity, one could predict that stronger response to
reward feedback should result in stronger changes in synaptic
plasticity and thus a shorter timescale for reward memory for a
given neuron. However, we did not find any evidence for a re-
lationship between these memory timescales and response se-
lectivity to reward and choice. This result could indicate the
presence of significant heterogeneity in synaptic plasticity rules.
In addition, reward- and choice-memory timescales could be
decorrelated because choice and reward are only weakly coupled
during the game of matching pennies, but this might also reflect
the fact that synaptic plasticity depends on both recent neural
activity and reward history (33, 34). More specifically, because
synaptic plasticity changes with preceding neural activity and
reward history, heterogeneity in both of these factors could make
choice and reward memory decorrelated. Interestingly, the ob-
served independence of reward-memory timescales and behav-
ioral choice timescales and independence of choice-memory
timescales and behavioral reward timescales could allow the
animals to integrate reward and choice outcomes independently
of each other and thus results in more flexibility.
Our method also identified a separate timescale related to

fluctuations of neural response to experimental epochs (events)
across trials and the importance of these dynamics for capturing
response variability even though only fewer than half of the
recorded neurons exhibited seasonal timescales. The seasonal
timescales were the longest timescales and could reflect internal
neural dynamics controlled by top-down signals that could set
the state of cortical dynamics that ultimately influence task
performance (35). It is possible that seasonal timescales emerge
and evolve as the task is being learned and that is why fewer
neurons exhibit seasonal timescales.

Finally, although we only investigated response dynamics of
individual neurons, there are recent studies showing that pop-
ulation activity exhibits similar dynamics and reflect task-relevant
information (36–38). For example, Kobak et al. (36) showed that
after proper demixing and dimensionality reduction, population
response reflects task parameters such as reward and choice,
similar to response of single neurons. In another study, Rossi-Pool
et al. (38) found that during a temporal pattern discrimination
task, population activity in the dorsal premotor cortex exhibits
temporal dynamics similar to those of single neurons, but these
dynamics diminish during a nondemanding task. Future studies
are needed to compare the timescales underlying response of in-
dividual neurons to those of populations of neurons, which could
be important for understanding how corresponding dynamics are
generated.
In summary, our results show that timescales of neural dy-

namics across cortex can be used as an organizational principle
to understand brain computations. However, changes in the real
world happen on different timescales, each of which requires
behavioral adjustments on a proper timescale. Therefore, the
observed hierarchy and differences in timescales across the brain
indicate that individual brain areas may contribute distinctly to
behavioral adjustments on different timescales. Future experi-
ments with distinct timescales of changes in the environment are
needed to identify such unique contributions.

Methods
Experimental Paradigm and Neural Data. All experimental procedures fol-
lowed the guidelines by the National Institutes of Health and were approved
by the University Committee on Animal Research at the University of
Rochester and the Institutional Animal Care and Use Committee at Yale
University. Experimental details for the datasets have been reported previ-
ously (27, 28, 39, 40). We used single-neuron spike train data that were
recorded in macaque monkeys performing a competitive decision-making
task of matching pennies against a computer opponent (28).

In this oculomotor free-choice task, monkeys were trained to choose
between two identical targets by shifting their gaze (Fig. 1A). During a 0.5-s
foreperiod, monkeys fixated on a small yellow square in the center of the
computer screen. Next, two identical green disks were presented in opposite
locations (5° away) around the center of the screen. When the central fix-
ation square disappeared after a 0.5-s delay period, monkeys could select
one of the two targets by moving their eyes and holding their gaze on a
given target for 0.5 s. A red ring then appeared around the target selected
by the computer and the monkeys were rewarded only if they selected the
same target as the computer after holding fixation for another 0.2 s. The
computer opponent made its choice by simulating a competitive opponent
trying to predict the animal’s choice based on previous choices and reward
outcomes by exploiting biases exhibited by the animal on the preceding
trials (see ref. 28 for more details on the algorithm used by the computer
opponent).

