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Accurate quantification of behavior is essential for under-
standing the brain1–3. Both within and beyond the field of 
neuroscience, there is a fruitful tradition of using cutting-

edge technology to study movement. Often, the application of new 
technology has the potential to reveal unforeseen features of the 
phenomena being studied, as in the case of Muybridge’s famous 
photography studies in the mid-19th century or modern high-
speed videography that has revealed previously unknown motor 
sequences, such as ‘tap dancing’ in the songbird2,4,5. Historically, 
collected data were analyzed manually, which is a time-consuming, 
labor-intensive and error-prone process that is prohibitively inef-
ficient at today’s high rates of data acquisition. Conversely, advances 
in computer vision have consistently inspired methods of data anal-
ysis to reduce human labor6–8.

We are particularly interested in extracting the pose of ani-
mals—i.e., the geometrical configuration of multiple body parts. 
The gold standard for pose estimation in the field of motor con-
trol is the combination of video recordings with easily recognizable 
reflective markers applied to locations of interest, which greatly 
simplifies subsequent analysis and allows tracking of body parts 
with high accuracy9–12. However, such systems can be expensive 
and potentially distracting to animals13,14, and markers need to be 
placed before recording, which predefines the features that can be 
tracked. This mitigates one of the benefits of video data: its low level 
of invasiveness. One alternative to physical markers is to fit skeleton 
or active contour models13–17. These methods can work quite well 
and are fast, but require sophisticated skeleton models, which are 
difficult to develop and to fit to data, limiting the flexibility of such 
methods18,19. Another alternative is training regressors based on var-
ious computationally derived features to track particular body parts 
in a supervised way6,13,20–22. Training predictors based on features 
from deep neural networks also falls in this category23,24. Indeed, 
the best algorithms for challenging benchmarks in pose estimation 

of humans from images use deep features19,25–29. This suggests that 
deep learning architectures should also greatly improve the accu-
racy of pose estimation for lab applications. However, the labeled 
datasets for these benchmarks are large (for example, ~25,000 in 
the MPII Human Pose dataset30), which may render deep learn-
ing approaches infeasible as efficient tools at the scale of interest to 
neuroscience labs. Nevertheless, as a result of transfer learning31–34,  
we will show that this need not be the case.

Here we demonstrate that by capitalizing on state-of-the-art 
methods for detecting human limb configurations, we can achieve 
excellent performance on pose estimation problems in the labora-
tory setting with minimal training data. Specifically, we investigated 
the feature detector architecture from DeeperCut26,27, one of the best 
pose estimation algorithms, and demonstrate that a small number 
of training images (~200) can be sufficient to train this network to 
within human-level labeling accuracy. This is possible as a result of 
transfer learning: the feature detectors are based on extremely deep 
neural networks, which were pretrained on ImageNet, a massive 
dataset for object recognition24. We also show that end-to-end train-
ing the network increases performance. Thus, by labeling only a few 
hundred frames, one can train tailored, robust feature detectors that 
are capable of localizing a variety of experimentally relevant body 
parts. We illustrate the power of this approach by tracking the snout, 
ears and tail base of a mouse during an odor-guided navigation task, 
multiple body parts of a fruit fly behaving in a 3D chamber, and 
joints of individual mouse digits during a reaching task.

Results
DeeperCut achieves outstanding performance on multi-human 
pose detection benchmarks27. However, to achieve this perfor-
mance, its neural network architecture has been trained on thou-
sands of labeled images. Here we focus on a subset of DeeperCut: 
its feature detectors, which are variations of deep residual neural 
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networks (ResNet)24 with readout layers that predict the location of 
a body part (Fig. 1). To distinguish the feature detectors from the full 
DeeperCut, we refer to this autonomous portion as DeepLabCut. In 
this paper, we evaluate the performance of DeepLabCut for posture 
tracking in various laboratory behaviors, investigate the amount 
of required training data for good generalization, and provide an 
open source toolbox that is broadly accessible to the community  
(https://github.com/AlexEMG/DeepLabCut).

DeepLabCut is a deep convolutional network combining two 
key ingredients from algorithms for object recognition and seman-
tic segmentation: pretrained ResNets and deconvolutional layers27. 
The network consists of a variant of ResNets, whose weights were 
trained on a popular, large-scale object recognition benchmark 
called ImageNet, on which it achieves excellent performance24. 
Instead of the classification layer at the output of the ResNet, decon-
volutional layers are used to up-sample the visual information and 
produce spatial probability densities. For each body part, its prob-
ability density represents the ‘evidence’ that a body part is in a par-
ticular location. To fine-tune the network for a particular task, its 
weights are trained on labeled data, which consist of frames and the 
accompanying annotated body part locations (or other objects of 
interest in the frame). During training, the weights are adjusted in 
an iterative fashion such that for a given frame the network assigns 
high probabilities to labeled body part locations and low probabili-
ties elsewhere (Fig. 1 and Methods). Thereby, the network is rewired 
and ‘learns’ feature detectors for the labeled body parts. As a result 
of the initialization with the ResNet pretrained on ImageNet, this 
rewiring is robust and data-efficient.

