Rescuing neural spike train models from bad MLE
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Abstract

The standard approach to fitting an autoregressive spike train model is to maximize
the likelihood for one-step prediction. This maximum likelihood estimation (MLE)
often leads to models that perform poorly when generating samples recursively for
more than one time step. Moreover, the generated spike trains can fail to capture
important features of the data and even show diverging firing rates. To alleviate
this, we propose to directly minimize the divergence between neural spike trains
and model generated spike trains, using spike train kernels. We develop a method
that stochastically optimizes the maximum mean discrepancy induced by the
kernel. Experiments performed on both real and synthetic neural data validate the
proposed approach, showing that it leads to well-behaving models. Using different
combinations of spike train kernels, we show that we can control the trade-off
between different features which is critical for dealing with model-mismatch.

1 Introduction

Determining the functional relationship between stimuli and neural responses is a central problem
in neuroscience. A standard approach is to build a probabilistic generative model and estimate its
parameters by maximizing the likelihood of the data under the model. This framework has been
applied in diverse scenarios describing the activity of single neurons and coupled populations of
neurons, extracting low dimensional latent dynamics underlying the data, and decoding stimuli that
produces neural activity. The extracted model parameters are useful as they allow one to gain insights
on the relationship between the observed neural activity, its covariates and the intrinsic dynamics.

However, maximum likelihood estimation (MLE) focuses on making the data likely under the
assumed model without really assessing the behavior of the actual samples that the model generates.
MLE often leads to models that are unstable, operate at unphysiological regimes or generate samples
that fail to capture relevant features of the data. This harms model interpretation and it’s a big
drawback if the obtained model is intended to be used in simulations.

In machine learning, big improvements in generative modeling were achieved when alternative ap-
proaches leading to different loss functions were considered. In their original formulation, Generative
Adversarial Networks [[1] minimize an approximation to the Jensen-Shannon divergence by training a
discriminator model that evaluates sample quality. More recent works have proposed to minimize
other loss functions such as the Wasserstein distance [2] and the Maximum Mean Discrepancy
(MMD) [3H5]].

While these works have focused on the use of deep neural networks to generate synthetic images,
neuroscience models are usually autoregressive models and they emphasize interpretability. Here we
propose to complement likelihood based approaches with MMD minimization for the autoregressive
models that are typically used in neuroscience. Using spike train kernels, MMD can evaluate
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different similarity measures between the generative model’s samples and the data. We show that the
framework is flexible and can be adapted to find models that capture different features of the data.

2 Approach

2.1 Problem Statement — autoregressive models, MLE, and data generation
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Figure 1: (A) Two distinct likelihoods. The free-running corresponds to the joint distribution of the
probabilistic model. Solid line denotes conditional dependence and dashed line denotes evaluation
of the likelihood. The data-conditioned likelihood always conditions on the actual observed past
to predict the next time step. (B) Cartoon depicting relative closeness of distributions. The data-
conditioned likelihood gy is optimized to obtain the maximum likelihood estimate 6y g which has
minimum KL-divergence wrt the empirical distribution p, but can lead to a model with unrealistic
free-running behavior py,, .. Note that dk;. is not a metric. See Sec. @for details.

We denote by x; an observation at time ¢ and by X; the corresponding random variable in the stochastic
process. Given a sequence of observations or time series, {x;};ey, a general autoregressive model
predicts X; based on the past X.;, which can be concisely encapsulated as the conditional probability
p(X/| X<, usy, 8), where 8 denotes the model parameters and u, are optional (observed) covariates.
The standard maximum likelihood estimation (MLE) procedure yields the parameters that maximizes
the likelihood for predicting this one-step prediction,

OvLE = argmax ]_[ pX; = x|X; = X, sy, 0). (D
0 13

The disparity between the one-step prediction and longer-term forecasting is common in many
autoregressive models, including recurrent neural networks (RNNs) [6H9]. For example, sequences
freely generated from natural language models trained to predict the next token typicaly exhibit
over-representation of unnaturally long sequences. A fundamental issue common to these problems
is the difference between the free-running joint distribution and the data-conditioned joint predictive
distributions (Fig. [T]A):
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0
where X;.,+s—1 denotes {X;, X41,. .., Xr+5-1}. In equation (]ZI), the autoregressive model’s joint dis-

tribution is conditioned on its own prediction after time 7 while in equation (3) the conditioning is
always done on the observations as in typical MLE (eq. (I)). This conditioning of data is similar to
the teacher forcing in the context of recurrent neural networks [[10].

