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ABSTRACT

We derive the backpropagation algorithm for spiking neural networks composed of leaky integrate-
and-fire neurons operating in continuous time. This algorithm, EventProp, computes the exact gradient
of an arbitrary loss function of spike times and membrane potentials by backpropagating errors in time.
For the first time, by leveraging methods from optimal control theory, we are able to backpropagate
errors through spike discontinuities and avoid approximations or smoothing operations. EventProp
can be applied to spiking networks with arbitrary connectivity, including recurrent, convolutional
and deep feed-forward architectures. While we consider the leaky integrate-and-fire neuron model in
this work, our methodology to derive the gradient can be applied to other spiking neuron models. As
errors are backpropagated in an event-based manner (at spike times), EventProp requires the storage
of state variables only at these times, providing favorable memory requirements. We demonstrate
learning using gradients computed via EventProp in a deep spiking network using an event-based
simulator and a non-linearly separable dataset encoded using spike time latencies. Our work supports
the rigorous study of gradient-based methods to train spiking neural networks while providing insights
toward the development of learning algorithms in neuromorphic hardware.
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1 Introduction

How can we train spiking neural networks to achieve brain-like performance in machine learning tasks? The resounding
success and pervasive use of the gradient-based backpropagation algorithm in deep learning suggests an analogous
approach.

Spiking neural networks hold the promise for efficient and robust processing of event-based spatio-temporal data as
found in biological systems. Although the brain is able to learn impressively well using spike-based communication,
spiking models have not seen widespread success in machine learning applications. At the same time, learning in
spiking neural networks is an active research subject, with a wide variety of continuously proposed algorithms, and the
development of spiking neuromorphic hardware receives increasing attention (Roy et al., 2019). A notorious issue in
spiking neurons is the hard, non-differentiable spiking threshold that does not permit a straight-forward application of
differential calculus to compute gradients. Although exact gradients have been derived for special cases, this issue is
commonly side-stepped by using smoothed or stochastic neuron models or by replacing the hard threshold function
using a surrogate function, leading to the computation of surrogate gradients (Neftci et al., 2019).

In contrast, this work provides the exact gradient for an arbitrary loss function defined using the state variables (spike
times, membrane potentials) of a general recurrent spiking neural network. Since feed-forward architectures correspond
to recurrent neural networks with block-diagonal weight matrices and convolutions can be represented as sparse
linear transformations, deep feed-forward networks and convolutional networks are included as special cases. A basic
observation is that both the spike times and membrane potential between spikes of a neuron embedded in such a network
are differentiable almost everywhere with respect to any synaptic weight, up to the null set that contains the hyperplanes
defining the borders in weight space where spikes appear or disappear (the critical parameters). Therefore, smooth loss
functions defined using these state variables are differentiable as well, up to these critical parameters.

The relevant question is now how to compute these gradients, preferably with the computational efficiency afforded by
the backpropagation algorithm and retaining any potential advantages of spike-based coding.

In order to solve this problem, it is helpful to appreciate that the backpropagation algorithm as used in artificial neural
networks can be derived using the adjoint method (LeCun et al., 1988). Indeed, there is a direct correspondence
between the intermediate variables computed in the backpropagation algorithm and the adjoint variables λ used in the
adjoint method. The adjoint variables (Lagrange multipliers) of dynamical systems (Pontryagin, 1962) that operate in
continuous time are also functions of time, λ(t), and their computation corresponds to the backpropagation of errors in
time. The gradient of a given loss function is then a function of the λ(t). See Bradley (2019) for a concise derivation in
the context of PDE-constrained optimization.