Benchmarking DeepLabCut. Analyzing videos taken in a dynam-
ically changing environment can be challenging. Therefore, to test 

the utility of our toolbox, we first focused on an odor-guided navi-
gation task for mice. Briefly, mice run freely on an ‘endless’ paper 
spool that includes an adapted ink-jet printer to deliver odor trails 
in real time as a mouse runs and tracks trails (further details and 
results will be published elsewhere). The video captured dur-
ing the behavior poses several key challenges: inhomogeneous 
illumination; transparent side walls that appear dark; shadows 
around the mouse from overhead lighting; distortions due to a 
wide-angle lens; the frequent crossing of the mouse over the odor 
trail; and the common occurrence of rewards directly in front of 
its snout, which influences its appearance. Yet accurately tracking 
the snout as a mouse samples the ‘odorscape’ is crucial for study-
ing odor-guided navigation. Various measures could be taken to 
remedy these challenges, such as performing a camera calibra-
tion to reduce distortions. However, we were interested in testing 
whether DeepLabCut could cope with all the challenges in the raw 
data without any preprocessing.

First, we extracted 1,080 distinct frames from multiple videos 
(across 2 cameras and 7 different mice; see Methods) and manually 
labeled the snout, left ear, right ear and tail base in all frames (Fig. 2a  
and Supplementary Fig. 1). To facilitate comparisons to ground 
truth and to quantify the robustness of predictors, we estimated 
variability (root mean square error; RMSE) of one human labeler 
by comparing two distinct label sets of the same data. We found the 
average variability for all body parts to be very small: 2.69 ±  0.1 pix-
els (mean ±  s.e.m.; n =  4,320 body part image pairs; Supplementary 
Fig. 1 and Methods), which is less than the ~5-pixel width of the 
mouse’s snout in low-resolution camera frames (Fig. 2a). The 
RMSE across two trials of annotating the same images is referred to  
as ‘human variability’ (note that the variability differs slightly across 
body parts).
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Fig. 1 | Procedure for using the DeepLabCut Toolbox. a, Training: extract images with distinct postures characteristic of the animal behavior in question. 
For computational efficiency, the region of interest (ROI) should be picked to be as small as possible while containing the behavior in question, which  
in this example is reaching. b, Manually localize (label) various body parts. Here, various digit joints and the wrist were selected as features of interest. 
 c, Train a deep neural network (DNN) architecture to predict the body-part locations on the basis of the corresponding image. A distinct readout layer  
per body part is generated to predict the probability that a body part is in a particular pixel. Training adjusts both readout and DNN weights. After training 
the weights are stored. d, The trained network can be used to extract the locations of the body parts from videos. The images show the most likely body 
part locations for 13 labeled body parts on the hand of a mouse.
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To quantify the feature detector’s performance, we randomly split 
the data into a training and test set (80% and 20%, respectively) and 
evaluated the performance of DeepLabCut on test images across 
all body parts (Fig. 2b, c) and in a subset of body parts (snout and 
tail base) (Fig. 2d). Unless otherwise noted, we always trained (and 
tested) with the labels from the first set of human labels. The test 
RMSE for different training/test set splits achieved average human 
variability (Fig. 2d). Thus, we found that when trained with 80% of 
the data the algorithm achieved human-level accuracy on the test 
set for detection of the snout and the tail base (Fig. 2d,e).

Next, we systematically varied the size of the training set and trained 
30 distinct networks (three splits for 50% and 80% training set size; six 
splits for 1%, 5%, 10% and 20% training set fraction). As expected, the 
test error increases for decreasing number of training images (Fig. 2f). 
Yet remarkably, the test RMSE attenuates only slowly from 80% training 
set fraction to 10%, where one still achieves an average pixel error of less 
than 5 pixels. Such average errors are on the order of the size of the snout 
in the low-resolution camera (around 5 pixels) and much smaller than 
the size of the snout in the high-resolution camera (around 30 pixels).  
Thus, we found that even 100 frames were enough to achieve  
excellent generalization.

Since the RMSE is computed as an average across images, we 
next checked whether there were any systematic differences across 
images by comparing the human variability across the two splits 
vs. the model variability (trained with the first set of human labels; 
Fig. 2g: data for one split with a 50% training set size). We found 
that both the human and the algorithm produced only a few outli-
ers, and no systematic error was detected (see Fig. 2g for examples).

We also tested whether data augmentation beyond rescaling 
(see Methods) could provide any gains in performance. On larger 
training sets DeepLabCut already reaches human-level accuracy, 
so we focused on the six splits that used only 10% of the data for 
training. Specifically, we augmented the data to include either sev-
eral rotations or several translations plus rotations per training 
image (see Methods). We found minimal differences in test perfor-
mance (Supplementary Fig. 2a), highlighting the data-efficiency of 
DeepLabCut. This also suggests that simple data augmentation can-
not replace images that capture behavioral variability—i.e., adding 
new labeled images that have more postural variability seems to be 
better than augmenting a smaller subset of the data.