For example, for an autoregressive dependency that induces self-excitation, () and (3) can behave
vastly differently—assuming the observed data are from a stable system, conditioning on the observed



history (3)) produces stable one-step predictions. However, for the same parameters, if one sampled
trajectories using ancestral sampling from (2), runaway self-excitation might be generated. To
illustrate this, consider one of the simplest autoregressive models, the linear autoregressive model of
order p, AR(p):

P
X = Z a X+ € 4)

=1
where {¢}, are white Gaussian noise, and 6 = {ay, ..., a,, var(¢)}. For AR(p) models, the MLE could

result in unstable parameter regime of self-amplification when the poles of the linear system are
close to the unit circle [11, Ch. 10]. Fortunately, the condition of stability is exactly known for
AR(p) models, and an estimator that constrains parameters to lie within the stable regime has been
developed [11, Ch. 10]. For instance, for AR(1), |a;| < 1 guarantees stability and stationarity, while
|ai| > 1 guarantees instability.

However, beyond those linear models, the intractability of the free-running distribution makes it
difficult to directly optimize for it, For instance, the autoregressive point process models, often
referred to as the generalized linear models (GLMs) in neuroscience [12, [13]], suffer from the issue of
instability as well:

X, ~ Poisson (A(X, U, 9)) ®)
AX <y tier, 0) = exp (Z heXr + Z acy_; + b] (6)
=1 =1

where 0 = {{h;};, {a;};, b} are the parameters, {h.}, and {a.}, are referred to as the history filter and
stimulus filter, respectively, and b € R is the bias.

Self-excitation in the inferred history filter has been observed on both short and long time scales,
with different proposed causes: bistable or overdispersed data [[14], periodic or bursting patterns [[15]],
omitted covariates [16l], ramping firing rates [17]], and lack of data [18]]. These history filters have
the potential to generate runaway self-excitation. Recently, a number of approaches have attempted
a resolution for the point process GLM and related models: Gerhard et al. [19] approximate the
free-running distribution over the history using a quasi-renewal process approximation which is
later extended by Chen et al. [18]]. Rule and Sanguinetti [20] also provide an approximation of this
distribution using moment matching. On the other hand, Hocker and Park [21] use Gibbs sampling to
obtain the marginalized free-running likelihood for multi-step prediction which is computationally
prohibitive. In this paper, we take a fresh stab at this problem.

2.2 Goodness-of-fit measures

To complicate the matter, the goodness-of-fit measures often assume the data-conditioned likelihood.
As a result, the standard log-likelihood based measures such as deviance, information, or pseudo-
r? [13] as well as the quantification of interval distribution using the time-rescaling theorem [22]]
fail to reliably predict whether the fit model would generate free-running samples similar to the
data [19, 21]. We explore various forms of goodness-of-fit measures for GLM-like models which
could be also useful for fitting.

A statistical divergence is a non-negative function that quantifies how dissimilar two distributions
are [23]], thus it can be used as a goodness-of-fit measure: smaller the divergence, the better the fit.
Consider the Kullback-Leibler (KL) divergence di.(q || g(0)) := E, [log %] between the empirical

data distribution p and the data-conditioned likelihood g(6) from (3), where p({X;},) = [T, 6(X; — x;).
In this context, the standard MLE is equivalent to minimizing the KL divergence, that is,

OmLe = argmindk.(q || q(6)) = argmax g({x}; | {x;};, 6) = argmax 1_[ p(x; | x4, 0) (7
0 0 0 .
As our goal is to find a model that can generate time series that resemble the data, it naturally leads to
the following minimum divergence estimation (MDE):
Oumpe = argmind(p || p(6)) ®)
0
where d is a divergence and p is the free-running likelihood of (2). From this first principle, our

challenge is finding a divergence such that the optimization (8) is computationally feasible. Unlike in
the standard MLE, using KL divergence generally results in an intractable objective function.