It remains to treat the discontinuities arising in spiking neural networks. The computation of partial derivatives
(parameter sensitivities) for hybrid systems exhibiting both continuous and discrete dynamics (e.g., a set of ODEs
combined with state variable jumps) is an established topic in optimal control theory (Barton and Lee, 2002; Rozenwasser
and Yusupov, 2019). For these hybrid systems, the sensitivity ∂x

∂p (t) of a state variable x with respect to a parameter p
generally experiences jumps at the points of discontinuity. The relation between the sensitivities before and after a
given discontinuity was first studied in the 1960s (De Backer, 1964; Rozenvasser, 1967). A more general theoretical
framework was developed thirty years later by Galán et al. (1999) who provide existence and uniqueness theorems
for sensitivity trajectories of hybrid systems. These theorems rely on Gronwall’s theorem (Gronwall, 1919) for the
existence of sensitivity trajectories between transitions and on the implicit function theorem to relate sensitivities before
and after a given transition. The adjoint method can be combined with these insights to derive the adjoint dynamics for
hybrid systems (Serban and Recuero, 2019). Our work uses these methods to derive the gradient for a spiking neural
network.

Our results show that the gradient can be computed using an adjoint spiking neural network which backpropagates
errors at the spike times. This instantly suggests a simple algorithm, EventProp, to compute the gradient. Since the
adjoint spiking network backpropagates error at the spike times, the algorithm retains the potential advantages of
spike-based coding in terms of efficiency and robustness and is amenable to neuromorphic implementation.
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1.1 Previous Work

We provide a compact overview of gradient-based approaches to learning in spiking neural networks and refer the
reader to the following review articles for a comprehensive survey of this topic: Pfeiffer and Pfeil (2018) and Tavanaei
et al. (2019) discuss learning in deep spiking networks, Roy et al. (2019) discusses learning along with the history and
future of neuromorphic computing and Neftci et al. (2019) focuses on the surrogate gradient approach.

Surrogate gradients replace non-differentiable spiking threshold functions with smooth functions for the purposes
of backpropagation and have been used to train spiking networks in a variety of settings (e.g., Esser et al., 2016;
Bellec et al., 2018; Zenke and Ganguli, 2018; Shrestha and Orchard, 2018). Apart from surrogate gradients, several
publications provide exact gradients for first-spike-time based loss functions and LIF neurons: Bohte et al. (2000)
provides the gradient for at most one spike per layer and this result was subsequently generalized to an arbitrary number
of spikes as well as recurrent connectivity (Booij and tat Nguyen, 2005; Xu et al., 2013). While these publications
provide recursive relations for the gradient that can be implicitly computed using backpropagation, we explicitly provide
the dynamical system that implements backpropagation and show that it represents an adjoint spiking network which
transmits errors at spike times. In addition, we also consider voltage-dependent loss functions and our methodology can
be applied to neuron models without analytic expressions for the Post-Synaptic Potential (PSP) kernels. The chronotron
(Florian, 2012) uses a gradient-based learning rule based on the Victor-Purpura metric which enables single LIF neurons
to learn a target spike train. Our work, as well as the works mentioned above which derive exact gradients, applies the
implicit function theorem to the relation v(t, w)− ϑ = 0 to differentiate spike times with respect to synaptic weights.
A different approach is to consider ratios of the neuronal time constants τmem, τsyn where analytic expressions for first
spike times can be given and to derive the corresponding gradients, as done in Göltz et al. (2019); Comsa et al. (2020);
Mostafa (2017). Our work encompasses these results as special cases.

The seminal Tempotron model uses gradient descent to adjust the sub-threshold voltage maximum in a single neuron
(Gütig and Sompolinsky, 2006) and has recently been generalized to the spike threshold surface formalism Gütig (2016)
that uses the exact gradient of the critical thresholds ϑ∗k at which an LIF neuron transitions from emitting k to k − 1
spikes; computing this gradient is not considered in this work. The adjoint method was recently used to optimize neural
ordinary differential equations (Chen et al., 2018) and to derive the gradient for a smoothed spiking neuron model
without reset (Huh and Sejnowski, 2018).

2 Gradient of a Recurrent Spiking Neural Network

2.1 Leaky Integrate-and-Fire Neural Network Model

We define a network of N standard LIF neurons with arbitrary (up to self-connections) recurrent connectivity (table 1).
We set the leak potential to zero and choose parameter-independent initial conditions. Note that the Spike-Response
Model (SRM) (Gerstner and Kistler, 2002) with double-exponential or α-shaped PSPs is generally an integral expression
of the model given in table 1 with corresponding time constants.