Thus far, we used a part detector based on the 50-layer deep 
ResNet-5024,27. We also trained deeper networks with 101 layers and 
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Fig. 2 | evaluation during odor trail tracking. a, Two example frames with high-magnification images, showing the snout, ears and tail base labeled by a 
human. The odor trail and reward drops are visible under infrared light and introduce a time-varying visual background. b, Cross-entropy loss for n =  3 splits 
when training with 80% of the 1,080 frames. c, Corresponding RMSE between the human and the predicted label on training and test images for those 
n =  3 splits evaluated every 50,000 iterations (80%/20% splits). The average of those individual curves is also shown (thick line). Human variability as 
well as the 95% confidence interval are depicted in black and gray. d, Corresponding RMSE when evaluated only for snout and tail base. The algorithm 
reaches human level variability on a test set comprising 20% of all images. e, Example body part prediction for two frames, which were not used during the 
training (of one split in c). Prediction closely matches human annotator’s labels. f, RMSE for snout and tail base for several splits of training and test data vs. 
number of training images compared to RMSE of a human scorer. Each split is denoted by a cross, the average by a dot. For 80% of the data, the algorithm 
achieves human level accuracy on the test set (d). As expected, test RMSE increases for fewer training images. Around 100 frames are enough to provide 
good average tracking performance (< 5-pixel accuracy). g, Snout RMSE comparison between human and model per image for one split with 50% training 
set size. Most RMSE differences are small, with few outliers. The two extreme errors (on the left) are due to labeling errors across trials by the human.
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found that both the training and testing errors decreased slightly, 
suggesting that the performance can be further improved if required 
(average test RMSE for three identical splits of 50% training set frac-
tion: ResNet-50, 3.09 ±  0.04; ResNet-101, 2.90 ±  0.09; ResNet-101 
with intermediate supervision, 2.88 ±  0.06; pixel mean ±  s.e.m.; see 
Supplementary Fig. 2b).

Overall, given the robustness and the low error rate of 
DeepLabCut even with small training sets, we found this to be a 
useful tool for studies such as odor-guided navigation. For exam-
ple, Fig. 3 recapitulates a salient signature of the tracking behavior, 
namely that rodents swing their snout across the trail35. Knowing 
the location of the ears as well as the tail base is also important to 
computationally assess the orientation of the mouse (Fig. 3 and 
Supplementary Video 1). Furthermore, having an automated pose 
estimation algorithm as presented will be crucial for other video-
rich experiments.

Generalization and transfer learning. We have demonstrated that 
DeepLabCut can accurately detect body parts across different mice, 
but how does it generalize to novel scenarios? First, we found that 
DeepLabCut generalizes to novel mice during trail tracking (Fig. 4a).  
Second, we tested whether the trained network could identify mul-
tiple body parts across multiple mice in the same frame (transfer 
learning). Notably, although the network has only been trained with 
images containing a single mouse, it could detect all the body parts 
of each mouse in images with multiple interacting mice. Although 
not error-free, we found that the model performed remarkably 
well in a social task (three mice interacting in an unevenly illu-
minated open field; Fig. 4b). The performance of the body part 
detectors could be improved by training the network with train-
ing images that include multiple mice with occlusions and/or by 
training image-conditioned pairwise terms between body parts to 
harness the power of multi-human pose estimation models27 (see 
Discussion). Nonetheless, this example of multi-mouse tracking 
illustrates that even the feature detectors trained on a single mouse 
can readily transfer to extensions, as would be useful in studies of 
social behaviors6,36,37.

The power of end-to-end training. As a result of the architecture 
of DeeperCut, the deconvolution layers are specific to each body 
part, but the deep network (ResNet) is shared (Fig. 1). We hypothe-
sized that this architecture can facilitate the localization of one body 
part based on other labeled body parts. To test this hypothesis, we 
examined the performance of networks trained with only the snout 
and tail-base data while using the same three splits of 50% train-
ing data as in Fig. 2b. We found that the network that was trained 
with all body part labels simultaneously outperforms the special-
ized networks nearly twofold (Fig. 5). This result also demonstrates 
that training the weights throughout the whole network in an end-
to-end fashion rather than just the readout weights substantially 
improves the performance. This further highlights the advantage 
of deep learning based models over approaches with fixed feature 
representations, which cannot be refined during training.

Drosophila in a 3D behavioral chamber. To further demonstrate 
the flexibility of the DeepLabCut toolbox, we tracked the bodies 
of freely behaving fruit flies (Drosophila) exploring a small cubi-
cal environment in which one surface contained an agar-based 
substrate for egg laying. Freely behaving flies readily exhibit 
many orientations and also frequent the walls and ceiling. When 
viewed from a fixed perspective, these changes in orientation dra-
matically alter the appearance of flies as the spatial relationship 
of body features change or as different body parts come into or 
out of view. Moreover, reliably tracking features across an entire 
egg-laying behavioral session could potentially be challenging 
to DeepLabCut owing to significant changes in the background  

(the accumulation of new eggs or changes in the agar substrate 
appearance due to evaporation).

To build toward an understanding of the behavioral patterns that 
surround egg-laying in an efficient way, we chose 12 distinct points 
on the body of the fly and labeled 589 frames of diverse orientation 
and posture from six different animals, labeling only those features 
that were visible within a given frame (see Methods).

We trained DeepLabCut with 95% of the data and found a test 
error of 4.17 ±  0.32 pixels (mean ±  s.e.m.; corresponding to an aver-
age training error of 1.39 ±  0.01 pixels, n =  3 splits, mean ±  s.e.m.). 
For reference, the average eye diameter (top to bottom) was 36 
pixels and the average femur diameter was 8.5 pixels (although 
owing to the 3D body movements and chamber depth, sizes 
change depending on the fly’s location). Figure 6a depicts some 
example test frames with human- and network-applied labels. 
Generalization to flies not used in the training set was excellent, 
and the feature detectors were robust to changes in orientation 
(Fig. 6b) and background (Fig. 6c and Supplementary Video 2). 
Although fly bodies are relatively rigid, which simplifies tracking, 
there are exceptions. For instance, the proboscis changes its visual 
appearance substantially during feeding behaviors. Yet the feature 
detectors can resolve fast motor movements such as the extension 

Fig. 3 | A trail-tracking mouse. Green and cyan dots show 30 time points in 
the future and past, respectively, of the snout positions during trail tracking. 
The dots are 33.3 ms apart. The body postures of the snout, ears and tail 
base at various past time points are depicted as magenta rhombi. Together 
those four points capture the body and head orientation of the mouse and 
illustrate the swinging head movements. The printed odor trail is visible in 
gray (see Supplementary Video 1).
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and retraction of the proboscis (Fig. 6d). Thus, DeepLabCut allows 
accurate extraction of low-dimensional pose information from 
videos of freely behaving Drosophila.

