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ABSTRACT

To understand the complex nonlinear dynamics of neu-

ral circuits, we fit a structured state-space model called

tree-structured recurrent switching linear dynamical system

(TrSLDS) to noisy high-dimensional neural time series.

TrSLDS is a multi-scale hierarchical generative model for

the state-space dynamics where each node of the latent tree

captures locally linear dynamics. TrSLDS can be learned

efficiently and in a fully Bayesian manner using Gibbs

sampling. We showcase TrSLDS’ potential of inferring low-

dimensional interpretable dynamical systems on a variety of

examples.

Index Terms— state-space model, dynamical system,

statistical neuroscience, Bayesian inference, population spike

trains

I. INTRODUCTION

Statistical neuroscience has been pushing the boundary of

what can be inferred bottom-up from neural data. Recent

research has suggested that high-dimensional population

dynamics of neurons are well approximated by dynamics

restricted to a low-dimensional manifold in many cases [1].

Learning the hidden population dynamics is key to under-

standing the inner workings of neural systems [2].

As higher-dimensional population recordings become

available, the question arises of whether we can learn the

underlying dynamical law of population dynamics solely

based on the recorded neural activities [3], [4]. While

modern machine learning techniques have been successful

in learning latent dynamical models of neural populations,

these techniques often trade interpretability for predictive

power [5], [6]. These methods essentially become “black

boxes,” making it difficult for neuroscientists to decipher

their inner workings and understand the computational prin-

ciples implemented by neural systems. In contrast, linear

dynamical systems (LDS) are very interpretable, but sadly,
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the limited expressive power of LDS can only capture trivial

neural dynamics.

To increase the flexibility of the LDS, one strategy is to

partition the underlying latent space into multiple regions,

each equipped with an LDS. This combination of locally

linear dynamics can represent a much richer class of dynam-

ical systems while retaining interpretability. Tree-structured

recurrent switching linear dynamical systems (TrSLDS) [7]

accomplishes this by partitioning the latent space using tree-

structured stick-breaking. TrSLDS leverages a hierarchical

LDS prior to enforce structural smoothness of the dynam-

ics. The learned model is a binary tree where each node

represents a spatially constrained LDS, providing a multi-

scale view of the full dynamics with increasing complexity

for deeper levels of the tree allowing the neuroscientist to

examine the dynamics at different levels of resolution.

We showcase the expressive power of TrSLDS on two

examples with known population dynamics. The first one

being a synthetic spike train data where the underlying

dynamics is the FitzHugh-Nagumo oscillator [8]. We then

fit TrSLDS to the spiking neural network of [9] where

the learned effective 2-dimensional dynamics recapitulate

the theoretically derived reduction of the high-dimensional

spiking neural network model [10].

II. BACKGROUND

Let xt ∈ R
dx and yt ∈ R

dy denote the latent state and the

observation of the system at time t respectively. The system

can be described using a state-space model:

xt = f(xt−1, wt; Θ), wt ∼ Fw (state dynamics) (1)

yt = g(xt, vt; Ψ), vt ∼ Fv (observation) (2)

where Θ denotes the dynamics parameters, Ψ denotes the

emission (observation) parameters, and wt and vt are the

state and observation noises respectively. For simplicity, we

restrict the state dynamics to be of the form:

xt = f(xt−1; Θ) + wt, wt ∼ N (0, Q). (3)

In neuroscience applications, where the observations are

spike trains recorded from dy neurons, the data are multi-



variate binary time series. Thus, we model the observations

as

yj,t ∼ Bernoulli(ηj,t), ηj,t = c⊤j xt + bj , (4)

where cj ∈ R
dx , and bj ∈ R, ∀j ∈ {1, . . . , dy}. The goal

is to learn a low-dimensional (dx ≪ dy) representation of

the system state evolution, represented by x0:T , and the

underlying dynamical law of the latent state, represented by

f(·; Θ) from the observed spike trains y1:T .

When f(·; Θ) is assumed to be a linear function, the latent

states and the parameters can be efficiently learned [11].

While very well researched, the expressive power of an LDS

is limited. An alternative is to fit a set of LDSs, which is

the approach taken by switching linear dynamical systems

(SLDS) [12], [13].

II-A. Switching Linear Dynamical Systems

SLDS approximate nonlinear dynamics by switching be-

tween a finite set of LDSs. An additional discrete latent state

zt ∈ {1, . . . ,K} determines the linear dynamics at time t,

xt = xt−1 +Aztxt−1 +Bzt + wt, wt ∼ N (0, Qzt) (5)

where Ak, Qk ∈ R
dx×dx and Bk ∈ R

dx for k = 1, . . . ,K.

Typically, zt is modeled to have Markovian dynamics. The

conditionally linear dynamics allow for fast and efficient

inference of the model and can utilize the tools developed for

linear systems [14]. The assumption of Markovian dynamics

for the discrete latent states severely limits SLDS’ generative

capacity, preventing it from learning the underlying dynam-

ics [15].