Free Dynamics Transition Condition Jumps at Transition

τmem
d

dt
V = −V + I

τsyn
d

dt
I = −I

(V )n − ϑ = 0

(V̇ )n 6= 0

for any n

(V +)n = (V −)n − ϑ
I+ = I− +Wen

Table 1: The LIF spiking neural network model. Inbetween spikes, the vector of membrane potentials V and synaptic
currents I evolve according to the free dynamics. When some neuron n crosses the threshold ϑ, the transition condition
is fulfilled, causing a spike. This leads to a reset of the membrane potential as well as post-synaptic current jumps.
W ∈ RN×N is the weight matrix with zero diagonal and en ∈ RN is the unit vector with a 1 at index n and 0 at all
other indices. We use + and − to denote quantities before and after a given spike.

2.2 Main Result

Consider smooth loss functions lV (V, t), lp(tpost) that depend on the membrane potentials V , time t and the set of
post-synaptic spike times tpost. The total loss is given by

L = lp(tpost) +

∫ T

0

lV (V (t), t)dt. (1)
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As will be derived in the following section, the gradient of the total loss with respect to a specific weight wij = (W )ij
that connects pre-synaptic neuron i to post-synaptic neuron j is given by a sum over the spikes caused by i,

dL
dwij

= −τsyn

∑
spikes from i

(λI)j (2)

where λI is the adjoint variable (Lagrange multiplier) corresponding to I . Equation (2) therefore samples the post-
synaptic neuron’s adjoint variable (λI)j at the spike times caused by neuron i.

After the neuron dynamics given by table 1 have been computed from t = 0 to t = T , λI is computed in reverse time
(i.e., from t = T to t = 0) as the solution of the system defined in table 2. The dynamical system defined by table 2 is
the adjoint spiking network to table 1 which backpropagates error signals at the spike times tpost.

Free Dynamics Transition
Condition

Jump at Transition

τmemλ
′
V = −λV −

∂lV
∂V

τsynλ
′
I = −λI + λV

t− tpost
k = 0

for any k

(λ−V )n(k) = (λ+V )n(k) +
1

τmem(V̇ −)n(k)

[
ϑ(λ+V )n(k)

+WT (λ+V − λI) +
∂lp

∂tpost
k

+ l−V − l
+
V

]
Table 2: The adjoint spiking network to table 1 that computes the adjoint variable λI needed for the gradient (eq. (2)).
The adjoint variables are computed in reverse time (i.e., from t = T to t = 0) with ′ = − d

dt denoting the reverse time
derivative. (λ−V )n(k) experiences jumps at the spikes times tpost

k , where n(k) is the index of the neuron that caused
the kth spike. Computing this system amounts to the backpropagation of errors in time. The initial conditions are
λV (T ) = λI(T ) = 0 and we provide λ−V in terms of λ+V because the computation happens in reverse time.

Equation (2) and table 2 suggest a simple algorithm, EventProp, to compute the gradient (algorithm 1). Notably, if the
loss is voltage-independent (i.e., lV = 0), the backward pass of the algorithm requires only the spike times tpost and
the synaptic current of the firing neuron’s at their respective firing times. The memory requirement of the algorithm
therefore scales as O(rTN), where r is the firing rate and T is the total trial duration. In case of a voltage-dependent
loss lV 6= 0, the algorithm has to store the non-zero components of ∂lV

∂V along the forward trajectory. Note that in many
practical scenarios as found in deep learning, the loss lV depends only on the state of a constant number of neurons,
irrespective of network size. If lV depends on the voltage of non-firing readout neurons, we have l+V = l−V and the
corresponding term in the jump given in table 2 vanishes.