Digit tracking during reaching. To further illustrate the versatility 
and capabilities of DeepLabCut, we tracked segments of individual 
digits of a mouse hand (Figs 1 and 7a). We recently established a 
head-fixed, skilled reaching task in mice38, wherein mice grab a joy-
stick with two degrees of freedom and pull it from a start location to 
a target location. While the joystick allows spatio-temporally accu-
rate measurement of the joystick (hand) position during the pull, it 
neither constrains the hand position on the joystick nor provides 
position information during the reaches or between pulls (when the 
mice might or might not hold the joystick). Placing markers is diffi-
cult as the mouse hand is a small and highly complex structure with 
multiple bones, joints and muscles. Moreover, it is intrusive to mice 
and can disrupt performance. Therefore, in principle, markerless 
tracking is a promising approach for analyzing reaching dynamics. 
However, tracking is challenging because of the complexity of pos-
sible hand articulations, as well as the presence of the other hand 
in the background, making this task well suited to highlighting the 
generality of our DeepLabCut toolbox.

We labeled 13 body parts: 3 points per visible digit and the wrist 
(see Methods). Notably, we found that by using just 141 train-
ing frames we achieved an average test error of 5.21 ±  0.28 pixels 
(mean ±  s.e.m.; corresponding to average training error 1.16 ±  0.03 
pixels, n =  3 splits, mean ±  s.e.m.). For reference, the width of a sin-
gle digit was ~15 pixels. Figure 7a depicts some example test frames. 

We believe that this application of hand pose estimation highlights 
the excellent generalization performance of DeepLabCut despite 
training with only a few images.

So far we have shown that the body part estimates derived from 
DeeperCut are highly accurate. But, in general, especially when 
sieving through massive datasets, the end user would like to have 
each point estimate accompanied by a confidence measure of the 
label location. The location predictions in DeeperCut are obtained 
by extracting the most likely region, based on a scalar field that rep-
resents the probability that a particular body part is in a particular 
region. In DeeperCut these probability maps are called score-maps, 
and predictions are generated by finding the point with the highest 
probability value (see Methods). The amplitude of the maximum 
can be used as a confidence readout to examine the strength of 
evidence for individual localizations of the individual parts to be 
detected. For instance, the peak probability of the digit tip is low 
when the mouse holds the joystick (in which case the finger tips are 
occluded). Similarly, when the features cannot be disambiguated, 
the likelihood becomes small (Fig. 7a). This confidence readout 
also works in other contexts: for instance, in the Drosophila example 
frames we only depicted the predicted body parts when the probabil-
ity was larger than 10% (Fig. 6b–d). Using this threshold, the point  
estimate for the left leg was automatically excluded in Fig. 6c,d.  
Indeed, all occluded body parts are also omitted in Figs 6b and 7f.

Lastly, once a network is trained on the hand posture frames, 
the body part locations can be extracted from videos and used in 
many ways. Here we illustrate a few examples: digit positions dur-
ing a reach across time (Fig. 7b; note that this trajectory comes 
from frame-by-frame prediction without any temporal filtering), 
comparison of movement patterns across body parts (Fig. 7c,d), 
dimensionality reduction to reveal the richness of mouse hand pos-
tures during reaching (Fig. 7e) and creating ‘skeletons’ based on the 
semantic meaning of the labels (Fig. 7f and Supplementary Video 3).

Discussion
Detecting postures from monocular images is a challenging prob-
lem. Traditionally, postures are modeled as a graph of parts, where 
each node encodes the local visual properties of the part in question, 
and then these parts are connected by spring-like links. This graph 

D
en

si
ty

Consecutive difference (pixels)

a

b

Examples of good transfer performance

Examples of error(s)

Example of generalization: novel mouse tracking

Example of transfer learning: multi-mouse tracking

–10 –5 0 5 10

X snout
Y snout
X tail base
Y tail base

Fig. 4 | Generalization. a, Frame-by-frame extracted snout and tail-base 
trajectory in a novel mouse (not part of training set) during trail tracking 
on moving paper ground (n =  2,331 frames). Continuity of the trajectory 
suggests accurate training, which is also confirmed by histogram of 
pairwise, frame-by-frame differences in x and y coordinates. b, Body part 
predictions for images with multiple mice, showing predictions of a network 
that was trained with images containing only a single mouse. It readily 
detects body parts in images with multiple novel mice (top), unless they are 
occluding each other (bottom). Additionally, these mice are younger than 
the ones in the training set and thus have a different body shape.

Test
8

6

4

2

0

Full@snout Snout@snout

Condition

Full@tail Tail@tail

Train
Human

R
M

S
E

 (
pi

xe
ls

)

Training with full body labeling vs. tail + snout only

Fig. 5 | end-to-end training. We trained ‘specialized’ networks with only 
the snout or tail-base labels, respectively. We compare the RMSE against 
the full model that was trained on all body parts, but is also only evaluated 
on the snout or tail base, respectively (e.g., “full@snout” means the 
model trained with all body parts (full) and RMSE evaluated for the snout 
labels). Training (blue) and test (red) performance for the full model and 
specialized models trained with the same n =  3 50% training set splits of 
the data (crosses) and average RMSE (dots). Although all networks have 
exactly the same information about the location of the snout or tail base 
during training, the network that also received information about the other 
body parts outperforms the ‘specialized’ networks.