We used spike counts in 50-ms time bins starting with reward feedback
(postfeedback) and spanning into the following trial (amaximumof 80 bins in
a given trial). This choice of starting point was only for computational
convenience. Data include recordings from 205 neurons in the LIP from one
female and two male monkeys (39), 185 neurons in the dmPFC from two
male monkeys (27), 322 neurons in the dlPFC from one female and four male
monkeys (28), and 154 neurons in the dorsal ACC from two male monkeys
(40). The recordings in ACC were obtained in the dorsal bank of the cingu-
late sulcus and correspond to area 24c and ventral to the dmPFC.

Method for Simultaneous Estimation of Multiple Timescales. Our goal was to
predict the spike counts as a nonstationary time series based on the preceding
neural activity and task-relevant signals in order to simultaneously estimate
various timescales in neural response and selectivity to task-relevant signals.
A powerful method to capture nonstationarity of a time series due to factors
with different timescales is the seasonal AR with exogenous inputs (ARX)
model, which commonly has been used in various fields (40–44). The AR
component of the ARX model aims to predict the output variable or re-
sponse based on immediately preceding response, whereas the seasonal
component allows the model to capture fluctuations or variations due to the
periodic nature of the external factors. In our experiments, the seasonal
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component refers to the relationship between neural response across trials
due to the specific structure of the task or task epochs (discussed below).

To predict neural response, we included two AR components, resulting in a
seasonal two-dimensional (2D) ARX model that also includes two exponen-
tial memory traces for choice and reward. First, we assumed that neural
response at any time point in a trial depends on earlier activity in the same
trial (15). This dependence was captured by an AR component that predicts
spikes in a given 50-ms time bin based on spikes in the preceding F time bins
(AR model with order F). Therefore, this “intrinsic” AR component (referred
to as ARintrinsic) uses a weighted average of firing rates in the preceding bins
in order to predict the current firing rate. Our preliminary results showed
that there is more than one significant autoregression coefficient for most
neurons. We used different methods to assign a single intrinsic timescale
(τintrinsic) for each neuron (discussed below).

Second, because of the structured nature of the task with specific time
epochs, we hypothesized that neural response on a given epoch could be
influenced by the activity in the same epoch in the preceding trials. In other
words, task epochs could provide a “seasonal” source of variability in neural
response. Therefore, we included a seasonal AR component (referred to as
ARseasonal) in our model in order to predict response in the current time bin
based on responses in the same time bins in the preceding G trials (AR model
with order G; Eq. 1). The corresponding autoregression coefficients were
used to estimate a seasonal memory timescale (τseasonal) for each neuron.
Therefore, seasonal timescales capture how fluctuations of activity during a
given epoch decay over trials (more precisely, between the same epoch over
successive trials).

Third, we assumed that neural response at any time point in a trial depends
on reward outcome (reward vs. no reward) and choice (left vs. right choice) in
the preceding trials (16). These dependences relate spikes in a given time bin
of the current trial to reward and choice outcomes in the preceding H trials.
To capture these dependencies, we assumed two separate exponential
memory-trace filters that are modulated by the average response in a given
time bin and previous reward or choice signals (Eq. 1). The corresponding
exponential memory-trace coefficients were used to estimate a reward-
memory timescale (τreward) and a choice-memory timescale (τchoice) for each
neuron. Therefore, reward- and choice-memory timescales capture how the
influence of reward and choice outcomes decays over time (time from the
preceding reward feedback and choice, respectively).

Finally, we also included various exogenous terms to capture selectivity in
response to current choice (C), current reward (R), and their interaction (C ×
R). We did not include terms for previous choice and reward because effects
of previous choice and reward are captured by choice and reward memory,
respectively. The selectivity to task-relevant signals was captured using four
boxcars relative to relevant events in the task. More specifically, we con-
sidered 1) three terms (regressors) for choice, one for [0,500]-ms interval
relative to the onset of choice targets (choice 1), one for [0,500]-ms interval
relative to target fixation (choice 2), and one for [0,500]-msec interval rel-
ative to reward feedback (choice 3); 2) one term for reward for [0,500]-ms
interval relative to reward feedback; and 3) one term for the interaction of
choice and reward for [0,500]-ms interval relative to reward feedback.