For voltage-independent losses (i.e., lV = 0), all variables only need to be computed at spike times. In that case,
EventProp can be computed in a purely event-based manner. Figure 1 illustrates how EventProp computes gradients for
two LIF neurons where one neuron receives Poisson spike trains via 100 synapses and is connected to the other neuron
via a single feed-forward weight w.

Algorithm 1 EventProp: Algorithm to compute eq. (2).
Require: Input spikes, losses lp, lV , parameters W , τmem, τsyn, initial conditions V (0), I(0)

grad← 0
Compute neuron state trajectory (table 1) from t = 0 to t = T : . Forward pass

for all spikes k, store spike time tpost
k and the firing neuron’s component of I(tpost

k )

if lV 6= 0, also store ∂lV
∂V

Compute adjoint state trajectory (table 2) from t = T to t = 0: . Backward pass
accumulate
gradij ← gradij − τsyn(λI)j

for each spike from neuron i to j
return grad
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Forward Pass Backward Pass Backward Pass

Figure 1: Illustration of EventProp-based gradient calculation in two LIF neurons connected with weight w and a
spike-time dependent loss L. The forward pass (B, C) computes the spike times for both neurons and the backward pass
(D-G) backpropagates errors at spike times, yielding the gradient as given in eq. (2). A: The upper neuron receives
100 independent Poisson spike trains with frequency 200 Hz across randomly initialized weights and is connected to
the lower neuron via a single weight w. The loss L is a sum of the spike times of the lower neuron. B, C: Membrane
potential of upper and lower neuron. Spike times of upper neuron are indicated using arrows. D, E: Adjoint variable
λI of upper and lower neuron. The lower neuron backpropagates its error signal λV − λI at the upper neuron’s spike
times (indicated by arrows). F, G: Accumulated gradient for one of the 100 input weights of the upper neuron and
the weight w connecting the upper and lower neuron. EventProp computes the adjoint variables from t = T to t = 0
and accumulates the gradients by sampling −τsynλI when spikes are transmitted across the respective weight. The
numerical gradients were calculated via central differences and match the final accumulated gradients up to a relative
deviation of less than 10−7.
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2.3 Derivation

Our derivation is based on the observation that the system defined in table 1 has an equivalent formulation in the
language of control theory, where the state variables (membrane potentials) cause discrete transitions, with continuous
dynamics between the transitions. The following derivation is specific the model given in table 1. A fully general
derivation of sensitivity analysis in hybrid systems can be found in Galán et al. (1999) or Serban and Recuero (2019).

The differential equations defining the free dynamics in implicit form are

fV ≡ τmemV̇ + V − I = 0, (3a)

fI ≡ τsynİ + I = 0, (3b)

where fV , fI are again vectors of size N . We now split up the integral in eq. (1) at the spike times tpost and add vectors
of Lagrange multipliers λV , λI that fix the system dynamics fV , fI between transitions.

dL
dwij

=
d

dwij

lp(tpost) +

Npost∑
k=0

∫ tpost
k+1

tpost
k

[lV (V, t) + λV · fV + λI · fI ] dt

 , (4)

where we set tpost
0 = 0 and tpost

Npost+1 = T and x · y is the dot product of two vectors x, y. Using eq. (3) and the short-hand
notation sX ≡ ∂X

∂wij
(the parameter sensitivities in the language of control theory), we have, as per Gronwall’s theorem

(Gronwall, 1919),
∂fV
∂wij

= τmemṡV + sV − sI , (5a)

∂fI
∂wij

= τsynṡI + sI , (5b)

where we have commuted the derivatives ∂
∂wij

d
dt = d

dt
∂

∂wij
. The gradient then becomes, by application of the Leibniz

integral rule,

dL
dwij

=

Npost∑
k=0

[ ∫ tpost
k+1

tpost
k

[
∂lV
∂V
· sV + λV · (τmemṡV + sV − sI) + λI · (τsynṡI + sI)

