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Abstract— Generalized linear models (GLMs) are useful tools
to capture the characteristic features of spiking neurons; how-
ever, the predictive power of an autoregressive GLM inferred
through maximum likelihood (ML) can be subject to runway
self-excitation. We explain here that this runaway excitation
is a consequence of the one-step-ahead ML inference used in
estimating the parameters of the GLM. Alternatively, inference
techniques that incorporate the likelihood of spiking multiple
steps ahead in the future can remove this instability. We
formulate a multi-step log-likelihood (MSLL) for interpreting
spiking data. MSLL is used to infer an autoregressive GLM for
individual spiking neurons recorded from the lateral intrapari-
etal (LIP) area of monkeys during a perceptual decision-making
task. While ML inference is shown to produce a GLM with poor
fits of the neuron’s interspike intervals and autocorrelation, in
addition to its runaway excitation, MSLL fit models show a
substantial improvement in interval statistics and stable spiking.

I. INTRODUCTION

The generalized linear model (GLM) is a ubiquitous tool
in neuroscience to describe spiking neurons, and can capture
many important features observed in experimental data. In
particular, autoregressive analogs of the Poisson-GLM can
characterize self-modulating effects of a spiking neuron,
such as refractoriness, self-excitation, and bursting [1]. An
autoregressive GLM has the following general form:

P (yt|~Yt−1, θ) = Poiss(λt(θ, ~Yt−1)) (1)

λt(θ, ~Yt−1) = exp
(
hT ~Yt−1 + a

)
, θ = {h, a}, (2)

where the probability of a spike occurring in a small time
bin at time t is denoted as P (yt > 0|~Yt−1, θ), and its
mean is the conditional intensity function λt with parameters
θ, given for the GLM as an autoregressive filter h ∈ Rp
and a bias a. The filter is convolved with the previous p
spikes ~Yt−1 = [Yt−1, Yt−2, . . . , Yt−p]

T . Maximum likeli-
hood (ML) estimation optimizes θ to maximize the one-step
log-likelihood of spiking given the observed data Y1, . . . , YT ,

θ̂ML = argmax
θ

T∑
t=1

logP (yt = Yt|~Yt−1, θ). (3)

ML estimation yields a model that is “best” at one-step
prediction, however, it is not necessarily the best for long-
term prediction when run in the generative mode—feeding
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generated spikes back as history, recursively. In fact, there
can be catastrophic failures where the generated spike trains
do not resemble the statistics of the data. This typically
manifests in an “unstable” and high firing rate due to positive
feedback through a self-excitatory history filter. This is
demonstrated in Fig 1A in the case of GLM fit to an individ-
ual neuron recorded from the lateral intraparietal (LIP) area
of a monkey during a perceptual decision-making task [2].
Figure 1 shows the exponentiated autoregressive filter fit with
ML, indicating significant self-excitation at both 3 ms and
60 ms after spiking. Generating spike trains from this GLM,
though, can yield spikes trains that entirely saturate the firing
rate by spiking as much as possible, which is shown by
the raster plot of sampled data in Fig 1B. Moreover, the
model fails to capture the long-term temporal structure of
the recorded data. The model and data interspike interval
(ISI) distribution and autocorrelation function are shown in
Fig 2. The fast spiking due to overexcitation significantly
shifts the ISI distribution of the GLM, and severely alters
the autocorrelation.

There may be several solutions to address this issue with
the GLM as a generative model. One proposed solution has
been to incorporate a quadratic term into the autoregressive
component, capable of reducing the effects of self-excitation
[3], [4]. Unfortunately, restrictions on the required structure
of such generalized quadratic models may artificially limit
the applicability to fit real neural data. More importantly, this
is an ad-hoc solution of examining new classes of models,
while the primary difficulty is a mismatch in the method of
inference used versus the predictive qualities desired from the
model [5]. In that vein, we instead explore a method of multi-
step inference aimed at improving the long-time predictive
capabilities of the GLM by construction. This multistep log-
likelihood (MSLL) inference technique is developed in the
following section. We present its performance on capturing
the statistics of neural data that were previously ill-described
by the GLM with ML inference.

II. MULTISTEP LOG-LIKELIHOOD (MSLL) ESTIMATION

In general, we would like to identify a model that well-
predicts spiking many steps ahead in the future. This objec-
tive can be encapsulated by the m-step observation likelihood
P (yt+m = Yt+m|~Yt, θ), which is the probability of observ-
ing yt+m based on [Yt, . . . , Yt−p] without the knowledge of
intermediate m − 1 values. Let ~yl = [yt+1, . . . , yt+m−1]
denote a latent vector for the intentionally missing values.
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Fig. 1. Characteristic example of a GLM with over-excitation leading to
saturated firing for long-time predictions. Model fit from data characterized
in reference [2]. (A) Exponential gain from the autoregressive filter, showing
initial refractoriness, followed by strong self-excitation. (B) Long-term
sampling from the ML GLM, showing several instances of constant elevated
firing rate.