NATuRe NeuRosCieNCe | VOL 21 | SEPTEMBER 2018 | 1281–1289 | www.nature.com/natureneuroscience 1285

http://www.nature.com/natureneuroscience


Technical RepoRT NatuRe NeuRoscIeNce

is then fit to images by minimizing some appearance cost func-
tion18. This minimization is hard to solve, but designing the model 
topology together with the visual appearance model is even more 
challenging18,19; this can be illustrated by considering the diversity of 
fruit fly orientations (Fig. 6) and hand postures we examined (Fig. 7).  
In contrast, casting this problem as a minimization with deep resid-
ual neural networks allows each joint predictor to have more than 
just local access to the image19,25–28. As a result of the extreme depth 
of ResNets, architectures such as DeeperCut have large receptive 
fields, which can learn to extract postures in a robust way27.

Here we demonstrate that cutting-edge deep learning models can 
be efficiently used in the laboratory. Specifically, we leveraged the 
fact that adapting pretrained models to new tasks can dramatically 
reduce the amount of training data required, a phenomena known as 
transfer learning27,31–34. We first estimated the accuracy of a human 
labeler, who could readily identify the body parts of interest for odor-
guided navigation, and then demonstrated that a deep architecture 
can achieve similar performance on detection of body parts such as 
the snout or the tail base after training on only a few hundred images. 
Moreover, this solution requires no computational body model, stick 
figure, time information or sophisticated inference algorithm. Thus, 
it can be quickly applied to completely different behaviors that pose 
qualitatively distinct computer vision challenges, such as skilled 
reaching in mice or egg-laying in Drosophila.

We believe that DeepLabCut will supplement the rich literature 
of computational methods for video analysis6,8,16,20–22,39–42, where 
powerful feature detectors of user-defined body parts need to be 
learned for a specific situation or where regressors based on stan-
dard image features and thresholding heuristics6,37,41 fail to provide 
satisfying solutions. This is particularly the case in dynamic visual 
environments—for example, those with varying background and 
reflective walls (Figs 2 and 6)—or when tracking highly articulated 
objects such as the hand (Fig. 7).

Dataset labeling and fine-tuning. Deep learning algorithms are 
extremely powerful and can learn to associate arbitrary categories 
to images33,43. This is consistent with our own observation that 
the training set should be free of errors (Fig. 2g) and approximate 
the diversity of visual appearances. Thus, to train DeepLabCut for 
specific applications, we recommend labeling maximally diverse 
images (i.e., different poses, different individuals, luminance condi-
tions, etc.) in a consistent way and curating the labeled data well. 
The training data should reflect the breadth of the experimental 
data to be analyzed. Even for an extremely small training set, the 
typical errors can be small, but large errors for test images that are 
quite distinct from the training set can start to dominate the aver-
age error. One limitation for generalizing to novel situations comes 
from stochasticity in training set selection. Given that we only 
select a small number of training samples (a few hundred frames), 
it is plausible that images representing behaviors that are especially 
sparse or noisy (e.g., due to motion blur) could be suboptimally 
sampled or entirely excluded from the training data, resulting in 
difficulties at test time.

Therefore, a user can expand the initial training dataset in an 
iterative fashion using the score-maps. Specifically, errors can be 
addressed via post hoc fine-tuning of the network weights, taking 
advantage of the fact that the network outputs confidence estimates 
for its own generated labels (Fig. 7a and Methods). By using these 
confidence estimates to select sequences of frames containing a 
rare behavior (by sampling around points of high probability), or 
to find frames where reliably captured behaviors are largely cor-
rupted with noise (by sampling points of low probability), a user 
can then selectively label frames based on these confidence criteria 
to generate a minimal yet additional training set for fine-tuning the 
network. Additionally, heuristics such as the continuity of body part 
trajectories can be used to select frames with errors. This selectively 
improves model performance on edge cases, thereby extending the 

a
Human and DeepLabCut labels

b
Examples of DeepLabCut labels (this fly was not in the training set)

c
Example sequence (proboscis extension)
d

Example with cluttered background

50 pixels

Human-applied labels
Network-applied labels

RMSE = 2.99

RMSE = 2.87

Fig. 6 | Markerless tracking of Drosophila. a, Example body part predictions closely match human annotator labels, shown for two frames that were not 
used in the training set (95% training set size). b, Example frames and body part predictions for a fly that was not part of the training data in various 
postures and orientations. c, Example labels for a fly against a cluttered background comprising numerous laid eggs. d, Example sequence of proboscis 
extension being automatically and accurately tracked. See Supplementary Video 2.
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architecture’s capacity for generalization in an efficient way. Such 
an active learning framework can be used to achieve a predefined 
level of confidence for all images with minimal labeling cost. Then, 
owing to the large capacity of the neural network that underlies the 
feature detectors, one can continue training the network with these 
additional examples.

We note, however, that not every low value in a probabil-
ity score-map necessarily reflects erroneous detection. As we 
showed, low probabilities can also be indicative of occlusions, as 
in the case of the digit tips when the mouse is holding the joystick 
(Fig. 7). Here, multiple camera angles can be used to fully capture 
a behavior of interest, or heuristics (such as a body model) can 

be used to approximate occluded body parts using temporal and 
spatial information.