As described above, themodel for estimating timescales involves weighted
average over 2D space of preceding time bins and trial firing rates (with order
F for time bins and G for trials, F = G = 5), corresponding to ARintrinsic and
ARseasonal of order 5. In addition, the model involves two separate weighted
averages over reward and choice outcomes on the preceding H trials (H = 5),
corresponding to reward- and choice-memory traces over the preceding five
trials, respectively. More formally, the spike counts in bin n of trial k, y(n,k),
is given by the following equation:

y n, k( ) = y n( ) + Z × 1,u[ ] +∑F
l=1

αlintrinsic × y n − l,k( ) + ∑G
q=1

αqseasonal × y n, k − q( )

  + y n( ) × Areward × ∑H
q=1

exp −t
∼
reward n,k − q( )

τreward
( ) × Rew n, k − q( )

+ y n( ) × Achoice × ∑H
q=1

exp −t
∼
choice n, k − q( )

τchoice
( ) × Choice n, k − q( ),

[1]

where y(n) = E[y(n, k)]k is the average value of spike count in each bin over
all trials, Z(1 × 6) is the vector of coefficients for the task-relevant compo-
nents, and u is a row vector of five task-relevant inputs (three choice signals,
reward, and interaction of choice and reward). AR coefficients for intrinsic
and seasonal fluctuations are denoted by αkintrinsic and αkseasonal, respectively

(αkintrinsic < 1, αkseasonal < 1). Reward- and choice-memory timescales are indi-
cated byτreward and τchoice, whereas Areward and Achoice are the amplitudes of

reward- and choice-memory components, respectively. ~treward(n’, k’) and
~tchoice(n’, k’) indicate the time difference between current time and the time
bin (with time resolution of 50 ms) at which reward or choice was occurred
right before time bin (n’) on trial (k’).

In order to estimate timescales associated with ARintrinsic and ARseasonal

components, for each component we solved a fifth-order difference equa-
tion (45). More specifically, an AR(5) model can be written as

y(t) = ∅1y(t − 1) +∅2y(t − 2) + . . . +∅5y(t − 5). [2]

By rewriting Eq. 2 in a vector format, a dynamic multiplier can be found by
calculating the eigenvalues of the AR coefficient matrix F:

|F − λIn| = 0, F =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∅1 ∅2 ∅3 ∅4 ∅5

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. [3]

The eigenvalues of this fifth-order polynomials in λ, λk, determine the dy-
namic behavior of the AR model. Considering that these eigenvalues can be
real or complex numbers, we assigned a single timescale based on the ab-
solute value of eigenvalues as follows:

τAR = max –
ΔT

log abs λk( )( )( ), [4]

where ΔT is the size of the time bin (time resolution). Therefore, intrinsic
(τintrinsic) and seasonal (τseasonal) timescales are equal to

τintrinsic = max –
ΔTintrinsic

log abs λk intrinsic( )( )( )( ),

τseasonal = max –
ΔTseasonal

log abs λk seasonal( )( )( )( ), [5]

where λk(intrinsic) and λk (seasonal) are eigenvalues of the AR coefficient
matrix associated with ARintrinsic and ARseasonal components, respectively, and
ΔTintrinsic and ΔTseasonal are the size of time bins for these components
(ΔTintrinsic = 50 ms and ΔTseasonal =   average  trial  length). Note that for com-
puting timescales we only considered AR coefficients that were statistically
significant.

This is the most general model to predict spike counts from which we
constructed more specific models by turning on and off the AR components,
reward- and choice-memory traces, and task-relevant terms. These con-
structions resulted in 32 alternative models, consisting of all of the possible
combinations of the general model components (the list of all possible
combinations of the models can be found in SI Appendix, Table S1). To select
the best model for each neuron, we ran all 32 models and used cross-
validation (Model Selection and Parameters).