Here we investigate to use of a widely used kernel-induced statistic called maximum mean discrepancy
(MMD) [24]. Given a positive definite kernel k, we can embed a probability measure p in the
corresponding reproducing kernel Hilbert space 77, i.e., p — pi = f k(-, x)dp(x) € 5. MMD
measures the distance between the kernel embeddings,

dyunn(p. @) = lIpx = aillae = sup( E [FO01= E [F001) ©)
feF \X~p X~q

where ¥ is a unit-ball in 57 [24]. Depending on the choice of kernel, MMD differentially weighs the
features in the input space. Hence, MMD can be tuned to produce goodness-of-fit statistics sensitive
to that of the inducing kernel. Importantly, if the kernel & is characteristic, the induced MMD is a
divergence (and a metric), i.e., it vanishes if and only if the two distributions are identical [25]].

2.3 MMD Professor Forcing

Given parameter 6 and a time series {x;};, if the free-running (2) and data-conditioned (3) distributions
agree, we might expect p(f) to be a good description of p. If the data is stable, the free-running
behavior of the model won’t diverge from the data-conditioned behavior. This is the idea introduced
by Professor forcing [9] where they included a (KL-)divergence minimization between the hidden
states generated by the free-running and teacher forcing modes. Then, MMD based goodness-
of-fit that measure the closeness between ¢(X | x,6) and p(X | 6) can be used. Note that for
autoregressive models, the agreement between the free-running and data-conditioned distributions
is trivially achieved if the model does not depend on the history (e.g., Poisson process). Thus this
MMDs cannot be optimized on its own. Figure[IB illustrates the ideas here with various possible
model parameters and their corresponding conditional distributions. While both g4, and gy, are both
only slightly worse than gg,, . in explaining data, their corresponding free-running distributions can
be very dissimilar (e.g., pg, and py,, ) or very close (e.g., py,). Informally, if both dky.(p, gs) and
dvvp (g, pe) are small, we might expect d(p, pyg) to be small to. Hence, a loss function that optimizes
both dx (P, g¢) and dvmp(gs, pe) can lead to both faithful and stable generative models.

3 Minimizing empirical MMD

Given a kernel k and its associated feature map ¢ : 2 + %, we have the kernel trick
(d(x), p(x")) ¢ = k(x,x") and we can write the (squared) MMD between the empirical data dis-
tribution p and the free running distribution p on 2" as,

dvnin(p, p)* = I E To@01 - XEP[¢(X’)]II2% (10)
= E [k(x,x)]+ E [k(x,x)]-2 E [k(x,x)]. (11)
XX ~p x,X'~p x~p,x'~p

Minimizing MMD is then equivalent to minimizing the difference in the statistics represented by ¢
between the two distributions. Given M samples x drawn from the data p and N samples x’ drawn
from the model distribution p, an unbiased empirical estimator of MMD is

k(xi, x7) N M k(x, x N M k(x;, )
dump(p, p)’ —;;N(; ; ZZM(M—I) 2;; NMJ (12)

i#j
Unlike for MLE, computing dyup involves generating samples from the model and measuring their
similarity to the data. We propose to minimize MMD by gradient descent on the model parameters.

We provide two different variants that rely on different assumptions on the kernel used, and result in
different bounds on the variance of the MMD gradient estimator.

3.1 Minimizing empirical MMD using the score function estimator

In general, the only dependence of MMD on the model parameters is through the expectations over
the model’s samples in equation (I0). For models with tractable likelihood, given a sample x’ we
can evaluate p(x’; 6). Using the log-derivative trick [26] (derivation in the Appendix), we can rewrite
MMD’s gradient as

VG dMMD(ﬁa p)2 = 2Ex,x’~p [VG 10g p(x,; H)k(x, x’)] - 2Ex~ﬁ,x’~p [Vﬁ IOg p(xl; g)k(x, )C,)]. (13)



where Vg log p(x’; 6) is known as the score function. Then, given M samples x from p and N samples
x’ from p, we can compute a stochastic empirical estimate of MMD’s gradient

Vyllog p(x O)k(x], x ) N M Vyllog p(x}, 9)]k(xi,x;.)

o o _s 14
o dvinn (P, p)? ZZJJZ‘ MM - 1) L 4 NM (14)

i#]

This is the score function estimator of MMD’s gradient. In principle, this procedure can be used to
minimize MMD for arbitrary kernels in the space of spike trains [27]].