II-B. Recurrent Switching Linear Dynamical Systems

Recurrent switching linear dynamical systems

(rSLDS) [15] are an extension of SLDS where the transition

density of the discrete latent state depends on the previous

location in the continuous latent space

zt|xt−1, {R, r} ∼ πSB (νt) , νt = Rxt−1 + r, (6)

where R ∈ R
(K−1)×dx and r ∈ R

K−1 represents hyper-

planes. πSB : RK−1 → [0, 1]K maps from the reals to the

probability simplex via stick-breaking:

πSB(ν) =
(

π
(1)
SB(ν), · · · , π

(K)
SB (ν)

)

, (7)

π
(k)
SB = σ(νk)

∏

j<k

σ (−νj) , (8)

for k = 1, . . . ,K−1 and π
(K)
SB =

∏K−1
k=1 σ (−νk) where

νk is the kth component of ν and σ(ν) = (1 + e−ν)−1

is the logistic function. By including this recurrence in the

transition density of zt, the rSLDS partitions the latent space

into K sections, where each section follows its own linear

dynamics. It is through this combination of locally linear

dynamical systems that the rSLDS approximates (3); the

partitioning of the space allows for a more interpretable

visualization of the underlying dynamics. While rSLDS can

effectively learn the underlying dynamics, its dependence on

stick-breaking poses problems for learning.

III. TREE-STRUCTURED RECURRENT

SWITCHING LINEAR DYNAMICAL SYSTEMS

TrSLDS [7] is an extension of rSLDS which, like

rSLDS, also uses conditionally linear dynamics but uses

tree-structured stick-breaking instead of sequential stick-

breaking. TrSLDS also imposes a hierarchical prior over the

per node LDS, allowing for a multi-scale view. In the next

two sections, we briefly explain the tree-structured stick-

breaking and the hierarchical prior (see [7] for more details).

III-A. Tree-Structured Stick-Breaking

Let T be a balanced binary tree with nodes {ǫ, 1, · · · , N}.

Each node n has a parent node denoted by par(n) with the

exception of the root node, ǫ, which has no parent. Every

internal node n is the parent of two children, left(n) and

right(n). Let child(n) = {left(n), right(n)} denote the set

of children for internal node n. Let Z ⊆ T denote the set

of leaf nodes, which have no children. Let depth(n) denote

the depth of a node n in the tree, with depth(ǫ) = 0.

At time instant t, zt is chosen by starting at the root node

and traversing down the tree until one of the K leaf nodes

are reached. The traversal is done through a sequence of

left/right choices by the internal node where the choices as

modeled as random variables; the traversal can be viewed

as a stick breaking process. We start at the root node with

a unit-length stick πǫ = 1, which we divide between its

two children. The left child receives a fraction πleft(ǫ) =
σ(νǫ) and the right child receives the remainder πright(ǫ) =
1 − σ(νǫ) such that νǫ ∈ R specifies the left/right balance.

This process is repeated recursively, subdividing πn into two

pieces at each internal node until we reach the leaves of the

tree. The stick assigned to each node is thus,

πn =











σ(νpar(n)), n = left(par(n)) and n 6= ǫ,

1− σ(νpar(n)), n = right(par(n)) and n 6= ǫ,

1, n = ǫ.

We incorporate this into the TrSLDS by allowing νn to be

a function of the continuous latent state

νn(xt−1, Rn, rn) = RT
nxt−1 + rn, (9)

where Rn and rn specify a linear hyperplane in the

continuous latent state space. As the continuous latent

state xt−1 evolves, the left/right choices become more or

less probable. This in turn changes the probability distri-

bution πk(xt−1,Γ, T ) over the K leaf nodes, where Γ =
{Rn, rn}n∈T . In the TrSLDS, these leaf nodes correspond

to the discrete latent states of the model, such that for each

leaf node k,

p (zt = k | xt−1,Γ, T ) = πk(xt−1,Γ, T ). (10)
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Fig. 1. (A, D) TrSLDS is able to infer the latent states. (B, E) True and learned phase portraits where the green and yellow

lines are the nullclines of the system. The background color showcases the partitioning learned by the model where the

darker the color is, the higher the probability of ending up in that discrete state. (C) Raster plot of a single trajectory. (F)

The inferred firing rate (dotted line) and the true firing rate (solid line) are displayed for two neurons. Error bars denote ±
3 standard deviations under the posterior.

III-B. Hierarchical Dynamics Prior

To obtain a multi-scale view of the dynamics, TrSLDS

leverages a hierarchical LDS prior to enforce structural

smoothness of the dynamics.

Let {An, Bn} be the dynamics parameters associated with

node n. These internal dynamics serve as a link between the

leaf node dynamics via a hierarchical prior,

{An, Bn}| {Apar(n), Bpar(n)} ∼ N ({Apar(n), Bpar(n)},Σn).

The prior on the root node is {Aǫ, bǫ} ∼ N (0,Σǫ).

It is through this hierarchical tree-structured prior that

TrSLDS obtains a multi-scale view of the system. Parents

are given the task of learning a higher level description of the

dynamics over a larger region while children are tasked with

learning the nuances of the dynamics. The use of hierarchical

priors also allows for neighboring sections of latent space

to share common underlying dynamics inherited from their

parent. Once fit, TrSLDS can be queried at different levels,

where levels deeper in the tree provide more resolution.