]
dt

+
∂lp

∂tpost
k

dtpost
k

dwij
+ l−V,k+1

dtpost
k+1

dwij
− l+V,k

dtpost
k

dwij

]
, (6)

where l±V,k is the voltage-dependent loss evaluated before (−) or after (+) the transition and we have used that
fV = fI = 0 along all considered trajectories. Using partial integration, we have∫ tpost

k+1

tpost
k

λV ṡV dt = −
∫ tpost

k+1

tpost
k

λ̇V · sV dt+
[
λV · sV

]tpost
k+1

tpost
k

, (7)

∫ tpost
k+1

tpost
k

λI ṡIdt = −
∫ tpost

k+1

tpost
k

λ̇I · sIdt+
[
λI · sI

]tpost
k+1

tpost
k

. (8)

Using the short-hand notation dtpost
k

dwij
≡ τ post

k and collecting terms in sV , sI , we have

dL
dwij

=

Npost∑
k=0

[ ∫ tpost
k+1

tpost
k

[(
∂lV
∂V
− τmemλ̇V + λV

)
· sV +

(
−τsynλ̇I + λI − λV

)
· sI
]
dt

+
∂lp

∂tpost
k

τ post
k + τmem

[
λV · sV

]tpost
k+1

tpost
k

+ τsyn
[
λI · sI

]tpost
k+1

tpost
k

+ l−V,k+1τ
post
k+1 − l

+
V,kτ

post
k

]
. (9)

This form allows us to set the dynamics of the adjoint variables between transitions. Since the integration of the adjoint
variables is done from t = T to t = 0 in practice (i.e., reverse in time), it is practical to transform the time derivative as
d
dt → −

d
dt . Denoting the new time derivative by ′, we have

τmemλ
′
V = −λV −

∂lV
∂V

(10a)

τsynλ
′
I = −λI + λV . (10b)
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The integrand therefore vanishes along the trajectory and we are left with a sum over the transitions. Since the initial
conditions of V and I are assumed to be parameter independent, we have sV = sI = 0 at t = 0. We set the initial
condition for the adjoint variables to be λV = λI = 0 at t = T . We are therefore left with a sum over transitions ξk
evaluated at the transition times tpost

k ,

dL
dwij

=

Npost∑
k=1

ξk (11)

with the definition

ξk ≡
∂lp

∂tpost
k

τ post
k + l−V,kτ

post
k − l+V,kτ

post
k

+
[
τmem(λ−V · s

−
V − λ

+
V · s

+
V ) + τsyn(λ−I · s

−
V − λ

+
I · s

+
I )
] ∣∣∣∣

tpost
k

. (12)

We proceed by deriving the relationship between the adjoint variables before and after each transition. Since the
computation of the adjoint variables happens in reverse time in practice, we provide λ− in terms of λ+.

Consider a spike caused by the nth neuron, with all other neurons m 6= n remaining silent. We start by first deriving the
relationships between s+V , s−V and s+I , s−I .

Figure 2: In this sketch, the relation v(t, w) −
ϑ = 0 defines an implicit function (black line
along which dv = 0). The critical point where
the gradient diverges is shown in red.

Membrane Potential Transition By considering the relations be-
tween V +, V − and V̇ +, V̇ −, we can derive the relation between s+V
and s−V at each spike. Each spike at tpost is triggered by a neuron’s
membrane potential crossing the threshold. We therefore have, at
tpost,

v−n − ϑ = 0, (13)

where v−n = (V −)n is the membrane potential of the spiking neuron
n before the transition. This relation defines a differentiable function
of wij via the implicit function theorem (illustrated in fig. 2, see also
Yang et al., 2014). Differentiation of this relation yields

(s−V )n + v̇−n τ
post = 0. (14)

Note that corresponding relations were previously used to derive
gradient-based learning rules for spiking neuron models (Bell and
Parra, 2005; Bohte et al., 2000; Booij and tat Nguyen, 2005; Xu et al.,
2013; Florian, 2012); in contrast to the suggestion in Bohte et al.
(2000), eq. (14) is not an approximation but rather an exact relation
at all non-critical parameters and invalid at all critical parameters.