3.2 Minimizing empirical MMD for model based kernels

The gradient estimator (14)) for (squared) MMD relies fully on weighting the gradient of the score
function and this may result in large variance and slow convergence [26]. In this section we will
propose a less general but more efficient model based MMD formulation. Following the Professor
Forcing framework [9], we will encourage a model’s free running dynamics to match its data
conditioned dynamics. Specifically, we propose to use the MMD induced by model based kernels.
Given a model, a data sample x, a model sample x’, and a kernel based on the model, we will measure
the similarity between the samples by using a feature obtained from the model conditioned on each
one of them. Explicitly, we can write the feature map ¢ : x(t) — vy(¢) € £, such that the observable
vy(2) is causal, that is, it only depends on x(s), s < ¢.

We illustrate this idea with an example using the autoregressive GLM of equation (3)). Given a spike
train x and GLM parameters 6, the model assigns a conditional intensity (CI) 4,(x, 6). If the CI
conditioned on the model’s free-running spike trains is similar to the CI conditioned on the data,
we might expect the model to match its data conditioned and free running behaviors and improve
free running spike trains overall. A natural kernel choice could then be k(x, x'; 8) = (A(x, 8), A(x, 6))
resulting in the biased

dump(p )’ = ), (A0 = /O’ (15)

where /lf (6) and /lf' (0) are the mean Cls conditioned on the data samples and free running samples
respectively at time 7, i.e., A7(0) = E,. p A:(x,6). This particular model based MMD measures the
sum of squared difference between mean Cls but in general any differentiable feature obtained by
conditioning the model on samples can be used resulting in optimized parameters. Model based
MMDs are not characteristic in general; The statistics they can match will always be limited by the
used model’s capacity and zero MMD does not imply equal distributions.

As model based kernels introduce an explicit dependence of MMD on the optimized model parameters,
the optimization procedure is more robust and convergence is improved. We use the partial derivative
with respect to the model parameters while keeping the model generated samples fixed.

Vo k(xi, xj;6) Vo k(x;, x7;60) N Vﬁk(-xn-x )
Vo dump(p, p)* ~ -2 (16)
S ST 053
i)

This provides a more computationally efficient and numerically stable optimization than the estimator
in section[3.1} As we explained in section [2.3|the parameters 6 have to be optimized using this MMD
in combination with a likelihood term.

4 Experiments

We demonstrate in the following experiments that it is possible to minimize MMD as described
before in both simulated and real data.

4.1 Toy example: Learning an autoregressive GLM without MLE

To illustrate our formulation we will start by showing we can recover a GLM’s parameters by directly
minimizing MMD without resorting to MLE. We drew 50 spike train samples from an autoregressive
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Figure 2: Learning a GLM spike history filter by minimizing MMD. (A-D) without model mismatch,
MLE and MMD minimization agree. A) MMD estimates during minimization. B) Negative log-
likelihood relative to a homogeneous Poisson process with the same rate during training. C) History
filter and bias used to generate the data and estimated by MLE and MMD minimization. D) Samples
used for ML and MMD training (top) and samples drawn MMD optimized GLM (bottom) (E-H) with
model mismatch, MLE and MMD minimization can disagree. Data generated from a GQM [28]
with time dependent gain shown in (F). Note the mismatch in the inferred history filter in (G).