In order to incorporate inference at multiple step sizes, we
define a weighted, multi-step log-likelihood,

LMS(θ, ρ) =

M∑
m=1

ρm

T∑
t=1

logP (yt+m|~Yt, θ) (4)

where ρm ≥ 0 weights the m-step likelihood. For ease of
notation, we will use P (yt+m| · ) ≡ P (yt+m = Yt+m| · ) to
denote the observation likelihood unless otherwise specified.
From the definition of conditional probability, we express the
expected m-step marginal log-likelihood as,

F = logP (yt+m|~Yt, θ) = E
P
log

[
P (yt+m, ~yl|~Yt, θ)
P (~yl|Yt+m, ~Yt, θ)

]
= E
P
[logP (yt+m|~yl, ~Yt, θ)] + E

P
[logP (~yl|~Yt, θ)]

− E
P
[logP (~yl|Yt+m, ~Yt, θ)]. (5)

Note that (5) holds for any ~yl, hence the last equality holds
for any distribution P over the latents ~yl.

Eq. (5) contains three respective expected log-likelihood
terms: The m-step reconstruction error of the model, a
“prior” likelihood of the latent spike patterns ~yl, and a
“posterior” likelihood of the latents spikes given both prior
spike history and the future spike at Yt+m. In the spirit of the
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Fig. 2. Comparison of the interspike-interval (ISI) of the experimental
and model data for an LIP neuron [2]. A one-parameter model fitting
only average firing rate is shown in green (i.e., Poisson exponential) for
comparison. Inset, autocorrelation comparison of the GLM and experimental
data. In both statistics, the ML GLM fails to capture that temporal structure.

expectation-maximization (EM) algorithm [6], we rewrite the
last two log-likelihood terms in (5) explicitly as Kullback-
Leibler (KL) divergences,

F =E
P
[logP (yt+m|~yl, ~Yt, θ)]

−DKL[P||P (~yl|~Yt, θ)]−H(P)
+DKL[P||P (~yl|Yt+m, ~Yt, θ)]P +H(P) (6)

=E
P
[logP (yt+m|~yl, ~Yt, θ)]−DKL[P||P (~yl|~Yt, θ)]

+DKL[P||P (~yl|Yt+m, ~Yt, θ)]. (7)

As in EM inference, we can alternate between (E-step)
updating the distribution P to be the posterior distribution
given the parameters,

P(~yl) = P (~yl|Yt+m, ~Yt, θ) (latent distribution), (8)

which removes the gap DKL

[
P||P (~yl|Yt+m, ~Yt, θ)

]
= 0,

and (M-step) maximizing the parameters with respect to the
remaining terms with a fixed P ,

F ′ = E
P
[logP (yt+m|~yl, ~Yt, θ)]−DKL[P||P (~yl|~Yt, θ)]. (9)

Equivalently, this amounts to maximizing the expected total
data log-likelihood as a function of θ,

F ′′ = E
P
[logP (~yl, yt+m|~Yt, θ)]. (10)

Unfortunately, (8) is a distribution over 2m possible binary
vectors, and a naive implementation incurs a prohibitive com-
putational cost to evaluate the optimization objective (10)
and its gradient. Therefore, we deploy a sampling based
approximation of the expectation over the posterior distribu-
tion. We replace the expectation in (10) with a Monte Carlo



integration using L samples from P ,

LMS(θ, ρ) =

T,L,M∑
t,i,m=1

ρm
L

[logP (yt+m|~y(i),l, ~Yt, θ)+

H(m− 2)

m−1∑
k=1

logP (y(i),t+k|(~y(i),t+k−1, ~Yt, θ)] (11)

=

T,L,M∑
t,i,m=1

ρm
L

[Yt+m log(λt+m)− λt+m+

H(m− 2)(M −m− 1) [yt+m−1 log(λt+m−1)− λt+m−1]] .

λt+m is the conditional intensity function utilizing a sample
of latent spikes from the posterior distribution P ,

λt+m = exp
(
hT [~Yt−1, ~y(i),l] + a

)
, (12)

~y(i),l is the i-th sample from the latent distribution with fixed
θ, and H(m − 2) is a discrete Heaviside function. Eq. (11)
can be used for stochastic gradient ascent if sampling from
the posterior distribution is accessible. Here we turn to Gibbs
sampling in order to draw samples from P [6]. The posterior
can be decomposed using Bayes rule,

P (~yl|Yt+m, ~Yt, θ) ∝ P (Yt+m|~yl, ~Yt, θ)P (~yl|, ~Yt, θ), (13)

where we may sample each successive latent spike yl by
determining its probability of being either a spike (yl = 1) or
not (yl = 0) given the later observation Yt+m. We initialize
the sampling with the originally observed data, and then
perform stochastic optimization using Adam gradient ascent
[7] with L = 1 posterior sample per gradient step.