Speed and accuracy of DeepLabCut. Another important feature 
of DeepLabCut is that it can accurately transform large videos into 
low-dimensional time sequence data with semantic meaning, as 
the experimenter preselects the parts that will presumably provide 
the most information about the behavior being studied. In contrast 
to high-dimensional videos, such low-dimensional time sequence 
data are also highly amenable to behavioral clustering and analysis 
because of their computational tractability6–8,44. On modern hard-
ware, pose extraction is also fast. For instance, one can process the 
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Extracted digit and hand trajectories End points of trajectories highlightedb

Hand and digit: reach, grab, and pull Hand and digit across multiple movements
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t-SNE 1

t-SNE 2

Fig. 7 | Markerless tracking of digits. a, Example test images labeled by human (yellow) and automated labeling (red or purple): the most likely joint is 
labeled in red if the probability of the peak in the score-map (see below) is larger than 10% at the peak, and purple otherwise. Here DeepLabCut was 
trained with only 141 images. In images where targets were occluded, the model typically reduces its confidence in the label position (purple), including 
in frames where the human was not confident enough to apply labels (bottom right) or when the digit tips are not visible (top right). Score-maps are 
shown to the right of the image for two example labels (highlighted by red arrows). For better visualization, log-transformed score-maps are also shown. 
b, Example analysis of trajectories after automated labeling. c, Extracted reach and pull trajectories from the wrist (purple) and digit 1 (blue) for three 
pulls; a.u., arbitrary units. d, Trajectories in c. Dashed lines are the x coordinate (lateral movements) and solid lines represent the y coordinate (pulling 
axis). e, On the basis of the predicted wrist location, we extracted n =  1,139 images of the hand from the video of one behavioral session and performed 
dimensionality reduction by t-distributed stochastic neighbor embedding (t-SNE) of those images. The blue point cloud shows the 2D embedding with 
several images corresponding to the red highlighted coordinates. This figure illustrates the richness of hand postures during this reaching task. f, Labeled 
body parts with connecting edges giving rise to a ‘skeleton’ of the hand (see Supplementary Video 3).
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682 ×  540 pixel frames of the Drosophila behavior at around 30 Hz 
on an NVIDIA 1080Ti GPU. Processing speeds scale with the frame 
size; for example, lower resolution videos with 204 ×  162 pixel 
frames are analyzed at around 85 Hz. Such fast pose extraction can 
make this tool potentially amenable for real-time feedback38,45 based 
on video-based posture estimates. This processing speed can be fur-
ther improved by cropping input frames in an adaptive way around 
the animal and/or adapting the network architecture to speed up 
processing times.

Extensions. As presented, DeepLabCut extracts the posture data 
frame by frame, but one can add temporal filtering to improve 
performance (as for other approaches)6,46,47. Here we omitted such 
methods because of the high precision of the model without these 
additional steps, as well as to highlight the accurate prediction based 
on single frames solely driven by within-frame visual information 
in a variety of contexts.

While temporal information could indeed be beneficial in cer-
tain contexts, challenges remain to using end-to-end-trained deep 
architectures for video data to extract postures. Because of the curse 
of dimensionality, deep architectures on videos must rely on input 
images with lower spatial resolution, and thus the best-performing 
action recognition algorithms still rely on frame-by-frame analysis 
with deep networks pretrained on ImageNet as a result of hardware 
limitations28,29,48. As this is an active area of research, we believe this 
situation is likely to change with improvements in hardware (and in 
deep learning algorithms), and this should have a strong influence 
on pose estimation in the future. Therefore currently, in situations 
where occlusions are very common, such as in social behaviors, 
pairwise interactions could also be added to improve perfor-
mance6,13–18,27,29. Here we have focused on the deep feature detectors 
alone to demonstrate remarkable transfer learning for laboratory 
tasks without the need for such extensions.

Conclusions
Together with this report, we provide an open source software pack-
age called DeepLabCut. The toolbox uses the feature detectors from 
DeeperCut and provides routines to (i) extract distinct frames from 
videos for labeling, (ii) generate training data based on labels, (iii) 
train networks to the desired feature sets, and (iv) extract these feature 
locations from unlabeled data (Fig. 1). The typical use case would be 
for an experimenter to extract distinct frames from videos and label 
the body parts of interest to create tailored part detectors. Then, after 
only a few hours of labeling and training the network, DeepLabCut 
can be applied to novel videos. While we demonstrate the utility of 
this toolbox on mice and Drosophila, there is no inherent limitation 
of this framework, and our toolbox can be applied to other model, or 
non-model, organisms in a diverse range of behaviors.

Methods
Methods, including statements of data availability and any asso-
ciated accession codes and references, are available at https://doi.
org/10.1038/s41593-018-0209-y.
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Methods
DeepLabCut toolbox. This publication is accompanied by open source Python 
code for selecting training frames, checking human annotator labels, generating 
training data in the required format, and evaluating the performance on test 
frames. The toolbox also contains code to extract postures from novel videos with 
trained feature detectors. Thus, this toolbox allows one to train a tailored network 
based on labeled images and to perform automatic labeling for novel data. See 
https://github.com/AlexEMG/DeepLabCut for details.

While the presented behaviors were recorded in grayscale under infrared or 
normal lighting conditions, DeepLabCut can also be used for color videos. There 
is no inherent limitation to the cameras that can be used to collect videos that can 
subsequently be analyzed with our toolbox. Please see http://www.mousemotorlab.
org/deeplabcut for more example behaviors (including examples of color videos).