GLM consisting of a bias and history filter (Figure 2IC, D). In this example, we use the kernel
1 T
k(x,x") = exp( - = f (I(2) — Ixr(t))zdt) 17)
0 Jo

where I,(f) = 3,0 - tjf) with ®(¢) the Heaviside function. This is an example of a characteristic
kernel [27] so with sufficient data we expect to find the true GLM parameters if and only if MMD
is 0. At each optimization step, we draw 200 samples from the model and update the parameters
by computing MMD and its gradient following equations (I2)) and (T4). MMD converges to values
around O (Figure [2JA) and we recover accurate estimates of the true bias b and history filter. We
emphasize that the negative log-likelihood decreases during the first part of the optimization although
it is not being used. While MLE also retrieves an accurate estimate of the true parameters, the
solution found by the two procedures is slightly different due to finite number of samples. MMD is
slightly above 0 for the ML-GLM while the likelihood is slightly smaller for the MMD-GLM. In a
real application, where there is model mismatch or a non-characteristic kernel is used, the parameters
found by MLE and MMD minimization will not be the same. We illustrate this by simulating a model
mismatch (Figure 2] E to H). Here we sample from a model in which the history filter depends on the
time of the previous spike. The history filter evoked for different lags to the last spike is illustrated
in Figure 2] As GLMs can’t capture this dependency, MMD induced by the characteristic kernel of
equation is different from 0 for MLE (Figure [2). By initializing a GLM at the ML estimated
parameters and minimizing MMD further we obtain different parameters. This toy example illustrates
that in general MLE and MMD minimization are different and will yield different models.

4.2 Stabilizing GLMs in real data

We show here how our procedure can be used to encourage stable GLM parameters that don’t suffer
from runaway self-excitation. We use two small datasets used in Gerhard et al. [19] and Chen
et al. [18]] that are prone to give unstable ML parameters. As MLE is a convex problem for point
process GLMs and it is not computationally expensive, we initialized our optimization at MLE and
minimize NLL + «MMD i.e. the negative log-likelihood plus an MMD penalty term that acts as a
regularizer. We use a model based kernel to reduce noise in the optimization procedure and accelerate
convergence. We used the kernel

k(x, x'50) = > Cu,(0)Ci, (1) (18)

where 0 = h,, C(1) = X/ Ho(t; O)H,(t + 7;60) and H,(t; h) = Y, h:x,_,. This kernel measures the
similarity between the autocorrelations of two history filter convolved spike trains and therefore will
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Figure 3: Multi-objective optimization that combines the likelihood and CI-MMD infers supe-
rior generative models. Data used in [19]. A) 1 second repeated trials frmo Monkey PMyv area,
model generated spike trains, and corresponding PSTH. Note that ML-GLM’s firing rate continuously
ramps up. B) Inferred history filters C) Autocorrelation of CIMMD-GLM reproduces that of real data.
Purple trace from [[L8] D) Goodness-of-fits: MMD, normalized log-likelihood, interval statistics. E)
CIMMD-GLM best reproduces the full ISI distibution. (F-J) same for Human cortex data.

encourage the autocorrelations of the data conditioned and free running H, to match. The obtained
history filters decrease the amount of late self excitation while preserving the overall shape found by
MLE and the samples obtained from the recovered GLMs show stability for both datasets. MMD
is greatly reduced at the expense of the likelihood decreasing. For the Human dataset, our method
shows notable improvements with a small likelihood reduction. Samples drawn from the resulting
models also capture the ISI distribution and the autocorrelation of the data better than MLE.

4.3 Capturing different features in the data

In our last experiment we want to explore how the use of different kernels leads to models with distinct
properties. We used a dataset previously used in Hocker and Park [21]] and (original reference?) We
used 200 trials for training the models and 200 for validating. We initialized all models at MLE and
minimized NLL + aMMD. For each optimization we always drew at least 100 trials from the model
at each iteration step to compute MMD and its gradient. Figure[d] shows some selected models we
obtained for different kernels together with different statistics typically measured in spiking data.

MLE achieves good likelihood values both in the training and validation sets but fails to capture
any other features in the data due to self excitation that causes diverging firing rates in a significant
number of trials. Although no unstable trials were observed for models 1, 3, 4 and 5 out of the 400
trials generated for each model, we do not guarantee their stability and they could show a small
proportion of trials with diverging firing rates if the sampling is repeated. Model 2 showed runaway
self excitation for 3 out of 400 trials meaning we know the model is not stable and will produce
diverging firing rates with low probability. Although straightforward to compare the difference
between conditioned and free running CIs between different models (Figure D), a divergence in this
quantity was always a signature of trials with diverging firing rates.