III. RESULTS

We first show the results of fitting MSLL models from
LIP neurons that had previously shown unstable and constant
firing in GLM sampling, as shown in Fig. 1. Figure 3A shows
the exponentiated, autoregressive history filters for varying-
length MSLL inference. In these model fits, ρm = 1, ∀m
to equally weight all step sizes in the inference. The initial,
sharp excitation seen in the ML GLM history filter dissipates
for longer-step inference, while the longer timescale excita-
tion remains at a lower magnitude. However, the absolute
refractory period seen in the GLM additionally disappears
for longer inference. Figure 3B shows the ISI distributions
for the MSLL fit models, which perform substantially better
compared to the ML GLM, with models using larger M
values providing similar fits to data as summarized by the
Kolmogorov–Smirnov (KS) statistic of the ISI distribution
shown in the inset. While the absolute refractory period is not
as intensely encoded in the filter as in the ML model, lower
spike timings are still reasonably captured (see zoomed-in
distribution inset).

In addition to capturing some of the temporal structure
of the observed LIP data, they importantly constitute a
generative model that stabilizes the unstable firing seen in
the GLM. This is demonstrated by comparing a raster plot
of original LIP data (Fig. 4A) to raster plots of sampling
from the MS 20 model, shown in Fig. 4B.
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Fig. 3. (A) Exponential gain of history filters for MSLL inference at
varying step sizes. As longer timestep inference is included in the models,
refractoriness and the intensity of the initial self-excitation is diminished
in the filter while maintaining the longer-time scale excitation near 60
ms. Bias parameter of each model given in legend. (B) Interspike interval
(ISI) distributions for MSLL inference. Inset distribution: a zoomed-in
view of low ISI. MSLL models with large M show substantial qualitative
improvement upon capturing the ISI as compared the ML solution. Bar
graph inset: the two-sample KS statistic comparing the data ISI distribution
to model distributions, again showing improved fit with larger M value
multi-step models.

We also investigated how the prediction performance of
multi-step inference models changed with different step
sizes. Plotted in Figure 5 is the m-step-ahead observation
log-likelihood for models inferred from four-fold cross vali-
dation for different step sizes. This m-step log likelihood is
given by

Lmstep(m) =

T∑
t

logP (yt+m|~Yt, θ). (14)

The maximum likelihood model showed higher log-
likelihood for small step sizes, but failed quite poorly for
long-step inference. Lower-step models (MS 2) also had
quite poor long-step prediction quality, while longer-step
models performed reasonably well at low inference (see
Fig. 5 inset), and were superior at long-step prediction.

IV. DISCUSSION
Here we demonstrated that multi-step log-likelihood

(MSLL) inference for autoregressive spiking models can be
a useful tool to identify parameters of sequential genera-
tive models that are more appropriate for sampling longer
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Fig. 4. (A) Raster plot of observed LIP data. (B) Raster plot of samples
taken from the MS 20 model fit to the LIP neuron. No instances of elevated
firing rates were observed from the MS 20-step model, as was observed in
the ML model.
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Fig. 5. Multi-step observation log-likelihood for varying step sizes with LIP
testing data. Inset: zoomed-in view of small step log-likelihood. The ML
solution performs well for small-step predictions, while multi-step models
show better performance for longer predictions where ML solutions fail.

series than models fit with the conventional single-step log-
likelihood. A set of MSLL fit models with sufficiently large
multi-step inference, M ≥ 10 in this work, generated stable
firing rates and fit the interspike interval statistics of a neuron
recorded from LIP during a perceptive decision making task,
in contrast to an ML fit of the GLM that caused runaway
self-excitation.

The computational demands of this method can grow
quickly for large step-size predictions. Since Gibbs sampling
is used to generate instances of these latent spikes, consid-
erable computational demand is placed upon sampling from
the latent posterior, which motivated our use of only one
sample per optimization step.

Despite the computational considerations, this mode of
inference is an attractive alternative to single-step log-
likelihood, although it is not without its own caveats. The
models fit to LIP data failed to capture the absolute refrac-
tory period for long time-step inference, which may be an
important qualitative feature of a neuron. There is a trade-off
between better long-term predictions and maintaining short-
time scale temporal structure. Investigating the importance
of the weighting factor ρ will be an important matter in

that regard, as substantial importance should likely be placed
on smaller-step inference when the refractory character of a
neuron is desired. Crucially, though, the formalism presented
here highlights the importance of the likelihood of spike
trains generated from the model as a consideration when
performing multi-step inference.

Finally, it is important to note that other approaches are
tackling similar inference/sampling mismatching. Professor
forcing [8] is a recent development meant to overcome a
similar problem of generative models using recurrent neural
networks for sequence generation. It is an improvement upon
a paradigm called scheduled sampling [9], [10], in which
ground truth observations as well as periodically introduced
samples from the model itself are utilized in training. Rather
than combining the samples into training a single model,
though, professor forcing uses a generative adversarial net-
work formalism to attempt to fool a discriminative model
being given both recursively generated samples and the
ground truth observations [11]. In this vein, professor forcing
attempts to identify a model with reasonable long-term spike
train generation, similar to MSLL. Future development of
multistep inference will benchmark against professor forcing.
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