Mouse odor trail-tracking. The trail-tracking behavior is part of an investigation into 
odor-guided navigation wherein one or more wild-type (C57BL/6J) male mice run on a 
paper spool following odor trails. These experiments were carried out in the laboratory 
of Venkatesh Murthy at Harvard University and will be published elsewhere. For 
trail-tracking, we extracted 1,080 random, distinct frames from multiple experimental 
sessions observing 7 different mice. Data were recorded at 30 Hz by two different 
cameras: the 640 ×  480 pixels images were acquired with a Point Grey Firefly FMVU-
03MTM-CS and the ~1,700 ×  1,200 pixel images with a Point Grey Grasshopper 
3 4.1MP Mono USB3 Vision, CMOSIS CMV4000-3E12. The latter images are 
prohibitively large to process without downsampling, and therefore we cropped 
around mice to generate images that were approximately 800 ×  800 pixels. One human 
annotator was instructed to localize the snout, the tip of the left and right ear and the 
base of the tail in the example images on two different occasions (using Fiji49), which 
generated two distinct label sets (> 1 month apart to reduce memory bias; see Fig. 1).

Mouse reach and pull joystick task. Experimental procedures for the training of 
the joystick behavior and the construction of the behavioral set-up can be found 
in Mathis et al.38. In brief, head-fixed mice were trained to reach, grab and pull a 
joystick for a liquid reward. To generate a train/test set of images, we labeled 159 
frames at 13 locations: 3 points per digit—the digit tip, the joint in the middle and 
the base of the digit (which roughly correspond to the proximal interphalangeal 
joint and the metacarpophalangeal joint, respectively)—as well as the base of the 
hand (wrist). The data were collected across 5 different mice (C57BL/6J, male 
and female) and were recorded at 2,048 ×  1,088 resolution with a frame rate of 
100–320 Hz. For tracking the digits, we used the supplied toolbox code to crop the 
data to extract only regions of interest containing the movement of the forelimb to 
limit the size of the input image to the network.

All surgical and experimental procedures for mice were in accordance with the 
National Institutes of Health Guide for the Care and Use of Laboratory Animals 
and approved by the Harvard Institutional Animal Care and Use Committee.

Drosophila egg-laying behavior. Experiments were carried out in the laboratory 
of Richard Axel at Columbia University and will be published elsewhere. In brief, 
egg-laying behavior in female Drosophila (Canton-S strain) was observed in custom-
designed 3D-printed chambers (Protolabs). Individual chambers were 4.1 mm deep 
and tapered from top to bottom, with the top dimensions 7.3 mm ×  5.8 mm and the 
bottom dimensions 6.7 mm ×  4.3 mm. One side of the chamber opened to a reservoir 
within which 1% agar was poured and allowed to set. Small acrylic windows were slid 
into place along grooves at the top and bottom to enclose the fly within the chamber 
and to allow viewing. The chamber was illuminated by a 2-inch off-axis ring light 
(Metaphase) and video recording was performed from above the chamber using 
an infrared-sensitive CMOS camera (Basler) with a 0.5×  telecentric lens (Edmund 
Optics) at 20 Hz (682 ×  540 pixels). We identified 12 distinct points of interest to 
quantify the behavior of interest on the body of the fly. One human annotator 
manually extracted 589 distinct and informative frames from six different animals, 
labeling only those features that were visible within a given frame. The 12 points 
comprise 4 points on the head (the dorsal tip of each compound eye, the ocellus and 
the tip of the proboscis), the posterior tip of the scutellum on the thorax, the joint 
between the femur and tibia on each metathoracic leg, the abdominal stripes on the 
four most posterior abdominal segments (A3–A6) and the ovipositor.

Labeled dataset set selection. No statistical methods were used to predetermine sample 
sizes for labeled frames, but our sample sizes are similar to those reported in previous 
publications. The labelers were blinded to whether the frames would be assigned to 
training or test datasets (as the frames were randomized across splits). For each replicate 
(i.e., split of the dataset), frames were randomly assigned to the test or training set. No 
data or experimental animals (mice or Drosophila) were excluded from the study.

Deep feature detector architecture. We employ strong body part detectors, which are 
part of state-of-the art algorithms for human pose estimation called DeeperCut26,27,29. 
Those part detectors build on state-of-the-art object recognition architectures, 
namely extremely deep residual networks (ResNet)24. Specifically, we use a variant 
of the ResNet with 50 layers, which achieved outstanding performance in object 
recognition competitions24. In the DeeperCut implementation, the ResNets were 
adapted to represent the images with higher spatial resolution, and the softmax layer 
used in the original architecture after the conv5 bank (as would be appropriate for 