III-C. Bayesian Inference

The linear dynamic matrices Θ, the hyperplanes Γ, the

emission parameters Ψ, the continuous latent states x0:T

and the discrete latent states z1:T must be inferred from

the data. Under the Bayesian framework, this corresponds

to computing the posterior,

p (x0:T , z0:T ,Θ,Ψ,Γ|y1:T ) =
p (x0:T , z1:T ,Θ,Ψ,Γ, y1:T )

p (y1:T )
.

(11)

The parameters and latent states are learned via Gibbs

sampling [16] to obtain samples from the posterior distri-

bution described in (11). To allow for fast and closed form

conditional posteriors, we augment the model with Pólya-

gamma auxiliary variables [17]; details of the sampling can

be found in [7].

IV. EXPERIMENTS

We demonstrate the potential of TrSLDS by testing it on

a couple of example systems. The first, FitzHugh-Nagumo

(FHN), is a two-dimensional nonlinear oscillation system.
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Fig. 2. TrSLDS on Winner-take-all spiking neural network. (A) Overview of the connectivity structure of the spiking neural

network [9]. (B,C) raster plots of excitatory neurons for 2 random trials. (D) the latent trajectories converge to either one

of the two of sinks at the end of trial (green). Each trajectory is colored by their final choice. (E-F) Dynamics captured by

each level provide a multi-scale view. (H) Manual 2-dimensional reduction of the spiking neural network dynamics given

the full specification [10].

Synthetic spike trains are generated from a Bernoulli model,

as described in (4), to showcase that TrSLDS can indeed

learn the low-dimensional latent states and the underlying

dynamics from high-dimensional spike trains through the

Pólya-gamma augumentation of the observation model. The

next example is the winner-take-all spiking neural network

of [9] where it has been shown that the population dynamics

follow a two-dimensional dynamical system [10].

IV-A. FitzHugh-Nagumo with Bernoulli observations

The FHN model is a 2-dimensional reduction of the

Hodgkin-Huxley model which is completely described by

the following system of differential equations [8]:

v̇ = v −
v3

3
− w + Iext, τ ẇ = v + a− bw. (12)

We set the parameters to a = 0.7, b = 0.8, τ = 12.5,

and Iext ∼ N (0.7, 0.04). The model was trained on 100

trajectories where each trajectory consisted of 400 data

points with 150 Bernoulli neurons. We set the number of

leaf nodes to be 4 and ran Gibbs for 500 samples.

Fig. 1 displays the power of TrSLDS. From the synthetic

spike trains, TrSLDS is able to infer the latent continuous

states. It also accurately predicts the firing rates of the

neurons in the system. The phase portrait learned by TrSLDS

is an accurate approximation of the true phase portrait,

solidifying TrSLDS’ ability to generate data that is similar

to the true system.

IV-B. Winner-Take-All Spiking Neural Network

Next, we fit TrSLDS to the winner-take-all spiking neural

network [9]. The network is comprised of 2000 neurons, of

which 1600 are excitatory and the rest are inhibitory. Among

the excitatory neurons, 480 are selective to the binary choice.

In [10], they theoretically reduced the spiking neural network

to a system of 2 differential equations. The corresponding

vector field in Fig. 2 show that the system is composed of 3

fixed points; 2 sinks corresponding to the possible choices

and an unstable node between the them. We trained TrSLDS

on 80 trajectories from 150 subsampled tunned excitatory

neurons from the simulated spiking neural network. We set

the number of leaf nodes to be 4 and ran Gibbs for 250

iterations.

From Fig. 2, we see the multi-scale view TrSLDS obtains

of the underlying dynamics. The root node corresponds to

an LDS, which does not have much expressive power (we

note that the root node demonstrates what a Poisson linear



dynamical system (PLDS) [11] would learn if fitted to this

data). Traversing one level deeper into the tree, the model

learns the unstable node present between the two sinks

(represented by the black dots in Fig. 2H). The leaf nodes

refine this, and it is evident from Fig. 2G that TrSLDS is

able to learn the dynamics of the underlying model. Fig. 2D

showcase that not only is TrSLDS able to learn the latent

states but also strengthens the idea that high-dimensional

spike train can be represented through a low-dimensional

representation.

V. CONCLUSION

We showed that TrSLDS can learn a low-dimensional

dynamical system from single-trial population neural data.

The learned system is explicitly expressed as a combination

of linear dynamical systems, thus increasing interpretability.

Moreover, the tree-structure provides a multi-scale view that

naturally gives the neruoscientist the option to control the

granularity of viewing and understanding. Our approach

is distinguished from the mainstream approach in low-

dimensional neural trajectory learning where averages are

used instead of single-trial data. The averaging is only

possible for tightly repeatable trial-based tasks, and even

then, the neural trial-to-trial variability would be completely

ignored. In contrast, our approach (not unique, but in minor-

ity) focuses on learning the dynamical law that drives the

single-trial trajectories. This allows us to learn the hidden

population dynamics in a data-driven fashion without the

assumptions required for trial-averaging.
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