Since we only allow transitions for v̇n 6= 0, we have

τ post = − 1

v̇−n
(s−V )n. (15)

Because the spiking neuron’s membrane potential is reset to zero, we
have

v+n = v−n − ϑ. (16)

This implies, again via the implicit function theorem, the relationship between the parameter sensitivities for the
membrane potential before and after the spike,

(s+V )n + v̇+n τ
post = (s−V )n + v̇−n τ

post (17)

⇒ (s+V )n =
v̇+n
v̇−n

(s−V )n. (18)

Since we have v+m = v−m for all other, non-spiking neurons m 6= n, it holds that

(s+V )m + v̇+mτ
post = (s−V )m + v̇−mτ

post. (19)
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Because the spiking neuron n causes the synaptic current of all neurons m 6= n to jump by wnm, we have

τmemv̇
+
m = τmemv̇

−
m + wnm (20)

and therefore get with eq. (14)

(s+V )m = (s−V )m − τ−1memwnmτ
post (21)

= (s−V )m +
1

τmemv̇
−
n
wnm(s−V )n. (22)

Synaptic Current Transition The spiking neuron n causes the synaptic current of all neurons m 6= n to jump by the
corresponding weight wnm. We therefore have

(I+)m = (I−)m + wnm. (23)

By differentiation, this relation implies the consistency equations for the sensitivities sI with respect to the considered
weight wij ,

(s+I )m + (İ+)mτ
post = (s−I )m + (İ−)mτ

post + δinδjm, (24)

where δij is the Kronecker delta. Because

τsyn(İ+)m = τsyn(İ−)m − wnm, (25)

we get with eq. (14)

(s+I )m = (s−I )m + τ−1syn wnmτ
post + δinδjm (26)

= (s−I )m −
1

τsynv̇
−
n
wnm(s−V )n + δinδjm. (27)

With (I+)n = (I−)n and (İ+)n = (İ−)n, we have

(s+I )n = (s−I )n. (28)

Using the parameter sensitivity relations from eqs. (15), (18), (22), (27) and (28) in the transition equation eq. (12), we
now derive relations between the adjoint variables. Collecting terms in the sensitivities and writing the index of the
spiking neuron for the kth spike as n(k), we have

ξk =

[ ∑
m 6=n(k)

[
τmem(λ−V − λ

+
V )m(s−V )m + τsyn(λ−I − λ

+
I )m(s−I )m − τsynδin(k)δjm(λ+I )m

]

+ (s−V )n(k)

τmem

(
λ−V −

v̇+n(k)

v̇−n(k)
λ+V

)
n(k)

+
1

v̇−n(k)

 ∑
m6=n(k)

wn(k)m(λ+I − λ
+
V )m −

∂lp

∂tpost
k

+ l+V − l
−
V


+ τsyn(λ−I − λ

+
I )(s−I )n(k)

]∣∣∣∣
tpost
k

. (29)

This form dictates the jumps of the adjoint variables for the spiking neuron n and all other, silent neurons m,

(λ−V )n =
v̇+n
v̇−n

(λ+V )n +
1

τmemv̇
−
n

∑
m6=n

wnm(λ+V − λ
+
I )m +

∂lp

∂tpost
k

+ l−V − l
+
V

 , (30a)

(λ−V )m = (λ+V )m, (30b)

λ−I = λ+I . (30c)

With these jumps, the gradient reduces to

dL
dwij

= −τsyn

Npost∑
k=1

δin(k)(λI)j (31)

= −τsyn

∑
spikes from i

(λI)j . (32)
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Summary The free adjoint dynamics between spikes are given by eq. (10) while spikes cause jumps given by
eq. (30). The gradient for a given weight samples the post-synaptic neuron’s λI when spikes are transmitted across the
corresponding synapse (eq. (31)). Since we can identify

v̇+n
v̇−n

=
v̇+n − v̇−n
v̇−n

+ 1 =
ϑ

τmemv̇
−
n

+ 1 (33)

the derived solution is equivalent to eq. (2) and table 2.