object classification) was replaced by ‘deconvolutional layers’ that produce a scalar 
field of activation values corresponding to regions in original image. This output is 
also connected to the conv3 bank to make use of finer features generated earlier in the 
ResNet architecture27. For each body part, there is a corresponding output layer whose 
activity represents probability ‘score-maps’. These score-maps represent the probability 
that a body part is at a particular pixel26,27. During training, a score-map with positive 
label 1 (unity probability) is generated for all locations up to ϵ  pixels away from the 
ground truth per body part (distance variable). The ResNet architecture used to generate 
features is initialized with weights trained on ImageNet24, and the cross-entropy loss 
between the predicted score-map and the ground-truth score-map is minimized 
by stochastic gradient descent27. Around 500,000 training steps were enough for 
convergence in the presented cases, and training takes up to 24 h on a GPU (NVIDIA 
GTX 1080 Ti; note that typically the loss starts to slowly decay early in training; see 
Fig. 2b). We used a batch size of 1, which allows us to have images of different sizes, 
decreased the learning rate over training and performed data augmentation during 
training by rescaling the images (as in DeeperCut, but we used a range of 50% to 150%). 
We also tested further data augmentation by additionally training with 7 rotated frames 
per training image (rotation group—angles independently and uniformly sampled 
(uid) from [–8,8] degrees) as well as 9 rotated and 14 partial images per training images 
(rotation and translation group—angles uid from [–10,10] degrees, as well as uid 
subimages amounting to relative shifts). Unless otherwise noted, we used a distance 
variable ϵ  =  17 (pixel radius) and scale factor 0.8 (which affects the ratio of the input 
image to output score-map). We cross-validated the choice of ϵ  for a higher resolution 
output (scale factor =  1) and found that the test performance was not improved when 
varying ϵ  widely, but the rate of performance improvement was strongly decreased for 
small ϵ  (Supplementary Fig. 2). We also evaluated deeper networks with 101 layers, 
ResNet-101, as well as ResNet-101ws (with intermediate supervision, Supplementary 
Fig. 2b); more technical details can be found in Insafutdinov et al.27.

Evaluation and error measures. The trained network can be used to predict body 
part locations. At any state of training, the network can be presented with novel 
frames, for which the prediction of the location of a particular body part is given 
by the peak of the corresponding score-map. This estimate is further refined on the 
basis of learned correspondences between the score-map grid and ground truth 
joint positions26,27,29. In the case of multiple mice, the local maxima of the score-
map are extracted as predictions of the body part locations (Fig. 4).

As discussed in the main text, a user can continue to fine-tune the network for 
increasing generalization to large datasets to reduce errors. One can use features 
of the score-maps such as the amplitude and width, or heuristics such as the 
continuity of body part trajectories, to identify images for which the decoder might 
make large errors. Images with insufficient automatic labeling performance that are 
identified in this way can then be manually labeled to increase the training set and 
iteratively improve the feature detectors.

To compare between datasets generated by the human scorer, as well as 
with or between model-generated labels, we used the Euclidean distance (root 
mean square error, RMSE) calculated pairwise per body part. Depending on the 
context, this metric is either shown for a specific body part, averaged over all 
body parts, or averaged over a set of images. To quantify the error across learning, 
we stored snapshots of the weights in TensorFlow50 (usually every 50,000 
iterations) and evaluated the RMSE for predictions generated by these frozen 
networks post hoc. Note that the RMSE is not the loss function minimized during 
training. However, the RMSE is the relevant performance metric for assessing 
labeling precision in pixels.

The RMSE between the first and second annotation is referred to as human 
variability. In figures we also depict the 95% confidence interval for this 
RMSE, whose limits are given as mean ±  1.96 times the s.e.m. (Figs 2c,d,f,  
4 and 5 and Supplementary Fig. 2a–d). Depending on the figure, the RMSE 
is averaged over all or just a subset of body parts. For the Drosophila and the 
mouse hand data, we report the average test RMSE for all body parts with 
likelihood larger than 10%.

In Fig. 7 we extracted cropped images of the hand from full frames (n =  1,139) by 
centering it using the predicted wrist position. We then performed dimensionality 
reduction by t-SNE embedding of those images51 and randomly selected certain 
sufficiently distant points to illustrate the corresponding hand postures.

Reporting Summary. Further information on experimental design is available in 
the Nature Research Reporting Summary linked to this article.

Code availability. We provide the code for the DeepLabCut toolbox at https://
github.com/AlexEMG/DeepLabCut.

Data availability. Data are available from the corresponding author upon 
reasonable request.
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Clearly defined error bars 
State explicitly what error bars represent (e.g. SD, SE, CI)
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Software and code
Policy information about availability of computer code

Data collection custom written scripts in LabView 2013 was used to collect the odor-guided navigation, social mice videos,  and mouse reaching data.  
Video recording of the Drosophila was performed from above the chamber using an IR-sensitive CMOS camera (Basler).

Data analysis All analysis and model generation code is deposited at https://github.com/AlexEMG/deeplabcut 

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers 
upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

There is a Data Availability section that provides the link to the github.com code repository. 



2

nature research  |  reporting sum
m

ary
April 2018

Field-specific reporting
Please select the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/authors/policies/ReportingSummary-flat.pdf

Life sciences study design
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Sample size Aside from empirically testing how many frames are required to reach human-level accuracy (Figure 2), no predetermined sample size criteria 
was used. 

Data exclusions  No data was excluded.

Replication Videos taken from multiple flies and/or multiple mice in each behavior was recorded. Model analysis was always performed with multiple 
randomized train/test splits, and run at least three times (i.e. see Figure 2) to validate the conclusions. All attempts at replication were 
successful. 

Randomization Data was randomly assigned to the training or test splits. 

Blinding Labelers were not told which videos or labeled data would be included in the training or test splits. 

Reporting for specific materials, systems and methods

Materials & experimental systems
n/a Involved in the study

Unique biological materials
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Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Animals and other organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals Mice: with a C57BL\6J background genotype of both sexes (female and male) were used, aged P60 to P360. Number of animals 
are reported in the methods section. All mice experiments were conducted with IUCAC approval at Harvard. For the Drosophila 
melanogaster, experiments were performed on adult females that were 5-6 days post-eclosion (Canton-S strain).

Wild animals The study did not involve wild animals.

Field-collected samples No animals were collected from the field. 
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