Two special cases of our method couldmimic the autocorrelation model of
Murray et al. (15) and the exponential memory-trace model of Bernacchia
et al. (16) using only the ARintrinsic and reward-memory components, re-
spectively. To replicate the results of the two previous studies, we used their
methods for profiling neural activity. More specifically, Murray et al. (15)
used spike counts in a period starting from fixation point to 500 ms after
that (postfixation) and then split spikes in this postfixation epoch into
10 time bins of 50 ms. Bernacchia et al. (16) used two time periods, each
spanning 1,500 ms, that were further divided into six time bins of 250 ms
each. The first period consisted of six successive, 250-ms bins starting from
1,000 ms before target onset to 500 ms after that. The second period con-
sisted of six successive, 250-ms bins starting from 500 ms before feedback
period to 1,000 ms after that.

Finally, each autoregression component involves five coefficients, and thus
there could be multiple timescales associated with each AR component.
Therefore, we tested a few alternative approaches for assigning a single
timescale for each AR component of each neuron. This includes using only the
real eigenvalues, the average of real and complex eigenvalues weighted
according to their absolute values, and a thirdmethod based on transforming
AR coefficients to a time constant via the time lag associated with a given
coefficient. In the third approach, we used the longest timescale among all of
the timescales estimated from statistically significant autoregression coeffi-
cients. More specifically, for an AR model of order 1, AR(1), that only has one
single AR coefficient (y(t) = ∅1y(t − 1)), a single timescale can be defined
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equal to τAR(1) = – ΔT
log(abs(∅1)), where ΔT is the size of the time bin (time res-

olution). By extending the same logic, we defined a set of intrinsic (τintrinsic)
and seasonal (τseasonal) timescales based on the AR components as follows:

τkintrinsic = – 
k × ΔTintrinsic

log abs αkintrinsic( )( ), τkseasonal = – 
k × ΔTseasonal

log abs αkseasonal( )( ), [6]

where ΔTintrinsic and ΔTseasonal are the size of time bins for the two compo-
nents (ΔTintrinsic = 50ms and ΔTseasonal =   average  trial  length). To assign a
single intrinsic and seasonal timescale to each neuron, we selected the
longest timescales:

τintrinsic = max(τkintrinsic), τseasonal = max(τkseasonal). [7]

We did so because dynamics on smaller timescales would reach an asymptote
faster and thus are less important for the overall time course of neural response.
As we show in SI Appendix, Fig. S4, all these three methods provide comparable
results to timescales based on autocorrelation. In this paper, we mainly report
results based on the absolute values of eigenvalues of AR coefficient matrix (Eq. 4),
but our main findings were consistent for all these models.

Model Selection and Parameters. Model parameters for the AR components
were determined by finding the best model for each neuron based on their
performance (using R-squared measure). We performed a 10-fold cross-
validation fitting process to calculate the overall performance for each
model. Specifically, we generated each instance of training data by ran-
domly sampling 90% of all data (time bins) for each neuron and then cal-
culated fitting performance based on R-squared in the remaining 10% of
data (test data). This process was repeated 30 times, and the performance
was computed based on the median of performance across these 30 in-
stances. To identify the best fit for each instance of the training data, we ran
the model 50 times from different initial parameter values and minimized
the residual sum of squares to obtain the best model parameters. The me-
dian of model parameters over the 30 instances was used to compute the
best parameters for each model. In order to be able to compare parameters
across different cross-validation instances, we z-scored all input and output
vectors before fitting each instance.

To remove the outlier model parameters in a given cortical area, we used
1.5 × interquartile range method for each parameter (and not neuron). In
order to determine the type of selectivity to task-relevant signals for each
neuron, we first identified neurons for which the model with exogenous
terms provided a better fit than the model with no exogenous terms.
Neurons with a significant parameter value for a given task-relevant signal
(e.g., reward signal) were determined as the neurons with that type of task-
relevant selectivity (e.g., reward-selective neurons).