Fixed Input Spikes If a given neuron i is subjected to a fixed pre-synaptic spike train across a synapse with weight
winput, the transition times are fixed and the adjoint variables do not experience jumps. The gradient simply samples the
neuron’s λI at the times of spike arrival,

dL
dwinput

= −τsyn

∑
input spikes

(λI)i. (34)

Coincident Spikes The derivation above assumes that only a single neuron of the recurrent network spikes at a
given tpost

k . In general, coincident spikes may occur. If neurons a and b spike at the same time and the times of their
respective threshold crossing vary independently as function of wij , the derivation above still holds, with both neuron’s
λV experiencing a jump as in eq. (30a).

3 Simulation Results
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Figure 3: We used EventProp and a time-to-first-spike loss function to train a two-layer LIF network on the Yin-Yang
dataset. A: Illustration of the two-dimensional dataset (adapted from Göltz et al. (2019)). The three different classes are
shown in red, green and blue. B: Illustration of spike-time latency encoding using the datapoint marked by a star in A.
C, D: Training results in terms of validation error and loss averaged over 10 different random seeds (individual traces
shown as grey lines).

We demonstrate learning using EventProp using an event-based simulator. The simulator uses an event queue and
root-bracketing to compute post-synaptic spike times in the forward pass and back-propagates errors by attaching error
signals to events in the backward pass. The gradients computed in this way are used for stochastic gradient descent
via the Adam optimizer (Kingma and Ba, 2014). We use a two-layer neural network and encode the Yin-Yang dataset
(Kriener, 2020) using input spike latencies. This dataset is non-linearly separable, with a shallow classifier achieving
around 64% accuracy, and it therefore requires a hidden layer and backpropagation of errors for reasonable classification
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accuracy. Consider that in contrast, the widely used MNIST dataset can be classified using a linear classifier with at
least 88% accuracy (Lecun et al., 1998).

In analogy to Göltz et al. (2019), we use a cross-entropy loss defined using the first output spike times per neuron,

L(tpost, l) = − log

[
exp

(
−tpost

l /(ξτsyn)
)∑

k exp
(
−tpost

k /(ξτsyn)
)]+ α

[
exp

(
tpost
l

βτsyn

)
− 1

]
, (35)

where tpost
k is the first spike time of neuron k, l is the index of the correct label and the second term is a regularization term

that encourages early spiking of the label neuron. Each two-dimensional datapoint of the dataset (x, y) is transformed
into (x, 1− x, y, 1− y) and encoded using spike latencies in the interval [tmin, tmax] (see fig. 3 B). We added a fixed
bias spike at time tbias for a total of 5 input spikes per datapoint. If the activity of one of the two layers fell below a
certain threshold for a given minibatch, we incremented all weights by a constant amount ∆wbump.

Training results are shown in fig. 3. All parameters used are given in fig. 4. After training, the validation accuracy was
(95.9± 0.5) % (mean and standard deviation over 10 different random seeds). This is comparable to the results shown
in Göltz et al. (2019), who report (95.9± 0.7) % accuracy with a similar architecture. Note that the results shown here
can likely be improved using systematic hyperparameter tuning.

4 Discussion

We have derived, and provided an algorithm (EventProp) to compute, the gradient of an arbitrary loss function of a
spiking neural network composed of leaky integrate-and-fire neurons. An obvious issue with gradient-descent based
learning in the context of spiking networks is that the gradient diverges at the critical points in parameter space (note
the v̇−1 term in the jump term given in table 2; this term diverges as the membrane potential becomes tangent to the
threshold and we have v̇ → 0). Indeed, this is a known issue in the broader context of optimal control of dynamical
systems with parameter-dependent state transitions (Barton and Lee, 2002; Galán et al., 1999). While this divergence
can be mitigated using gradient clipping in practice, commonly considered loss functions lead to learning dynamics
that are ignorant with respect to these critical points and are therefore unable to selectively recruit additional spikes or
dismiss existing spikes. It is therefore plausible that surrogate gradient methods which continuously transmit errors
across spiking neurons represent a form of implicit regularization. Neftci et al. (2019) report that the surrogate gradient
approximates the true gradient in a minimalistic binary classification task while at the same time remaining finite and
continuous along an interpolation path in weight space. Hybrid algorithms that combine the exact gradient with explicit
regularization techniques could be a direction for future research and provide more principled learning algorithms as
compared to ad-hoc replacements of threshold functions.