Models 1, 2 and 3 used kernels that act directly on the spike train space and were therefore optimized
using the score function estimator of section[3.I} Models 1 and 2 were obtained with different penalty

strengths using the kernel
_y\2
k(x,x") = exp(— M) (19)
o

where v, is the mean firing rate of sample x. In theory, this gaussian kernel should enforce the
optimized model to match the whole firing rate data distribution. Model 3 was optimized by matching
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Figure 4: The use of different kernels leads to different optimized parameters. A) History filter
and bias of the MLE and MMD optimized models. B-C) Training and validation log-likelihoods
relative to a homogeneous Poisson process with the rate. D) Mean firing rate distributions. E) ISI
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the raw autocorrelations C,(7) between the data and model spike trains using the kernel

k(x, x') = Y C)Co (D). (20)

Models 4 and 5 used model based kernels and were optimized following section[3.2] Model 4 simply
matched the CI baselines using k(x, x") = (3, 4,(x;0))/T (3, 2:(x’; 6))/T and model 5 uses the same
kernel introduced in equation (T8).

The optimization for models 1 and 3 converged to similar solutions that preserve the overall shape of
the ML history filter but reducing the amount of self excitation. These two models were the best at
capturing the raw spike autocorrelations in the data. Model 2 showed the biggest late self excitation
but the smallest bias and its firing rate diverged for 3 samples. As most of the statistics shown
here are very sensitive to the presence of these outliers, model 2 shows bad performance in general.
Interestingly, model 2 kernel seems to have encouraged a matching of the whole firing rate distribution
having most of its probability mass close to the real data (Figure[d C). Model 2 also illustrates that
the MMD penalty term can act as a regularizer on the likelihood obtaining better likelihood values
for the validation data. The models 4 and 5 used model based kernels and optimization converged
much faster than for the previous ones. Model 5 is the one that most reduces the late self excitation
and in exchange best captures the 1st peak. Overall they showed worse validation likelihoods and
spike train autocorrelations. Finally, we would like to note that due to the stochastic nature of the
optimization procedure and the presence of local minima, different parameters can be found when
repeating the optimization with the same hyperparameters.

5 Discussion

Taking ideas from generative modeling in machine learning, we propose to minimize alternative
objective functions to the likelihood as a way to improve sample quality of neural generative models.
Here we focused on formulating the framework and exploring the use of different kernels while
limiting ourselves to a single model. However, the ideas exposed here can be easily applied to any
autoregressive generative model and potentially the benefits could be bigger for more complex models
than the point process GLM. In neuroscience the framework can be easily applied to coupled GLMs,
rate and spiking neural networks, dimensionality reduction models and decoding.

The main limitation of our proposal is the need to sample and compute kernel similarity during
the optimization procedure. Computation can be reduced in many ways. As we did here, MLE
can be used to for good parameter initialization and optimization objectives that use MMD and
the likelihood may accelerate convergence. MMD minimization updates could also be alternated
with likelihood updates so MMD doesn’t have to be computed at every step. For the score function
estimator of MMD’s gradient, there are available methods to control its variance and potentially
accelerate convergence.



Broader Impact

Bridging the gap between statistical neuroscientific models such as autoregressive point processes
and dynamical systems is substantial challenge not only from the perspective of generative modelling
but also in terms of allowing a dynamical interpretation, that carries with it all the niceties that are
afforded by stochastic dynamical systems. As such, while the motivation we drew up on comes from
neuroscience, modelling, simulating and analyzing point process dynamics has a broad applicability
to biological sciences, along with it translational application. Similarly, our method has potential use
in modelling within social sciences, geophysics (e.g. earthquakes), astrophysics and finance. In many
of those areas stable inference and simulation of future events would directly enable the ability to
discern and shape social and economic trends, or effect policy safeguarding against baleful events
such as volcano eruptions and stock market instabilities.
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