Model Recovery. In order to test whether our method can identify the correct
model for individual neurons, we measured the probability of finding the
correct model in simulated data for which the ground truth of timescales was
known. More specifically, we first randomly selected a set of 500 activity
profiles (mean neural response of individual neurons divided into 50-ms time
bins) from the 866 available neurons in the four cortical areas. To ensure that
our model recovery is not specific to activity profile of neurons in our dataset,
we permuted blocks of time bins (five bins in each block) for 200 among 500
activity profiles to generate synthetic activity profiles. For each activity
profile, we used a specific model––for example, model 21 with the seasonal
AR component and choice-memory trace––and 10 randomly selected sets of
four timescale values to produce spike counts in each bin. The sets of timescales
values were chosen from a larger set of 5,000 timescales values for the four types
of timescales, each of which was generated by randomly selecting timescales
from the range of estimated timescales across all areas. We then fit the simu-
lated neural response with all 32 models and used the goodness-of-fit based on
the Akaike information criterion to determine the best model for each simulated
response. Finally, we computed the probability that each dataset generated with
a given model was best fit by any of the 32 models. The results based on these
simulations are presented in SI Appendix, Fig. S1.

Correlation Recovery Simulations. We performed additional simulations to
test whether our method is sensitive enough to detect correlations between

timescales across individual neurons within a given cortical area if such
correlations indeed exist. To this end, we used activity profiles of randomly
selected neurons in our dataset to simulate neural response with significant
correlations between certain pairs of timescales, and then used our method
to estimate those timescales from the simulated data. That is, we first ran-
domly selected 100 activity profiles (i.e., mean neural response from indi-
vidual neurons) from neurons in our dataset. We then assigned a random set
of four timescales to each profile and tested whether a certain pair of
timescales (e.g., τintrinsic and τseasonal) are significantly correlated (with
0.05≤ abs(ρ)≤ 0.75) across the 100 profiles by chance. If so, we used our full
ARMAX model to generate spike counts using the activity profiles and the
chosen timescales. We repeated this procedure 60 times in order to generate
60 datasets of neural response for which there is a significant correlation
between a given pair of timescales. We then used our full model to estimate
timescales for neural response in each generated dataset and subsequently
tested correlation between the estimated timescales. The results based on
these simulations are presented in SI Appendix, Fig. S5.

Estimation of Behavioral Timescales. In order to estimate behavioral time-
scales related to the influence of previous choice and reward outcomes, we
used a reinforcement learning model with two sets of value functions,
reward-dependent and choice-dependent values, that are updated accord-
ing to reward outcomes and choice on every trial. More specifically, the
reward-dependent value for choosing target x (left or right option) on trial
t,Qt(x), is updated according to the following equation (46):

Qt+1(x) = Qt(x) + α[rewt −Qt(x)], [8]

where rewt (equal to 1 or 0) is the reward received by the animal on trial t
and α is the learning rate. Therefore, reward-dependent values measure
how reward feedback on preceding trials is integrated to influence choice.
This update rule can be rearranged as

Qt+1(x) = (1 − α)Qt(x) + αrewt [9]

to show that τrew = 1=α can be used as the behavioral memory timescale of
previous reward outcomes. We also considered a set of two choice-
dependent value functions for capturing the effect of previous choices on
the current choice:

Ct+1(x) = (1 − γ)Ct(x) + γchoicet , [10]

where Ct(x) denotes the choice-dependent value function for target xon
trial t, choicet is the choice on trial t (left or right), and γ is the decay rate.
Therefore, choice-dependent values measure how monkeys’ choices on
preceding trials are integrated to influence future choices. Similar to be-
havioral reward memory, τchoice = 1=γ can be used as the behavioral memory
timescale of previous choice outcomes.

The overall value of selecting target x on trial t, Vt(x), is a linear sum of the
reward-dependent and choice-dependent value functions:

Vt+1(x) = Qt(x) + ωCt(x), [11]

where ω determines the relative contribution of choice-dependent values.
Finally, the probability that the animal chooses the rightward target on trial
t, Pt(R), was determined using a softmax function of the overall values:

Pt(R) = exp(βVt(R))
exp(βVt(L)) + exp(βVt(L)). [12]

We used this model to fit choice data in each recording session of the ex-
periment to estimate model parameters (α,   γ,   ω,   β) using a maximum
likelihood procedure.

Data Availability. All neural data and computer codes required for model
fittinganddataanalyses presented in thepaper are available in the followingGitHub
depository: https://github.com/DartmouthCCNL/NeuroARMAX_LeeLabData (47).
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