This work is based on the widely used LIF neuron model. Adjoint equations for models with fixed refractory periods,
adaptive thresholds, synaptic plasticity or of multi-compartment neuron models can be derived in an analogous way
(Pehle, 2020). While the absence of explicit solutions to the resulting differential equations can prevent the use of
typical event-based simulation approaches as the one used in this work, such extensions can significantly enhance the
computational capabilities of spiking networks. For example, Bellec et al. (2018) uses adaptive thresholds to implement
LSTM-like memory cells in a recurrent spiking neural network.

Neuromorphic hardware is an increasingly active research subject (e.g., Aamir et al., 2018; Davies et al., 2018; Furber
et al., 2014; Neckar et al., 2019; Moradi et al., 2018; Merolla et al., 2014; Pei et al., 2019; Billaudelle et al., 2019;
Feldmann et al., 2019; Boybat et al., 2017; Wunderlich et al., 2019) and implementing EventProp on such hardware is
a natural consideration. The adjoint dynamics as given in table 2 represent a spiking neural network which, instead
of spiking dynamically, transmits errors at fixed times tpost that are scaled with factors v̇−1 retained from the forward
pass. Therefore, a neuromorphic implementation could store spike times and scaling factors locally at each neuron,
where they could be combined with the dynamic error signal (λV − λI in table 2) in the backward pass. This requires a
possibility to read out neuronal state variables both in the forward and backward pass (membrane potential, synaptic
current). Transmitting error signals across the network in a neuromorphic system requires similar considerations to
distributed event-based simulators. The error signals associated with each spike could be propagated using message
passing with gather/scatter primitives. As mentioned above, EventProp can be extended to multi-compartment neuron
models as used in a recent neuromorphic architecture (Schemmel et al., 2017).

We have demonstrated learning using EventProp using a two-layer feed-forward architecture and a simple non-linearly
separable dataset. The algorithm can, however, compute the gradient for arbitrary recurrent or convolutional architectures
(Pehle, 2020). Its computational and spatial complexity scales linearly with network size, analogous to backpropagation
in non-spiking artificial neural networks. The performance in more complex tasks therefore hinges on the general
efficacy of gradient descent in spiking networks. As mentioned above, naive gradient descent using loss functions
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defined in terms of spike times or membrane potentials ignores the presence of critical parameters where spikes appear
or disappear. We suggest that studying regularization techniques which deal with this fundamental issue in a targeted
manner could enable powerful learning algorithms for spiking networks. By providing a theoretical foundation for
backpropagation in spiking networks, we have laid the groundwork for future research that combines such regularization
techniques with the computation of exact gradients.
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Symbol Description Value
τmem Membrane Time Constant 20 ms
τsyn Synaptic Time Constant 5 ms
ϑ Threshold 1

Input Size 5
Hidden Size 200
Output Size 3

tbias Bias Time 20 ms
tmin Minimum Time 10 ms
tmax Maximum Time 40 ms

Hidden Weights Mean 2
Hidden Weights Standard Deviation 1
Output Weights Mean 0.4
Output Weights Standard Deviation 0.4
Minibatch Size 200
Optimizer Adam

β1 Adam Parameter 0.9
β2 Adam Parameter 0.999
ε Adam Parameter 1× 10−8

η Learning Rate 1× 10−3

Allowed Ratio of Missing Spikes in Hidden Layer 0.15
Allowed Ratio of Missing Spikes in Output Layer 0

∆wbump Weight Bump Value 1× 10−4

α Regularization Factor 1× 10−2

ξ First Time Constant Factor 0.4
β Second Time Constant Factor 2

Figure 4: Simulation parameters used for the results shown in section 3.
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